Gold-Nanoparticle-Based Chiral Plasmonic Nanostructures and Their Biomedical Applications
Abstract
:1. Introduction
2. Wet-Chemical Fabrication of Chiral Plasmonic Nanomaterials
2.1. Discrete Chiral Plasmonic NPs/Nanostructures
2.1.1. Strong Chiral Ligand-Mediated Synthesis Strategy
2.1.2. Weak Chiral Ligand-Mediated Synthesis Strategy
2.1.3. Other Synthesis Strategies
2.2. Chiral Assembly Superstructures of Plasmonic Nanoparticles
2.2.1. Molecular Linker
2.2.2. Chiral Templates
3. Optical Properties of Chiral Plasmonic Nanomaterials
4. Biomedical Applications
4.1. Biosensing Based on Plasmonic Chiral Responses
4.2. Bio-Imaging of Chiral Plasmonic Nanomaterials
4.3. Disease Diagnosis and Treatment
5. Conclusions and Perspective
Funding
Informed Consent Statement
Conflicts of Interest
References
- Kelvin, W.T. The Molecular Tactics of a Crystal; Clarendon Press: Oxford, UK, 1894. [Google Scholar]
- Quidant, R.; Kreuzer, M. Plasmons offer a helping hand. Nat. Nanotechnol. 2010, 5, 762–763. [Google Scholar] [CrossRef] [PubMed]
- Orfanidis, S.J. Electromagnetic Waves and Antennas; Rutgers University: New Brunswick, NJ, USA, 2002. [Google Scholar]
- Hao, C.; Gao, Y.; Wu, D.; Li, S.; Xu, L.; Wu, X.; Guo, J.; Sun, M.; Li, X.; Xu, C.; et al. Tailoring chiroptical activity of iron disulfide quantum dot hydrogels with circularly polarized light. Adv. Mater. 2019, 31, e1903200. [Google Scholar] [CrossRef]
- Xia, Y.; Zhou, Y.; Tang, Z. Chiral inorganic nanoparticles: Origin, optical properties and bioapplications. Nanoscale 2011, 3, 1374–1382. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Zhao, X.; Long, T.; Lin, M.; Liu, Z.; Huang, C. Histidine-mediated synthesis of chiral fluorescence gold nanoclusters: Insight into the origin of nanoscale chirality. RSC Adv. 2015, 5, 61449–61454. [Google Scholar] [CrossRef]
- Wang, X.; Tang, Z. Circular dichroism studies on plasmonic nanostructures. Small 2017, 13, 1601115. [Google Scholar] [CrossRef]
- Yang, L.; Liu, J.; Sun, P.; Ni, Z.; Ma, Y.; Huang, Z. Chiral ligand-free, optically active nanoparticles inherently composed of chiral lattices at the atomic scale. Small 2020, 16, e2001473. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, J.; Wang, Y.; Chen, H. Emerging chirality in nanoscience. Chem. Soc. Rev. 2013, 42, 2930–2962. [Google Scholar] [CrossRef]
- Zhu, Z.; Guo, J.; Liu, W.; Li, Z.; Han, B.; Zhang, W.; Tang, Z. Controllable optical activity of gold nanorod and chiral quantum dot assemblies. Angew. Chem. Int. Ed. Engl. 2013, 52, 13571–13575. [Google Scholar] [CrossRef]
- Zheng, G.; He, J.; Kumar, V.; Wang, S.; Pastoriza-Santos, I.; Perez-Juste, J.; Liz-Marzan, L.M.; Wong, K.Y. Discrete metal nanoparticles with plasmonic chirality. Chem. Soc. Rev. 2021, 50, 3738–3754. [Google Scholar] [CrossRef]
- Govorov, A.O.; Fan, Z.; Hernandez, P.; Slocik, J.M.; Naik, R.R. Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: Plasmon enhancement, dipole interactions, and dielectric effects. Nano Lett. 2010, 10, 1374–1382. [Google Scholar] [CrossRef]
- Slocik, J.M.; Govorov, A.O.; Naik, R.R. Plasmonic circular dichroism of peptide-functionalized gold nanoparticles. Nano Lett. 2011, 11, 701–705. [Google Scholar] [CrossRef] [PubMed]
- Hao, C.; Xu, L.; Ma, W.; Wu, X.; Wang, L.; Kuang, H.; Xu, C. Unusual circularly polarized photocatalytic activity in nanogapped gold-silver chiroplasmonic nanostructures. Adv. Funct. Mater. 2015, 25, 5816–5822. [Google Scholar] [CrossRef]
- Lee, H.E.; Ahn, H.Y.; Mun, J.; Lee, Y.Y.; Kim, M.; Cho, N.H.; Chang, K.; Kim, W.S.; Rho, J.; Nam, K.T. Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles. Nature 2018, 556, 360–365. [Google Scholar] [CrossRef]
- Lv, J.; Gao, X.; Han, B.; Zhu, Y.; Hou, K.; Tang, Z. Self-assembled inorganic chiral superstructures. Nat. Rev. Chem. 2022, 6, 125–145. [Google Scholar] [CrossRef]
- Han, B.; Zhu, Z.; Li, Z.; Zhang, W.; Tang, Z. Conformation modulated optical activity enhancement in chiral cysteine and au nanorod assemblies. J. Am. Chem. Soc. 2014, 136, 16104–16107. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Shi, L.; Gao, X.; Guo, J.; Hou, K.; Zheng, Y.; Tang, Z. Ultra-stable silica-coated chiral au-nanorod assemblies: Core–shell nanostructures with enhanced chiroptical properties. Nano Res. 2015, 9, 451–457. [Google Scholar] [CrossRef]
- Yan, J.; Hou, S.; Ji, Y.; Wu, X. Heat-enhanced symmetry breaking in dynamic gold nanorod oligomers: The importance of interface control. Nanoscale 2016, 8, 10030–10034. [Google Scholar] [CrossRef] [PubMed]
- Zhai, D.; Wang, P.; Wang, R.Y.; Tian, X.; Ji, Y.; Zhao, W.; Wang, L.; Wei, H.; Wu, X.; Zhang, X. Plasmonic polymers with strong chiroptical response for sensing molecular chirality. Nanoscale 2015, 7, 10690–10698. [Google Scholar] [CrossRef]
- Bao, Z.Y.; Dai, J.; Zhang, Q.; Ho, K.H.; Li, S.; Chan, C.H.; Zhang, W.; Lei, D.Y. Geometric modulation of induced plasmonic circular dichroism in nanoparticle assemblies based on backaction and field enhancement. Nanoscale 2018, 10, 19684–19691. [Google Scholar] [CrossRef]
- Hu, Z.; Meng, D.; Lin, F.; Zhu, X.; Fang, Z.; Wu, X. Plasmonic circular dichroism of gold nanoparticle based nanostructures. Adv. Opt. Mater. 2019, 7, 1801590. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, W.; Wang, R.Y.; Ji, Y.; Wu, X.; Zhang, X. Photocontrollable chiral switching and selection in self-assembled plasmonic nanostructure. Adv. Funct. Mater. 2019, 29, 1900587. [Google Scholar] [CrossRef]
- Cheng, G.; Xu, D.; Lu, Z.; Liu, K. Chiral self-assembly of nanoparticles induced by polymers synthesized via reversible addition-fragmentation chain transfer polymerization. ACS Nano 2019, 13, 1479–1489. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Xu, L.; Xu, C.; Ma, W.; Kuang, H.; Wang, L.; Kotov, N.A. Self-assembly of chiral nanoparticle pyramids with strong r/s optical activity. J. Am. Chem. Soc. 2012, 134, 15114–15121. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Xu, L.; Ma, W.; Xu, Z.; Kuang, H.; Wang, L.; Xu, C. A one-step homogeneous plasmonic circular dichroism detection of aqueous mercury ions using nucleic acid functionalized gold nanorods. Chem. Commun. 2012, 48, 11889–11891. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Xu, L.; Ma, W.; Liu, L.; Kuang, H.; Kotov, N.A.; Xu, C. Propeller-like nanorod-upconversion nanoparticle assemblies with intense chiroptical activity and luminescence enhancement in aqueous phase. Adv. Mater. 2016, 28, 5907–5915. [Google Scholar] [CrossRef]
- Dominguez-Medina, S.; Kisley, L.; Tauzin, L.J.; Hoggard, A.; Shuang, B.; Indrasekara, A.S.; Chen, S.; Wang, L.Y.; Derry, P.J.; Liopo, A.; et al. Adsorption and unfolding of a single protein triggers nanoparticle aggregation. ACS Nano 2016, 10, 2103–2112. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Chang, Y.X.; Zhang, N.N.; Wei, Y.; Li, A.J.; Tai, J.; Xue, Y.; Wang, Z.Y.; Yang, Y.; Zhao, L.; et al. Chiral plasmonic nanochains via the self-assembly of gold nanorods and helical glutathione oligomers facilitated by cetyltrimethylammonium bromide micelles. ACS Nano 2017, 11, 3463–3475. [Google Scholar] [CrossRef]
- Shinmori, H.; Mochizuki, C. Strong chiroptical activity from achiral gold nanorods assembled with proteins. Chem. Commun. 2017, 53, 6569–6572. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Zhang, N.N.; Li, J.C.; Lu, J.; Zhao, L.; Fang, X.D.; Liu, K. Serum albumin guided plasmonic nanoassemblies with opposite chiralities. Soft Matter 2021, 17, 6298–6304. [Google Scholar] [CrossRef]
- Zhang, Q.; Hernandez, T.; Smith, K.W.; Jebeli, S.A.H.; Dai, A.X.; Warning, L.; Baiyasi, R.; McCarthy, L.A.; Guo, H.; Chen, D.-H.; et al. Unraveling the origin of chirality from plasmonic nanoparticle-protein complexes. Science 2019, 365, 1475–1478. [Google Scholar] [CrossRef]
- Merg, A.D.; Boatz, J.C.; Mandal, A.; Zhao, G.; Mokashi-Punekar, S.; Liu, C.; Wang, X.; Zhang, P.; van der Wel, P.C.A.; Rosi, N.L. Peptide-directed assembly of single-helical gold nanoparticle superstructures exhibiting intense chiroptical activity. J. Am. Chem. Soc. 2016, 138, 13655–13663. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Ma, X.; Song, M.; Ji, C.Y.; Song, J.; Ji, Y.; Ma, S.; Jiang, J.; Wu, X.; Li, J.; et al. Plasmonic nanosensors with extraordinary sensitivity to molecularly enantioselective recognition at nanoscale interfaces. ACS Nano 2021, 15, 19535–19545. [Google Scholar] [CrossRef] [PubMed]
- Nemati, A.; Shadpour, S.; Querciagrossa, L.; Li, L.; Mori, T.; Gao, M.; Zannoni, C.; Hegmann, T. Chirality amplification by desymmetrization of chiral ligand-capped nanoparticles to nanorods quantified in soft condensed matter. Nat. Commun. 2018, 9, 3908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, Z.; Ma, Y.; Yang, L.; Cheng, F.; Huang, Z.; Natan, A.; Li, H.; Chen, Y.; Cao, D.; Huang, Z.; et al. Plasmonic-enhanced cholesteric films: Coassembling anisotropic gold nanorods with cellulose nanocrystals. Adv. Opt. Mater. 2019, 7, 1801816. [Google Scholar] [CrossRef]
- Nemati, A.; Shadpour, S.; Querciagrossa, L.; Mori, T.; Zannoni, C.; Hegmann, T. Highly sensitive, tunable chirality amplification through space visualized for gold nanorods capped with axially chiral binaphthyl derivatives. ACS Nano 2019, 13, 10312–10326. [Google Scholar] [CrossRef]
- Grzelak, D.; Tupikowska, M.; Vila-Liarte, D.; Beutel, D.; Bagiński, M.; Parzyszek, S.; Góra, M.; Rockstuhl, C.; Liz-Marzán, L.M.; Lewandowski, W. Liquid crystal templated chiral plasmonic films with dynamic tunability and moldability. Adv. Funct. Mater. 2022, 32, 2111280. [Google Scholar] [CrossRef]
- Jin, X.; Jiang, J.; Liu, M. Reversible plasmonic circular dichroism via hybrid supramolecular gelation of achiral gold nanorods. ACS Nano 2016, 10, 11179–11186. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Y.; Qin, X.; Zhang, L.; Zhang, Z.; Lu, W.; Liu, M. Guanosine assembly enabled gold nanorods with dual thermo- and photoswitchable plasmonic chiroptical activity. ACS Nano 2020, 14, 6087–6096. [Google Scholar] [CrossRef]
- Thomas, A.R.; Swetha, K.; Aparna, C.K.; Ashraf, R.; Kumar, J.; Kumar, S.; Mandal, S.S. Protein fibril assisted chiral assembly of gold nanorods. J. Mater. Chem. B 2022, 10, 6360–6371. [Google Scholar] [CrossRef]
- Kuzyk, A.; Schreiber, R.; Fan, Z.; Pardatscher, G.; Roller, E.M.; Hogele, A.; Simmel, F.C.; Govorov, A.O.; Liedl, T. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 2012, 483, 311–314. [Google Scholar] [CrossRef]
- Lan, X.; Liu, T.; Wang, Z.; Govorov, A.O.; Yan, H.; Liu, Y. DNA-guided plasmonic helix with switchable chirality. J. Am. Chem. Soc. 2018, 140, 11763–11770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, L.; Liu, Y.; Han, C.; Movsesyan, A.; Li, P.; Li, H.; Tang, P.; Yuan, Y.; Jiang, S.; Ni, W.; et al. DNA-assembled chiral satellite-core nanoparticle superstructures: Two-state chiral interactions from dynamic and static conformations. Nano Lett. 2022, 22, 4784–4791. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Gao, H.; Qiu, M.; Jin, W.; Deng, S.; Wong, K.Y.; Lei, D. Chirality transfer from sub-nanometer biochemical molecules to sub-micrometer plasmonic metastructures: Physiochemical mechanisms, biosensing, and bioimaging opportunities. Adv. Mater. 2020, 32, e1907151. [Google Scholar] [CrossRef]
- Fan, Y.; Ou-Yang, S.; Zhou, D.; Wei, J.; Liao, L. Biological applications of chiral inorganic nanomaterials. Chirality 2022, 34, 760–781. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Xu, L.; Wang, L.; Xu, C.; Kuang, H. Chirality-based biosensors. Adv. Funct. Mater. 2019, 29, 1805512. [Google Scholar] [CrossRef] [Green Version]
- Cho, N.H.; Lee, H.E.; Ahn, H.Y.; Lee, Y.Y.; Im, S.W.; Kim, H.; Nam, K.T. Cysteine induced chiral morphology in palladium nanoparticle. Part. Part. Syst. Charact. 2019, 36, 1900062. [Google Scholar] [CrossRef]
- Cho, N.H.; Byun, G.H.; Lim, Y.C.; Im, S.W.; Kim, H.; Lee, H.E.; Ahn, H.Y.; Nam, K.T. Uniform chiral gap synthesis for high dissymmetry factor in single plasmonic gold nanoparticle. ACS Nano 2020, 14, 3595–3602. [Google Scholar] [CrossRef]
- Kim, H.; Im, S.W.; Cho, N.H.; Seo, D.H.; Kim, R.M.; Lim, Y.C.; Lee, H.E.; Ahn, H.Y.; Nam, K.T. Gamma-glutamylcysteine- and cysteinylglycine-directed growth of chiral gold nanoparticles and their crystallographic analysis. Angew. Chem. Int. Ed. Engl. 2020, 59, 12976–12983. [Google Scholar] [CrossRef]
- Lee, H.E.; Kim, R.M.; Ahn, H.Y.; Lee, Y.Y.; Byun, G.H.; Im, S.W.; Mun, J.; Rho, J.; Nam, K.T. Cysteine-encoded chirality evolution in plasmonic rhombic dodecahedral gold nanoparticles. Nat. Commun. 2020, 11, 263. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Zheng, L.; Chen, W.; Ji, L.; Zhang, L.; Lu, W.; Fang, Z.; Guo, F.; Qi, L.; Liu, M. Helically grooved gold nanoarrows: Controlled fabrication, superhelix, and transcribed chiroptical switching. CCS Chem. 2021, 3, 2473–2484. [Google Scholar] [CrossRef]
- Zhang, N.-N.; Sun, H.-R.; Xue, Y.; Peng, F.; Liu, K. Tuning the chiral morphology of gold nanoparticles with oligomeric gold–glutathione complexes. J. Phys. Chem. C 2021, 125, 10708–10715. [Google Scholar] [CrossRef]
- Zhang, N.-N.; Sun, H.-R.; Liu, S.; Xing, Y.-C.; Lu, J.; Peng, F.; Han, C.-L.; Wei, Z.; Sun, T.; Yang, B.; et al. Gold nanoparticle enantiomers and their chiral-morphology dependence of cellular uptake. CCS Chem. 2022, 4, 660–670. [Google Scholar] [CrossRef]
- Yan, J.; Chen, Y.; Hou, S.; Chen, J.; Meng, D.; Zhang, H.; Fan, H.; Ji, Y.; Wu, X. Fabricating chiroptical starfruit-like au nanoparticles via interface modulation of chiral thiols. Nanoscale 2017, 9, 11093–11102. [Google Scholar] [CrossRef] [PubMed]
- Zheng, G.; Bao, Z.; Perez-Juste, J.; Du, R.; Liu, W.; Dai, J.; Zhang, W.; Lee, L.Y.S.; Wong, K.Y. Tuning the morphology and chiroptical properties of discrete gold nanorods with amino acids. Angew. Chem. Int. Ed. Engl. 2018, 57, 16452–16457. [Google Scholar] [CrossRef]
- Chen, J.; Gao, X.; Zheng, Q.; Liu, J.; Meng, D.; Li, H.; Cai, R.; Fan, H.; Ji, Y.; Wu, X. Bottom-up synthesis of helical plasmonic nanorods and their application in generating circularly polarized luminescence. ACS Nano 2021, 15, 15114–15122. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Rubio, G.; Mosquera, J.; Kumar, V.; Pedrazo-Tardajos, A.; Llombart, P.; Solis, D.M.; Lobato, I.; Noya, E.G.; Guerrero-Martinez, A.; Taboada, J.M.; et al. Micelle-directed chiral seeded growth on anisotropic gold nanocrystals. Science 2020, 368, 1472–1477. [Google Scholar] [CrossRef]
- Xu, L.; Wang, X.; Wang, W.; Sun, M.; Choi, W.J.; Kim, J.Y.; Hao, C.; Li, S.; Qu, A.; Lu, M.; et al. Enantiomer-dependent immunological response to chiral nanoparticles. Nature 2022, 601, 366–373. [Google Scholar] [CrossRef] [PubMed]
- Meng, D.; Chen, Y.; Ji, Y.; Shi, X.; Wang, H.; Wu, X. Temperature effect of plasmonic circular dichroism in dynamic oligomers of aunr@ag nanorods driven by cysteine: The role of surface atom migration. Adv. Opt. Mater. 2021, 9, 2001274. [Google Scholar] [CrossRef]
- Song, M.; Tong, L.; Liu, S.; Zhang, Y.; Dong, J.; Ji, Y.; Guo, Y.; Wu, X.; Zhang, X.; Wang, R.Y. Nonlinear amplification of chirality in self-assembled plasmonic nanostructures. ACS Nano 2021, 15, 5715–5724. [Google Scholar] [CrossRef]
- Vila-Liarte, D.; Kotov, N.A.; Liz-Marzan, L.M. Template-assisted self-assembly of achiral plasmonic nanoparticles into chiral structures. Chem. Sci. 2022, 13, 595–610. [Google Scholar] [CrossRef]
- Shen, X.; Asenjo-Garcia, A.; Liu, Q.; Jiang, Q.; de Abajo, F.J.G.; Liu, N.; Ding, B. Three-dimensional plasmonic chiral tetramers assembled by DNA origami. Nano Lett. 2013, 13, 2128–2133. [Google Scholar] [CrossRef] [PubMed]
- Kuzyk, A.; Schreiber, R.; Zhang, H.; Govorov, A.O.; Liedl, T.; Liu, N. Reconfigurable 3d plasmonic metamolecules. Nat. Mater. 2014, 13, 862–866. [Google Scholar] [CrossRef] [Green Version]
- Lan, X.; Su, Z.; Zhou, Y.; Meyer, T.; Ke, Y.; Wang, Q.; Chiu, W.; Liu, N.; Zou, S.; Yan, H.; et al. Programmable supra-assembly of a DNA surface adapter for tunable chiral directional self-assembly of gold nanorods. Angew. Chem. Int. Ed. Engl. 2017, 56, 14632–14636. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.; Lan, X.; Zhu, C.; Zhang, W.; Wang, L.; Wang, Q. Spiral patterning of au nanoparticles on au nanorod surface to form chiral aunr@aunp helical superstructures templated by DNA origami. Adv. Mater. 2017, 29, 1606533. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Choi, C.K.K.; Wang, Q. Origin of the plasmonic chirality of gold nanorod trimers templated by DNA origami. ACS Appl. Mater. Interfaces 2018, 10, 26835–26840. [Google Scholar] [CrossRef] [PubMed]
- Kneer, L.M.; Roller, E.M.; Besteiro, L.V.; Schreiber, R.; Govorov, A.O.; Liedl, T. Circular dichroism of chiral molecules in DNA-assembled plasmonic hotspots. ACS Nano 2018, 12, 9110–9115. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, L.; Dass, M.; Ober, M.F.; Besteiro, L.V.; Wang, Z.M.; Nickel, B.; Govorov, A.O.; Liedl, T.; Heuer-Jungemann, A. Chiral assembly of gold-silver core-shell plasmonic nanorods on DNA origami with strong optical activity. ACS Nano 2020, 14, 7454–7461. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Huh, J.H.; Park, H.; Yang, D.; Zhang, Y.; Zhang, Y.; Lee, J.; Lee, S.; Ke, Y. DNA origami guided self-assembly of plasmonic polymers with robust long-range plasmonic resonance. Nano Lett. 2020, 20, 8926–8932. [Google Scholar] [CrossRef]
- Dong, J.; Zhou, Y.; Pan, J.; Zhou, C.; Wang, Q. Assembling gold nanobipyramids into chiral plasmonic nanostructures with DNA origami. Chem. Commun. 2021, 57, 6201–6204. [Google Scholar] [CrossRef]
- Pan, J.; Wang, X.; Zhang, J.; Zhang, Q.; Wang, Q.; Zhou, C. Chirally assembled plasmonic metamolecules from intrinsically chiral nanoparticles. Nano Res. 2022, 15, 9447–9453. [Google Scholar] [CrossRef]
- Martens, K.; Binkowski, F.; Nguyen, L.; Hu, L.; Govorov, A.O.; Burger, S.; Liedl, T. Long- and short-ranged chiral interactions in DNA-assembled plasmonic chains. Nat. Commun. 2021, 12, 2025. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Ai, B.; Gu, P.; Guan, Y.; Wang, Z.; Xiao, Z.; Zhang, G. Plasmonic chiral metamaterials with sub-10 nm nanogaps. ACS Nano 2021, 15, 17657–17667. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Deng, Q.; Duan, Y.; Liu, Z.; Fang, Y.; Han, L.; Che, S. Chiral nanostructured bimetallic au–ag films for enantiomeric discrimination. Adv. Mater. Interfaces 2022, 9, 2200369. [Google Scholar] [CrossRef]
- Kong, X.T.; Khorashad, L.K.; Wang, Z.; Govorov, A.O. Photothermal circular dichroism induced by plasmon resonances in chiral metamaterial absorbers and bolometers. Nano Lett. 2018, 18, 2001–2008. [Google Scholar] [CrossRef]
- Miandashti, A.R.; Khorashad, L.K.; Kordesch, M.E.; Govorov, A.O.; Richardson, H.H. Experimental and theoretical observation of photothermal chirality in gold nanoparticle helicoids. ACS Nano 2020, 14, 4188–4195. [Google Scholar] [CrossRef]
- Wen, T.; Zhang, W.; Liu, S.; Hu, A.; Zhao, J.; Ye, Y.; Chen, Y.; Qiu, C.-W.; Gong, Q.; Lu, G. Steering valley-polarized emission of monolayer mos2 sandwiched in plasmonic antennas. Sci. Adv. 2020, 6, eaao0019. [Google Scholar] [CrossRef]
- Gao, H.; Chen, P.G.; Lo, T.W.; Jin, W.; Lei, D. Selective excitation of polarization-steered chiral photoluminescence in single plasmonic nanohelicoids. Adv. Funct. Mater. 2021, 31, 2101502. [Google Scholar] [CrossRef]
- Liu, Z.; Ai, J.; Kumar, P.; You, E.; Zhou, X.; Liu, X.; Tian, Z.; Bour, P.; Duan, Y.; Han, L.; et al. Enantiomeric discrimination by surface-enhanced raman scattering-chiral anisotropy of chiral nanostructured gold films. Angew. Chem. Int. Ed. Engl. 2020, 59, 15226–15231. [Google Scholar] [CrossRef]
- Abdali, S.; Blanch, E.W. Surface enhanced raman optical activity (seroa). Chem. Soc. Rev. 2008, 37, 980–992. [Google Scholar] [CrossRef]
- Ma, Y.; Cao, Z.; Hao, J.; Zhou, J.; Yang, Z.; Yang, Y.; Wei, J. Controlled synthesis of au chiral propellers from seeded growth of au nanoplates for chiral differentiation of biomolecules. J. Phys. Chem. C 2020, 124, 24306–24314. [Google Scholar] [CrossRef]
- Wen, X.; Wang, S.; Liu, R.; Duan, R.; Hu, S.; Jiao, T.; Zhang, L.; Liu, M. Selenocystine and photo-irradiation directed growth of helically grooved gold nanoarrows. Small 2022, 18, e2104301. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Tian, Y.; Luan, X.; Lv, X.; Li, F.; Xu, G.; Niu, W. Synthesis of chiral au nanocrystals with precise homochiral facets for enantioselective surface chemistry. Nano Lett. 2022, 22, 2915–2922. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Hao, C.; Ma, W.; Qu, A.; Chen, C.; Xu, J.; Xu, C.; Kuang, H.; Xu, L. Chiral plasmonic triangular nanorings with sers activity for ultrasensitive detection of amyloid proteins in alzheimer’s disease. Adv. Mater. 2021, 33, e2102337. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Wang, Y.; Zhuang, H.; Zhang, J. DNA-engineered chiroplasmonic heteropyramids for ultrasensitive detection of mercury ion. Biosens. Bioelectron. 2015, 68, 516–520. [Google Scholar] [CrossRef]
- Xu, Z.; Xu, L.; Liz-Marzán, L.M.; Ma, W.; Kotov, N.A.; Wang, L.; Kuang, H.; Xu, C. Sensitive detection of silver ions based on chiroplasmonic assemblies of nanoparticles. Adv. Opt. Mater. 2013, 1, 626–630. [Google Scholar] [CrossRef]
- Kuang, H.; Yin, H.; Xing, C.; Xu, C. A sensitive dnazyme-based chiral sensor for lead detection. Materials 2013, 6, 5038–5046. [Google Scholar] [CrossRef] [Green Version]
- Gao, R.; Xu, L.; Hao, C.; Xu, C.; Kuang, H. Circular polarized light activated chiral satellite nanoprobes for the imaging and analysis of multiple metal ions in living cells. Angew. Chem. Int. Ed. Engl. 2019, 58, 3913–3917. [Google Scholar] [CrossRef]
- Abbasi, S.; Khani, H. Highly selective and sensitive method for cu(2+) detection based on chiroptical activity of l-cysteine mediated au nanorod assemblies. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2017, 186, 76–81. [Google Scholar] [CrossRef]
- Xu, L.; Gao, Y.; Kuang, H.; Liz-Marzan, L.M.; Xu, C. Microrna-directed intracellular self-assembly of chiral nanorod dimers. Angew. Chem. Int. Ed. Engl. 2018, 57, 10544–10548. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Kuang, H.; Xu, L.; Ding, L.; Xu, C.; Wang, L.; Kotov, N.A. Attomolar DNA detection with chiral nanorod assemblies. Nat. Commun. 2013, 4, 2689. [Google Scholar] [CrossRef]
- Yan, W.; Xu, L.; Ma, W.; Liu, L.; Wang, L.; Kuang, H.; Xu, C. Pyramidal sensor platform with reversible chiroptical signals for DNA detection. Small 2014, 10, 4293–4297. [Google Scholar] [CrossRef]
- Funck, T.; Nicoli, F.; Kuzyk, A.; Liedl, T. Sensing picomolar concentrations of rna using switchable plasmonic chirality. Angew. Chem. Int. Ed. Engl. 2018, 57, 13495–13498. [Google Scholar] [CrossRef] [PubMed]
- Meng, D.; Ma, W.; Wu, X.; Xu, C.; Kuang, H. DNA-driven two-layer core-satellite gold nanostructures for ultrasensitive microrna detection in living cells. Small 2020, 16, e2000003. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Li, X.; Li, Y.; Yan, M.; Liu, S. Enantioselective circular dichroism sensing of cysteine and glutathione with gold nanorods. Anal. Chem. 2015, 87, 357–361. [Google Scholar] [CrossRef] [PubMed]
- Hao, C.; Kuang, H.; Xu, L.; Liu, L.; Ma, W.; Wang, L.; Xu, C. Chiral supernanostructures for ultrasensitive endonuclease analysis. J. Mater. Chem. B 2013, 1, 5539–5542. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Xu, Z.; Ma, W.; Liu, L.; Wang, L.; Kuang, H.; Xu, C. Highly selective recognition and ultrasensitive quantification of enantiomers. J. Mater. Chem. B 2013, 1, 4478–4483. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Bian, S.; Yang, Y.; Wu, X. Chiroplasmonic assemblies of gold nanoparticles as a novel method for sensitive detection of alpha-fetoprotein. Microchim. Acta 2017, 184, 1855–1862. [Google Scholar] [CrossRef]
- Funck, T.; Liedl, T.; Bae, W. Dual aptamer-functionalized 3d plasmonic metamolecule for thrombin sensing. Appl. Sci. 2019, 9, 3006. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Xu, L.; Liu, L.; Ma, W.; Yin, H.; Kuang, H.; Wang, L.; Xu, C.; Kotov, N.A. Unexpected chirality of nanoparticle dimers and ultrasensitive chiroplasmonic bioanalysis. J. Am. Chem. Soc. 2013, 135, 18629–18636. [Google Scholar] [CrossRef]
- Tang, L.; Li, S.; Xu, L.; Ma, W.; Kuang, H.; Wang, L.; Xu, C. Chirality-based au@ag nanorod dimers sensor for ultrasensitive psa detection. ACS Appl. Mater. Interfaces 2015, 7, 12708–12712. [Google Scholar] [CrossRef]
- Fu, P.; Sun, M.; Xu, L.; Wu, X.; Liu, L.; Kuang, H.; Song, S.; Xu, C. A self-assembled chiral-aptasensor for atp activity detection. Nanoscale 2016, 8, 15008–15015. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Xu, L.; Fu, P.; Wu, X.; Kuang, H.; Liu, L.; Xu, C. Scissor-like chiral metamolecules for probing intracellular telomerase activity. Adv. Funct. Mater. 2016, 26, 7352–7358. [Google Scholar] [CrossRef]
- Liu, F.; Li, N.; Shang, Y.; Wang, Y.; Liu, Q.; Ma, Z.; Jiang, Q.; Ding, B. A DNA-based plasmonic nanodevice for cascade signal amplification. Angew. Chem. Int. Ed. Engl. 2022, 61, e202114706. [Google Scholar] [CrossRef]
- Huang, Y.; Nguyen, M.K.; Natarajan, A.K.; Nguyen, V.H.; Kuzyk, A. A DNA origami-based chiral plasmonic sensing device. ACS Appl. Mater. Interfaces 2018, 10, 44221–44225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, M.; Qu, A.; Hao, C.; Wu, X.; Xu, L.; Xu, C.; Kuang, H. Chiral upconversion heterodimers for quantitative analysis and bioimaging of antibiotic-resistant bacteria in vivo. Adv. Mater. 2018, 30, e1804241. [Google Scholar] [CrossRef]
- Li, S.; Xu, L.; Lu, M.; Sun, M.; Xu, L.; Hao, C.; Wu, X.; Xu, C.; Kuang, H. Metabolic profile of chiral cobalt oxide nanoparticles in vitro and in vivo. Nano Res. 2021, 14, 2451–2455. [Google Scholar] [CrossRef]
- Zhao, L.; Zhou, Y.; Niu, G.; Gao, F.; Sun, Z.; Li, H.; Jiang, Y. Advances in chiral gold nano-assemblies and their bioapplication based on optical properties. Part. Part. Syst. Charact. 2022, 39, 2100231. [Google Scholar] [CrossRef]
- Li, S.; Xu, L.; Ma, W.; Wu, X.; Sun, M.; Kuang, H.; Wang, L.; Kotov, N.A.; Xu, C. Dual-mode ultrasensitive quantification of microrna in living cells by chiroplasmonic nanopyramids self-assembled from gold and upconversion nanoparticles. J. Am. Chem. Soc. 2016, 138, 306–312. [Google Scholar] [CrossRef]
- Ma, W.; Sun, M.; Fu, P.; Li, S.; Xu, L.; Kuang, H.; Xu, C. A chiral-nanoassemblies-enabled strategy for simultaneously profiling surface glycoprotein and microrna in living cells. Adv. Mater. 2017, 29, 1703410. [Google Scholar] [CrossRef]
- Sun, M.; Hao, T.; Li, X.; Qu, A.; Xu, L.; Hao, C.; Xu, C.; Kuang, H. Direct observation of selective autophagy induction in cells and tissues by self-assembled chiral nanodevice. Nat. Commun. 2018, 9, 4494. [Google Scholar] [CrossRef]
- Qu, A.; Wu, X.; Li, S.; Sun, M.; Xu, L.; Kuang, H.; Xu, C. An nir-responsive DNA-mediated nanotetrahedron enhances the clearance of senescent cells. Adv. Mater. 2020, 32, e2000184. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Sun, M.; Ma, W.; Wu, X.; Liu, L.; Kuang, H.; Xu, C. A singlet oxygen generating agent by chirality-dependent plasmonic shell-satellite nanoassembly. Adv. Mater. 2017, 29, 1606864. [Google Scholar] [CrossRef] [PubMed]
- Kumar, J.; Erana, H.; Lopez-Martinez, E.; Claes, N.; Martin, V.F.; Solis, D.M.; Bals, S.; Cortajarena, A.L.; Castilla, J.; Liz-Marzan, L.M. Detection of amyloid fibrils in parkinson’s disease using plasmonic chirality. Proc. Natl. Acad. Sci. USA 2018, 115, 3225–3230. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Xue, Y.; Bernardino, K.; Zhang, N.-N.; Gomes, W.R.; Ramesar, N.S.; Liu, S.; Hu, Z.; Sun, T.; de Moura, A.F.; et al. Enhanced optical asymmetry in supramolecular chiroplasmonic assemblies with long-range order. Science 2021, 371, 1368–1374. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Xu, L.; Bahng, J.H.; Kuang, H.; Alben, S.; Kotov, N.A.; Xu, C. Intracellular localization of nanoparticle dimers by chirality reversal. Nat. Commun. 2017, 8, 1847. [Google Scholar] [CrossRef] [Green Version]
- Qu, A.; Sun, M.; Kim, J.Y.; Xu, L.; Hao, C.; Ma, W.; Wu, X.; Liu, X.; Kuang, H.; Kotov, N.A.; et al. Stimulation of neural stem cell differentiation by circularly polarized light transduced by chiral nanoassemblies. Nat. Biomed. Eng. 2021, 5, 103–113. [Google Scholar] [CrossRef]
- Meng, D.; Li, X.; Gao, X.; Zhang, C.; Ji, Y.; Hu, Z.; Ren, L.; Wu, X. Constructing chiral gold nanorod oligomers using a spatially separated sergeants-and-soldiers effect. Nanoscale 2021, 13, 9678–9685. [Google Scholar] [CrossRef]
- Hou, S.; Zhang, H.; Yan, J.; Ji, Y.; Wen, T.; Liu, W.; Hu, Z.; Wu, X. Plasmonic circular dichroism in side-by-side oligomers of gold nanorods: The influence of chiral molecule location and interparticle distance. Phys. Chem. Chem. Phys. 2015, 17, 8187–8193. [Google Scholar] [CrossRef]
Chiral Nanomaterials | Target Analyte | Response Signals | Ref. |
---|---|---|---|
Au nanotriangles | chiral biomolecules | SERS | [82] |
Au nanoarrows | Fmoc-L/D-phenylalanine | SERS | [83] |
Au trisoctahedral NPs | L/D-tryptophan | Differential Pulse Voltammograms | [84] |
Pt@Au triangular nanorings | Aβ42 monomers and fibrils | SERS | [85] |
AuNR assemblies | Hg2+ | PCD | [26] |
AuNPs heteropyramids | Hg2+ | PCD | [86] |
AuNPs heterodimers | Ag+ | PCD | [87] |
AgNPs dimers | Pb2+ | PCD | [88] |
AuNR@Pt dimers and UCNPs | Cu2+, Mg2+, Zn2+ | Fluorescence intensity | [89] |
AuNR assemblies | Cu2+ | PCD | [90] |
AuNR@PS-PAA dimers | miRNA-21 | PCD | [91] |
AuNR assemblies | DNA | PCD | [92] |
AuNP pyramids | DNA | PCD | [93] |
AuNR dimers | microRNA | PCD | [94] |
Two-layer core-satellite gold nanostructures | microRNA | PCD/SERS | [95] |
AuNR assemblies | Cysteine | PCD | [96] |
AuNP pyramids | DNaseⅠ | PCD | [97] |
AuNP dimers | Cysteine | PCD | [98] |
AuNP dimers | alpha-fetoprotein | PCD | [99] |
AuNR dimers | Thrombin | PCD | [100] |
AuNP and Ag NP heterodimers | Prostate-specific antigen (PSA) | PCD | [101] |
Au @Ag NR dimers | PSA | PCD | [102] |
AuNP heterodimers | ATP | PCD | [103] |
DNA-driven AuNP heterodimers | Intracellular telomerase | PCD | [104] |
DNA origami-based AuNR dimers | small molecules, living tumor cells | PCD | [105] |
DNA origami-based AuNR dimers | adenosine | PCD | [106] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Gao, X.; Zhang, C.; Ji, Y.; Hu, Z.; Wu, X. Gold-Nanoparticle-Based Chiral Plasmonic Nanostructures and Their Biomedical Applications. Biosensors 2022, 12, 957. https://doi.org/10.3390/bios12110957
Li H, Gao X, Zhang C, Ji Y, Hu Z, Wu X. Gold-Nanoparticle-Based Chiral Plasmonic Nanostructures and Their Biomedical Applications. Biosensors. 2022; 12(11):957. https://doi.org/10.3390/bios12110957
Chicago/Turabian StyleLi, Hanbo, Xinshuang Gao, Chenqi Zhang, Yinglu Ji, Zhijian Hu, and Xiaochun Wu. 2022. "Gold-Nanoparticle-Based Chiral Plasmonic Nanostructures and Their Biomedical Applications" Biosensors 12, no. 11: 957. https://doi.org/10.3390/bios12110957
APA StyleLi, H., Gao, X., Zhang, C., Ji, Y., Hu, Z., & Wu, X. (2022). Gold-Nanoparticle-Based Chiral Plasmonic Nanostructures and Their Biomedical Applications. Biosensors, 12(11), 957. https://doi.org/10.3390/bios12110957