Progress in Probe-Based Sensing Techniques for In Vivo Diagnosis
Abstract
:1. Introduction
2. Probes for In Vivo Physical Sensing
2.1. Probes for In Vivo Force Sensing
2.1.1. Fiber Bragg Grating-Based Force Sensor
2.1.2. Electrical-Based Force Sensing
2.1.3. Other Techniques
2.2. Probes for In Vivo Temperature Sensing
2.3. Probes for In Vivo Imaging
2.3.1. Optical Coherence Tomography Imaging
2.3.2. Ultrasound Imaging
2.3.3. Photoacoustic Imaging
2.3.4. Other Techniques
3. Probes for In Vivo Biochemical Sensing
3.1. Probes for In Vivo Chemical Sensing
3.2. Probes for In Vivo Biomarkers Sensing
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Concin, N.; Matias-Guiu, X.; Vergote, I.; Cibula, D.; Mirza, M.R.; Marnitz, S.; Ledermann, J.; Bosse, T.; Chargari, C.; Fagotti, A.; et al. ESGO/ESTRO/ESP guidelines for the management of patients with endometrial carcinoma. Int. J. Gynecol. Cancer 2021, 31, 12–39. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Chen, N.; Yang, Y.; Zheng, Z.; Dong, N.; Guo, H.; Mei, J.; Xue, S.; Liu, L.; Guo, Y. The data of Chinese minimally invasive cardiovascular surgery in 2019. Chin. J. Clin. Thorac. Cardiovasc. Surg. 2021, 12, 149–153. [Google Scholar]
- Fuchs, K. Minimally invasive surgery. Endoscopy 2002, 34, 154–159. [Google Scholar] [CrossRef]
- Burgner-Kahrs, J.; Rucker, D.C.; Choset, H. Continuum Robots for Medical Applications: A Survey. IEEE Trans. Robot. 2015, 31, 1261–1280. [Google Scholar] [CrossRef]
- Runciman, M.; Darzi, A.; Mylonas, G.P. Soft Robotics in Minimally Invasive Surgery. Soft Robot. 2019, 6, 423–443. [Google Scholar] [CrossRef] [Green Version]
- Hou, B.; Wang, M.; Song, Z.; He, Q.; Hao, Z. Renal puncture access using a blunt needle: Proposal of the blunt puncture concept. World J. Urol. 2022, 40, 1035–1041. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Wang, C.; Xie, L.; Zhou, S.; Gu, L.; Xie, H. A novel remote-controlled robotic system for cerebrovascular inter-vention. Int. J. Med. Robot. Comput. Assist. Surg. 2018, 14, e1943. [Google Scholar] [CrossRef]
- Liu, Z.; Ma, Y.; Ouyang, H.; Shi, B.; Li, N.; Jiang, D.; Xie, F.; Qu, D.; Zou, Y.; Huang, Y. Transcatheter self-powered ul-trasensitive endocardial pressure sensor. Adv. Funct. Mater. 2019, 29, 1807560. [Google Scholar] [CrossRef]
- Han, M.; Chen, L.; Aras, K.; Liang, C.; Chen, X.; Zhao, H.; Li, K.; Faye, N.R.; Sun, B.; Kim, J.-H.; et al. Catheter-integrated soft multilayer electronic arrays for multiplexed sensing and actuation during cardiac surgery. Nat. Biomed. Eng. 2020, 4, 997–1009. [Google Scholar] [CrossRef]
- Ai, X.; Gao, A.; Lin, Z.; He, C.; Chen, W. A Multi-Contact-Aided Continuum Manipulator with Anisotropic Shapes. IEEE Robot. Autom. Lett. 2021, 6, 4560–4567. [Google Scholar] [CrossRef]
- Wang, L.; Guo, C.F.; Zhao, X. Magnetic soft continuum robots with contact forces. Extreme Mech. Lett. 2022, 51, 101604. [Google Scholar] [CrossRef]
- Li, W.; Shen, M.; Gao, A.; Yang, G.-Z.; Lo, B. Towards a Snake-Like Flexible Robot for Endoscopic Submucosal Dissection. IEEE Trans. Med Robot. Bionics 2020, 3, 257–260. [Google Scholar] [CrossRef]
- Han, Y.; Marvi, H.; Sitti, M. Fiberbot: A miniature crawling robot using a directional fibrillar pad. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015. [Google Scholar]
- Fu, Y.; Gao, A.; Liu, H.; Guo, S. The master-slave catheterisation system for positioning the steerable catheter. Int. J. Mechatron. Autom. 2011, 1, 143. [Google Scholar] [CrossRef]
- Gao, A.; Liu, H.; Zou, Y.; Wang, Z.; Liang, M.; Wang, Z. A Contact-Aided Asymmetric Steerable Catheter for Atrial Fibrillation Ablation. IEEE Robot. Autom. Lett. 2017, 2, 1525–1531. [Google Scholar] [CrossRef]
- Fontanelli, G.A.; Buonocore, L.R.; Ficuciello, F.; Villani, L.; Siciliano, B. An External Force Sensing System for Minimally Invasive Robotic Surgery. IEEE/ASME Trans. Mechatron. 2020, 25, 1543–1554. [Google Scholar] [CrossRef]
- Gao, A.; Zhou, Y.; Cao, L.; Wang, Z.; Liu, H. Fiber Bragg Grating-Based Triaxial Force Sensor with Parallel Flexure Hinges. IEEE Trans. Ind. Electron. 2018, 65, 8215–8223. [Google Scholar] [CrossRef]
- Heunis, C.M.; Belfiore, V.; Vendittelli, M.; Misra, S. Reconstructing Endovascular Catheter Interaction Forces in 3D using Multicore Optical Shape Sensors. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019. [Google Scholar]
- Lin, Z.; Gao, A.; Ai, X.; Gao, H.; Fu, Y.; Chen, W.; Yang, G.-Z. ARei: Augmented-Reality-Assisted Touchless Teleoperated Robot for Endoluminal Intervention. IEEE/ASME Trans. Mechatron. 2021, 27, 3144–3154. [Google Scholar] [CrossRef]
- Wu, B.; Wang, L.; Liu, X.; Wang, L.; Xu, K. Closed-loop pose control and automated suturing of continuum surgical ma-nipulators with customized wrist markers under stereo vision. IEEE Robot. Autom. Lett. 2021, 6, 7137–7144. [Google Scholar] [CrossRef]
- Beaudette, K.; Li, J.; Lamarre, J.; Majeau, L.; Boudoux, C. Double-Clad Fiber-Based Multifunctional Biosensors and Mul-timodal Bioimaging Systems: Technology and Applications. Biosensors 2022, 12, 90. [Google Scholar] [CrossRef]
- Miranda, B.; Rea, I.; Dardano, P.; De Stefano, L.; Forestiere, C. Recent Advances in the Fabrication and Functionalization of Flexible Optical Biosensors: Toward Smart Life-Sciences Applications. Biosensors 2021, 11, 107. [Google Scholar] [CrossRef]
- Hamed, A.; Tang, S.C.; Ren, H.; Squires, A.; Payne, C.; Masamune, K.; Tang, G.; Mohammadpour, J.; Tse, Z.T.H. Advances in Haptics, Tactile Sensing, and Manipulation for Robot-Assisted Minimally Invasive Surgery, Noninvasive Surgery, and Diagnosis. J. Robot. 2012, 2012, 1–14. [Google Scholar] [CrossRef]
- Chen, M.; Wang, J.; Tan, W.; Feng, Y.; Zheng, G. Miniaturized all fiber probe for optical coherence tomography and pH detection of biological tissue. J. Biophotonics 2020, 14, e202000239. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Gomez, D.; He, C.; Korposh, S.; Morgan, S.P.; Correia, R.; Hayes-Gill, B.; Setchfield, K.; Liu, L. A U-shape fi-bre-optic pH sensor based on hydrogen bonding of ethyl cellulose with a sol-gel matrix. J. Light. Technol. 2021, 39, 1557–1564. [Google Scholar] [CrossRef]
- Gong, J.; Tanner, M.G.; Venkateswaran, S.; Stone, J.M.; Zhang, Y.; Bradley, M. A hydrogel-based optical fibre fluorescent pH sensor for observing lung tumor tissue acidity. Anal. Chim. Acta 2020, 1134, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Peng, Q.; Yan, X.; Shi, X.; Ou, S.; Gu, H.; Yin, X.; Shi, G.; Yu, Y. In vivo monitoring of superoxide anion from Alzheimer’s rat brains with functionalized ionic liquid polymer decorated microsensor. Biosens. Bioelectron. 2019, 144, 111665. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Wang, C.; Chen, W.; Chen, Y.; Zhang, J.X. PVDF-Nafion nanomembranes coated microneedles for in vivo transcutaneous implantable glucose sensing. Biosens. Bioelectron. 2015, 74, 1047–1052. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.; Liang, B.; Yang, G.; Hu, Y.; Zhu, Q.; Ye, X. A needle-type glucose biosensor based on PANI nanofibers and PU/E-PU membrane for long-term invasive continuous monitoring. Biosens. Bioelectron. 2017, 97, 196–202. [Google Scholar] [CrossRef]
- Zhou, J.; Ma, Z.; Hong, X.; Wu, H.-M.; Ma, S.-Y.; Li, Y.; Chen, D.-J.; Yu, H.-Y.; Huang, X.-J. Top-down strategy of im-plantable biosensor using adaptable, porous hollow fibrous membrane. ACS Sensors 2019, 4, 931–937. [Google Scholar] [CrossRef]
- Tang, S.; Zou, M.; Zhao, C.; Jiang, Y.; Chen, R.; Xu, Z.; Yang, C.; Wang, X.; Dong, B.; Wang, Y.; et al. Fabry-Perot Interferometer Based on a Fiber-Tip Fixed-Supported Bridge for Fast Glucose Concentration Measurement. Biosensors 2022, 12, 391. [Google Scholar] [CrossRef]
- Guo, T. Fiber Grating-Assisted Surface Plasmon Resonance for Biochemical and Electrochemical Sensing. J. Light. Technol. 2017, 35, 3323–3333. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, J.; Sun, Y.; Wang, L.; Dong, X.; Ren, J.; He, W.; Xiao, F. Flexible nanohybrid microelectrode based on carbon fiber wrapped by gold nanoparticles decorated nitrogen doped carbon nanotube arrays: In situ electrochemical detection in live cancer cells. Biosens. Bioelectron. 2018, 100, 453–461. [Google Scholar] [CrossRef]
- Al-Ahmad, O.; Ourak, M.; Vlekken, J.; Poorten, E.V. FBG-Based Estimation of External Forces along Flexible Instrument Bodies. Front. Robot. AI 2021, 8, 718033. [Google Scholar] [CrossRef]
- Bandari, N.; Dargahi, J.; Packirisamy, M. Tactile Sensors for Minimally Invasive Surgery: A Review of the State-of-the-Art, Applications, and Perspectives. IEEE Access 2019, 8, 7682–7708. [Google Scholar] [CrossRef]
- Haseda, Y.; Bonefacino, J.; Tam, H.-Y.; Chino, S.; Koyama, S.; Ishizawa, H. Measurement of Pulse Wave Signals and Blood Pressure by a Plastic Optical Fiber FBG Sensor. Sensors 2019, 19, 5088. [Google Scholar] [CrossRef] [Green Version]
- Latt, W.T.; Newton, R.C.; Visentini-Scarzanella, M.; Payne, C.J.; Noonan, D.P.; Shang, J.; Yang, G.-Z. A Hand-held Instrument to Maintain Steady Tissue Contact during Probe-Based Confocal Laser Endomicroscopy. IEEE Trans. Biomed. Eng. 2011, 58, 2694–2703. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, Z.; Tam, H.-Y.; Tao, X. Multifunctional Smart Optical Fibers: Materials, Fabrication, and Sensing Applications. Photonics 2019, 6, 48. [Google Scholar] [CrossRef] [Green Version]
- Presti, D.L.; Massaroni, C.; Leitao, C.S.J.; Domingues, M.D.F.; Sypabekova, M.; Barrera, D.; Floris, I.; Massari, L.; Oddo, C.M.; Sales, S.; et al. Fiber Bragg Gratings for Medical Applications and Future Challenges: A Review. IEEE Access 2020, 8, 156863–156888. [Google Scholar] [CrossRef]
- Wu, Z.; Gao, A.; Liu, N.; Jin, Z.; Yang, G.-Z. FBG-Based Triaxial Force Sensor Integrated with an Eccentrically Configured Imaging Probe for Endoluminal Optical Biopsy. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020. [Google Scholar]
- Di Biase, L.; Perini, A.P.; Mohanty, P.; Goldenberg, A.S.; Grifoni, G.; Santangeli, P.; Santoro, F.; Sanchez, J.E.; Horton, R.; Gallinghouse, G.J.; et al. Visual, tactile, and contact force feedback: Which one is more important for catheter ablation? Results from an in vitro experimental study. Hear. Rhythm 2014, 11, 506–513. [Google Scholar] [CrossRef]
- Wang, H.; Wang, S.; Li, J.; Zuo, S. Robotic Scanning Device for Intraoperative Thyroid Gland Endomicroscopy. Ann. Biomed. Eng. 2018, 46, 543–554. [Google Scholar] [CrossRef]
- Ping, Z.; Zhang, T.; Gong, L.; Zhang, C.; Zuo, S. Miniature Flexible Instrument with Fibre Bragg Grating-Based Triaxial Force Sensing for Intraoperative Gastric Endomicroscopy. Ann. Biomed. Eng. 2021, 49, 2323–2336. [Google Scholar] [CrossRef]
- Li, T.; Pan, A.; Ren, H. Reaction Force Mapping by 3-Axis Tactile Sensing with Arbitrary Angles for Tissue Hard-Inclusion Localization. IEEE Trans. Biomed. Eng. 2020, 68, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Gao, A.; Liu, N.; Zhang, H.; Wu, Z.; Yang, G.-Z. Spiral FBG sensors-based contact detection for confocal laser endomi-croscopy. Biosens. Bioelectron. 2020, 170, 112653. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Ni, X.; Wang, J.; Ai, F.; Luo, Y.; Yan, Z.; Liu, D.; Sun, Q. Microstructured Optical Fiber Based Distributed Sensor for In Vivo Pressure Detection. J. Light. Technol. 2019, 37, 1865–1872. [Google Scholar] [CrossRef]
- Ran, Y.; Long, J.; Xu, Z.; Yin, Y.; Hu, D.; Long, X.; Zhang, Y.; Liang, L.; Liang, H.; Guan, B.-O. Harmonic optical microfiber Bragg grating immunosensor for the accelerative test of cardiac biomarker (cTn-I). Biosens. Bioelectron. 2021, 179, 113081. [Google Scholar] [CrossRef]
- Kumar, K.S.; Xu, Z.; Kalairaj, M.S.; Ponraj, G.; Huang, H.; Ng, C.-F.; Wu, Q.; Ren, H. Stretchable Capacitive Pressure Sensing Sleeve Deployable onto Catheter Balloons towards Continuous Intra-Abdominal Pressure Monitoring. Biosensors 2021, 11, 156. [Google Scholar] [CrossRef] [PubMed]
- Hou, C.; Geng, J.; Sun, Y.; Chen, T.; Wang, F.; Ren, H.; Zuo, X.; Li, Y.; Liu, H.; Sun, L. A Sensorised Forcep Based on Piezoresistive Force Sensor for Robotic-assisted Minimally Invasive Surgery. In Proceedings of the 2021 IEEE 16th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Xiamen, China, 25–29 April 2021. [Google Scholar]
- Yu, L.; Yan, Y.; Yu, X.; Xia, Y. Design and Realization of Forceps with 3-D Force Sensing Capability for Robot-Assisted Surgical System. IEEE Sensors J. 2018, 18, 8924–8932. [Google Scholar] [CrossRef]
- Yu, L.; Yan, Y.; Li, C.; Zhang, X. Three-dimensional nonlinear force-sensing method based on double microgrippers with E-type vertical elastomer for minimally invasive robotic surgery. Robotica 2018, 36, 865–881. [Google Scholar] [CrossRef]
- Shi, H.; Zhang, B.; Mei, X.; Song, Q. Realization of Force Detection and Feedback Control for Slave Manipulator of Mas-ter/Slave Surgical Robot. Sensors 2021, 21, 7489. [Google Scholar] [CrossRef]
- Zou, M.; Liao, C.; Chen, Y.; Gan, Z.; Liu, S.; Liu, D.; Liu, L.; Wang, Y. Measurement of Interfacial Adhesion Force with a 3D-Printed Fiber-Tip Microforce Sensor. Biosensors 2022, 12, 629. [Google Scholar] [CrossRef]
- Li, B.; Gil, B.; Power, M.; Gao, A.; Treratanakulchai, S.; Anastasova, S.; Yang, G.-Z. Carbon-nanotube-coated 3D mi-crospring force sensor for medical applications. ACS Appl. Mater. Interfaces 2019, 11, 35577–35586. [Google Scholar] [CrossRef]
- Zhan, Y.; Hong, W.; Sun, W.; Liu, J. Flexible Multi-Positional Microsensors for Cryoablation Temperature Monitoring. IEEE Electron Device Lett. 2019, 40, 1674–1677. [Google Scholar] [CrossRef]
- Goncalves, S.B.; Palha, J.M.; Fernandes, H.C.; Souto, M.R.; Pimenta, S.; Dong, T.; Yang, Z.; Ribeiro, J.F.; Correia, J.H. LED Optrode with Integrated Temperature Sensing for Optogenetics. Micromachines 2018, 9, 473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franz, P.; Zhu, H.; Wang, X.; Chia, R.; Hasenberg, T.; Wang, H. Tissue temperature monitoring during laser vaporization through black body radiation at wavelengths less than 1.8 um. In Proceedings of the Optical Interactions with Tissue and Cells XXXI. San Francisco, San Francisco, CA, USA, 20 February 2020. [Google Scholar]
- Ding, H.; Lv, G.; Cai, X.; Chen, J.; Cheng, Z.; Peng, Y.; Tang, G.; Shi, Z.; Xie, Y.; Fu, X.; et al. An Optoelectronic thermometer based on microscale infrared-to-visible conversion devices. Light. Sci. Appl. 2022, 11, 130. [Google Scholar] [CrossRef] [PubMed]
- Lv, Z.; Niu, P.; Jiang, J.; Wang, S.; Liu, Y.; Liu, T. Reflective SFT-FBG Hybrid Micro-Probe for Simultaneous Measurement of Relative Humidity and Temperature. IEEE Photon. J. 2021, 14, 6806506. [Google Scholar] [CrossRef]
- Koh, A.; Gutbrod, S.R.; Meyers, J.D.; Lu, C.; Webb, R.C.; Shin, G.; Li, Y.; Kang, S.-K.; Huang, Y.; Efimov, I.R.; et al. Ultrathin Injectable Sensors of Temperature, Thermal Conductivity, and Heat Capacity for Cardiac Ablation Monitoring. Adv. Health Mater. 2015, 5, 373–381. [Google Scholar] [CrossRef] [Green Version]
- Fujimoto, J.G. Optical coherence tomography for ultrahigh resolution in vivo imaging. Nat. Biotechnol. 2003, 21, 1361–1367. [Google Scholar] [CrossRef]
- Hoyt, T.; Phipps, J.; Vela, D.; Wang, T.; Buja, M.; Jang, I.-K.; Milner, T.; Feldman, M. Diagnosis of Thin-capped Fibroatheromas in Intravascular Optical Coherence Tomography Images: Effects of Light Scattering. Circulation 2016, 9, e003163. [Google Scholar] [CrossRef]
- Li, J.; Chen, Q.; Sun, J.; Zhang, J.; Ding, J.; Zuo, C. Three-dimensional tomographic microscopy technique with mul-ti-frequency combination with partially coherent illuminations. Biomed. Opt. Express 2018, 9, 2526–2542. [Google Scholar] [CrossRef]
- Zheng, S.; Bai, Y.; Xu, Z.; Liu, P.; Ni, G. Optical Coherence Tomography for Three-Dimensional Imaging in the Biomedical Field: A Review. Front. Phys. 2021, 552. [Google Scholar] [CrossRef]
- Zhang, R.; Fan, Y.; Qi, W.; Wang, A.; Tang, X.; Gao, T. Current research and future prospects of IVOCT imaging-based detection of the vascular lumen and vulnerable plaque. J. Biophotonics 2022, 15, e202100376. [Google Scholar] [CrossRef]
- Ono, M.; Kawashima, H.; Hara, H.; Gao, C.; Wang, R.; Kogame, N.; Takahashi, K.; Chichareon, P.; Modolo, R.; Tomaniak, M.; et al. Advances in IVUS/OCT and Future Clinical Perspective of Novel Hybrid Catheter System in Coronary Imaging. Front. Cardiovasc. Med. 2020, 7, 119. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Tao, K.; Zhu, W.; Jiang, J.; Liu, T. A FBG-OCT Catheter to Reconstruct Vascular Shape in Intravascular Optical Coherence Tomography. IEEE Photon. Technol. Lett. 2019, 31, 701–704. [Google Scholar] [CrossRef]
- Kang, J.; Zhu, R.; Sun, Y.; Li, J.; Wong, K.K. Pencil-Beam Scanning Catheter for Intravascular Optical Coherence Tomography. In Proceedings of the 2020 Asia Communications and Photonics Conference (ACP) and International Conference on Information Photonics and Optical Communications (IPOC), Beijing, China, 24–27 October 2020. [Google Scholar]
- Li, Y.; Jing, J.; Qu, Y.; Miao, Y.; Zhang, B.; Ma, T.; Yu, M.; Zhou, Q.; Chen, Z. Fully integrated optical coherence tomography, ultrasound, and indocyanine green-based fluorescence tri-modality system for intravascular imaging. Biomed. Opt. Express 2017, 8, 1036–1044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez-Luna, D.; Molina, C.A. Vascular imaging: Ultrasound. Handb. Clin. Neurol. 2016, 136, 1055–1064. [Google Scholar]
- Marrocco, C.J.; Jaber, R.; White, R.A.; Walot, I.; DeVirgilio, C.; Donayre, C.E.; Kopchok, G. Intravascular ultrasound. Semin. Vasc. Surg. 2012, 25, 144–152. [Google Scholar] [CrossRef]
- Ma, X.; Cao, W. Single-Crystal High-Frequency Intravascular Ultrasound Transducer with 40 um Axial Resolution. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2019, 67, 810–816. [Google Scholar] [CrossRef]
- Wang, L.; Lei, P.; Wen, X.; Zhang, P.; Yang, S. Tapered fiber-based intravascular photoacoustic endoscopy for high-resolution and deep-penetration imaging of lipid-rich plaque. Opt. Express 2019, 27, 12832–12840. [Google Scholar] [CrossRef]
- Wang, X.; Peng, C.; Liu, X.; Pan, Z. Functional Assessment of Stenotic Coronary Artery in 3D Geometric Reconstruction From Fusion of Intravascular Ultrasound and X-Ray Angiography. IEEE Access 2018, 6, 53330–53341. [Google Scholar] [CrossRef]
- Jansen, K.; Van Der Steen, A.F.; van Beusekom, H.M.; Oosterhuis, J.W.; van Soest, G. Intravascular photoacoustic im-aging of human coronary atherosclerosis. Opt. Lett. 2011, 36, 597–599. [Google Scholar] [CrossRef]
- Su, M.; Zhang, Z.; Hong, J.; Huang, Y.; Mu, P.; Yu, Y.; Liu, R.; Liang, S.; Zheng, H.; Qiu, W. Cable-Shared Dual-Frequency Catheter for Intravascular Ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2019, 66, 849–856. [Google Scholar] [CrossRef]
- Zhang, Y.; Liang, Y.; Jin, L.; Guan, B. 125 μm fiber based all-optical ultrasound probes for pulse-echo imaging. Chin. Opt. Lett. 2019, 17, 070604. [Google Scholar] [CrossRef]
- Hong, J.; Su, M.; Yu, Y.; Zhang, Z.; Liu, R.; Huang, Y.; Mu, P.; Zheng, H.; Qiu, W. A Dual-Mode Imaging Catheter for Intravascular Ultrasound Application. IEEE Trans. Med. Imaging 2018, 38, 657–663. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Li, X.; He, L.; Cao, T.; Zhu, C.; Wu, D. A Miniature Rotary-Linear Ultrasonic Motor for Intravascular Ultrasound (IVUS) Imaging. In Proceedings of the 2020 IEEE International Ultrasonics Symposium (IUS), Las Vegas, NV, USA, 7–11 September 2020. [Google Scholar]
- Wilson, K.E.; Wang, T.Y.; Willmann, J.K. Acoustic and Photoacoustic Molecular Imaging of Cancer. J. Nucl. Med. 2013, 54, 1851–1854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.V.; Yao, J. A practical guide to photoacoustic tomography in the life sciences. Nat. Meth. 2016, 13, 627–638. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.V.; Hu, S. Photoacoustic Tomography: In Vivo Imaging from Organelles to Organs. Science 2012, 335, 1458–1462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, J.; Wang, L.V. Photoacoustic microscopy. Laser Photon. Rev. 2013, 7, 758–778. [Google Scholar] [CrossRef] [Green Version]
- Jin, L.; Liang, Y. Fiber laser technologies for photoacoustic microscopy. Vis. Comput. Ind. Biomed. Art 2021, 4, 11. [Google Scholar] [CrossRef]
- Du, C.; Wang, Y.; Xu, L.; Wang, X. Fiber Optic Photoacoustic-Based Steering Imaging Transducer. IEEE Photon. Technol. Lett. 2022, 34, 428–431. [Google Scholar] [CrossRef]
- Li, G.; Ye, Z.; Liang, S.; Chen, S.L. Miniature probe for dual-modality photoacoustic microscopy and white-light micros-copy for image guidance: A prototype toward an endoscope. J. Biophoton. 2020, 13, e201960200. [Google Scholar] [CrossRef]
- Cao, Y.; Hui, J.; Kole, A.; Wang, P.; Yu, Q.; Chen, W.; Sturek, M.; Cheng, J.-X. High-sensitivity intravascular photoacoustic imaging of lipid–laden plaque with a collinear catheter design. Sci. Rep. 2016, 6, 25236. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Lin, R.; Liu, C.; Chen, J.; Liu, H.; Zheng, R.; Gong, X.; Song, L. In vivo photoacoustic/ultrasonic dual-modality endoscopy with a miniaturized full field-of-view catheter. J. Biophotonics 2018, 11, e201800034. [Google Scholar] [CrossRef] [PubMed]
- Shu, C.; Zheng, W.; Lin, K.; Lim, C.; Huang, Z. Label-Free Follow-Up Surveying of Post-Treatment Efficacy and Recurrence in Nasopharyngeal Carcinoma Patients with Fiberoptic Raman Endoscopy. Anal. Chem. 2021, 93, 2053–2061. [Google Scholar] [CrossRef] [PubMed]
- Shu, C.; Zheng, W.; Wang, Z.; Yu, C.; Huang, Z. Development and characterization of a disposable submillimeter fiber optic Raman needle probe for enhancing real-time in vivo deep tissue and biofluids Raman measurements. Opt. Lett. 2021, 46, 5197. [Google Scholar] [CrossRef]
- Shah, T.; Lippman, R.; Kohli, D.; Mutha, P.; Solomon, S.; Zfass, A. Accuracy of probe-based confocal laser endomicroscopy (pCLE) compared to random biopsies during endoscopic surveillance of Barrett’s esophagus. Endosc. Int. Open 2018, 06, E414–E420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, P.; Cai, L.; Lyu, B.; Yue, M. Application of probe-based confocal laser endomicroscopy in diagnosis of gastric carcinoma and precancerous lesions. J. Zhejiang Univ. Med. Sci. 2019, 48, 504–510. [Google Scholar]
- Vennelaganti, S.; Vennalaganti, P.; Mathur, S.; Singh, S.; Jamal, M.; Kanakadandi, V.; Rai, T.; Hall, M.; Gupta, N.; Nutalapati, V.; et al. Validation of Probe-based Confocal Laser Endomicroscopy (pCLE) Criteria for Diagnosing Colon Polyp Histology. J. Clin. Gastroenterol. 2018, 52, 812–816. [Google Scholar] [CrossRef]
- Wray, P.; Lin, L.; Hu, P.; Wang, L.V. Photoacoustic computed tomography of human extremities. J. Biomed. Opt. 2019, 24, 026003. [Google Scholar] [CrossRef]
- Ethan Li, Y.-C.; Lee, I.-C. The Current Trends of Biosensors in Tissue Engineering. Biosensors 2020, 10, 88. [Google Scholar]
- Singh, A.; Sharma, A.; Ahmed, A.; Sundramoorthy, A.K.; Furukawa, H.; Arya, S.; Khosla, A. Recent advances in elec-trochemical biosensors: Applications, challenges, and future scope. Biosensors 2021, 11, 336. [Google Scholar] [CrossRef]
- Webb, B.A.; Chimenti, M.; Jacobson, M.P.; Barber, D.L. Dysregulated pH: A perfect storm for cancer progression. Nat. Rev. Cancer 2011, 11, 671–677. [Google Scholar] [CrossRef]
- White, K.A.; Grillo-Hill, B.K.; Barber, D.L. Cancer cell behaviors mediated by dysregulated pH dynamics at a glance. J. Cell Sci. 2017, 130, 663–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Liu, X.; Xu, X.; Xin, H.; Zhang, Y.; Li, B. Red-blood-cell waveguide as a living biosensor and micromotor. Adv. Funct. Mater. 2019, 29, 1905568. [Google Scholar] [CrossRef]
- Wang, L.; Xie, S.; Wang, Z.; Liu, F.; Yang, Y.; Tang, C.; Wu, X.; Liu, P.; Li, Y.; Saiyin, H.; et al. Functionalized helical fibre bundles of carbon nanotubes as electrochemical sensors for long-term in vivo monitoring of multiple disease biomarkers. Nat. Biomed. Eng. 2020, 4, 159–171. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.; Liu, F.; Liang, X.; Qiu, X.; Huang, Y.; Xie, C.; Xu, P.; Mao, W.; Guan, B.-O.; Albert, J. Highly sensitive detection of urinary protein variations using tilted fiber grating sensors with plasmonic nanocoatings. Biosens. Bioelectron. 2016, 78, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Ran, Y.; Xu, Z.; Chen, M.; Wang, W.; Wu, Y.; Cai, J.; Long, J.; Chen, Z.; Zhang, D.; Guan, B. Fiber-Optic Theranostics (FOT): Interstitial Fiber-Optic Needles for Cancer Sensing and Therapy. Adv. Sci. 2022, 9, 2200456. [Google Scholar] [CrossRef]
Imaging Techniques | Axial Resolution | Transverse Resolution | Penetrating Depth | Integrated Size | Typical Applications |
---|---|---|---|---|---|
OCT imaging | 0.2–1 μm [63] | 0.6–2 μm [63] | 1–2 mm [76] | Submillimeter [65,67,68] | Vascular shape reconstruction [67] Intracoronary optical coherence tomography [68] |
US imaging | 20–200 μm [72] | 120–250 μm [76] | 7–15 mm [76] | Submillimeter [77] Millimeter [78,79] | Intravascular imaging [74,78,79] Trachea imaging [77] |
PA imaging | From sub-micrometer to sub-millimeter [94] | From sub-micrometer to sub-millimeter [94] | From sub-millimeter to depths up to several millimeters [94] | Submillimeter [85] Millimeter [73,75,86,87,88] | Tissue imaging [85,86,88] Intravascular imaging [87] |
Sensing Techniques | Sensing Mechanism | Carrier | Overall Diameter | Medical Scenario |
---|---|---|---|---|
Force sensing | Fiber Bragg grating sensors [42,43,44,45,46] Plastic Fiber Bragg grating sensors [36] Triboelectric nanogenerator [8] Piezoresistive [49] Piezoelectric Strain gauges [50,51,52] Capacitive pressure sensor [48] Closed-loop force control[37] Fiber-tip microforce sensor [53] Carbon nanotube-coated microsprings [54] | Continuum robot [43,45,49,54] Scanning device [42] Probe [44] Polymer package [46] Plastic optical fiber [36] Catheter [8] Gripper [50,51,52] Foley catheter balloon [48] Optical fiber [53] | Submillimeter [36,48,53] Millimeter [42,43,44,45,46,49,50,51,54] Centimeter [8,37,52] | Thyroidectomy [42] Gastric Endomicroscopy [43] Hard-inclusion Localization [44] Optical biopsy [45] In vivo pressure sensor [46] Blood pressure [36] Confocal laser endomicroscopy [37] Endocardial pressure monitoring [8] Three-dimensional force sensing for forceps [49,50,51,52] Intra-abdominal pressure monitoring [48] Measurement of interfacial adhesion force [53] Transcutaneous monitoring of human arterial pulses [54] |
Temperature sensing | Thermo-resistance effect[55,56,60] Infrared-to-visible upconversion [58] Thermal expansion and thermal-optic effects [59] Short-wave infrared [57] | Balloon [55] Silicon-based probe [56] Needle-type polymer [60] Silica fiber [58] Optical fiber [59] Silica fiber [57] | Submillimeter [56,57,58,59] Millimeter [55,60] | Cryoablation [55] Optogenetic [56] Arrhythmias [60] Deep-brain thermal detection [58] Laser vaporization [57] |
Optical coherence tomography imaging | Light scattering [62,67,68,69] | Catheter [62,67,68,69] | Submillimeter [67,68] Millimeter [69] | Intravascular Imaging [62,67,68,69] |
Ultrasound imaging | Pulse-echo [74,77,78,79] | Catheter [74,78,79] Optical fiber [77] | Submillimeter [79] Millimeter [78] | Intravascular Imaging [74,78,79] Trachea imaging [77] |
Photoacoustic imaging | Pulse-echo [85,86,87,88] | Catheter [86,88] Optical fiber [85] | Millimeter [86,87,88] | Tissue imaging [85,86,88] Intravascular imaging [87] |
Chemical sensing | pH sensitivity of fluorophore [24,26] Polymer aggregation leads to refractive index changes [25] Enzymatic catalysis and electrochemical reactions [27] | Optical fiber [24,26] Organic–inorganic composite film-coated optical fiber [25] Carbon fiber microelectrode [27] | Submillimeter [24,25,26] | Discrimination of tumorous and normal tissues [24,26] Chronic wounds and/or fetal acidosis [25] Superoxide anion detection [27] |
Biomarker sensing | Enzymatic catalysis and electrochemical reactions [28,29,30,33] Fabry–Perot (FP) cavity biosensor [31] Surface plasmon resonance [32] | Implantable electrode [28,29,30,33] Optical fiber [31,32] | 0.005–0.03 mm [33] Submillimeter [28,31,32] Millimeter [29,30] | Blood glucose detection [28,29,30,31] Urinary protein detection [32] Cancer biomarker H2O2 detection [33] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, C.; Lin, Z.; Huang, S.; Li, B.; Gao, A. Progress in Probe-Based Sensing Techniques for In Vivo Diagnosis. Biosensors 2022, 12, 943. https://doi.org/10.3390/bios12110943
Zhou C, Lin Z, Huang S, Li B, Gao A. Progress in Probe-Based Sensing Techniques for In Vivo Diagnosis. Biosensors. 2022; 12(11):943. https://doi.org/10.3390/bios12110943
Chicago/Turabian StyleZhou, Cheng, Zecai Lin, Shaoping Huang, Bing Li, and Anzhu Gao. 2022. "Progress in Probe-Based Sensing Techniques for In Vivo Diagnosis" Biosensors 12, no. 11: 943. https://doi.org/10.3390/bios12110943
APA StyleZhou, C., Lin, Z., Huang, S., Li, B., & Gao, A. (2022). Progress in Probe-Based Sensing Techniques for In Vivo Diagnosis. Biosensors, 12(11), 943. https://doi.org/10.3390/bios12110943