Review of Electrochemical Biosensors for Food Safety Detection
Abstract
:1. Introduction
2. Biological Contamination
2.1. Bacteria
Analyte | Electrode | Electrochemical Method | Linearity Range | LOD | Assay Time | Ref. |
---|---|---|---|---|---|---|
Salmonella | SPCIE | DPV | 102–108 CFU/mL | 16 CFU/mL | — | [14] |
GCE | SWV | 30 fg/μL–30 ng/μL | 15.8 fg/μL | — | [15] | |
E. coli | GCE | DPV | 10–107 CFU/mL | 10 CFU/mL | 30 min | [18] |
SPE | DPV | 1–104 CFU/mL | 1 CFU/mL | 1 h | [19] | |
Listeria | SPCE | CV | 2–1.0 × 106 CFU/mL | 0.1 CFU/mL | — | [24] |
SPPE | EIS | 101–108 CFU/mL | 10 CFU/mL | — | [25] |
2.2. Virus
2.3. Mold
2.4. Allergen
3. Chemical Contamination
3.1. Pesticide Residue
3.2. Heavy Metal
3.3. Illegal Food Additives
4. Genetically Modified Crops
5. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fukuda, K. Food safety in a globalized world. Bull. World Health Organ. 2015, 93, 212. [Google Scholar] [CrossRef]
- World Health Organization. Food Safety; WHO: Geneva, Switzerland, 2022. [Google Scholar]
- Jia, M.; Zhongbo, E.; Zhai, F.; Bing, X. Rapid Multi-Residue Detection Methods for Pesticides and Veterinary Drugs. Molecules 2020, 25, 3590. [Google Scholar] [CrossRef]
- Pang, G. Sequence “Food safety testing” album. J. Mass Spectrom. 2019, 40, 3–4. [Google Scholar]
- Lv, M.; Liu, Y.; Geng, J.H.; Kou, X.H.; Xin, Z.H.; Yang, D.Y. Engineering nanomaterials-based biosensors for food safety detection. Biosens. Bioelectron. 2018, 106, 122–128. [Google Scholar] [CrossRef]
- Düzgün, A.; Zelada-Guillén, G.A.; Crespo, G.A.; Macho, S.; Riu, J.; Rius, F.X. Nanostructured materials in potentiometry. Anal. Bioanal. Chem. 2011, 399, 171–181. [Google Scholar] [CrossRef]
- Pajkossy, T. Voltammetry coupled with impedance spectroscopy. J. Solid State Electrochem. 2020, 24, 2157–2159. [Google Scholar] [CrossRef]
- Mirceski, V.; Skrzypek, S.; Stojanov, L. Square-wave voltammetry. ChemTexts 2018, 4, 17. [Google Scholar] [CrossRef]
- Ortuño, J.A.; Serna, C.; Molina, A.; Gil, A. Differential Pulse Voltammetry and Additive Differential Pulse Voltammetry with Solvent Polymeric Membrane Ion Sensors. Anal. Chem. 2006, 78, 8129–8133. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, D. Biological Contamination of Grains in Transportation-Farm to Fork. Cereal Foods World. 2020, 65, 1. [Google Scholar]
- Ferrari, A.G.M.; Crapnell, R.D.; Banks, C.E. Electroanalytical Overview: Electrochemical Sensing Platforms for Food and Drink Safety. Biosensors 2021, 11, 291. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, A.; Kumar, P.S.; Hemavathy, R.V.; Jeevanantham; Kamalesh, R.; Sneha, S.; Yaashikaa, P.R. Methods of detection of food borne pathogens: A review. Environ. Chem. Lett. 2021, 19, 189–207. [Google Scholar] [CrossRef]
- Melo, A.M.A.; Alexandre, D.L.; Furtado, R.F.; Borges, M.F.; Figueiredo, E.A.T.; Biswas, A.; Cheng, H.N.; Alves, C.R. Electrochemical immunosensors for Salmonella detection in food. Appl. Microbiol. Biotechnol. 2016, 100, 5301–5312. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Jiang, J.; Su, Y.; Liang, Y.; Zhang, C. A novel cloth-based supersandwich electrochemical aptasensor for direct, sensitive detection of pathogens. Anal. Chim. Acta 2021, 1188, 339176. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Yuan, N.; Zhang, Y.; Guo, W.; Lu, X.; Yang, Q.; Zhang, W. Saltatory Rolling Circle Amplifcation-Based Ratiometric Electrochemical Biosensor for Rapid Detection of Salmonella enterica serovar Typhimurium in Food. Food Anal. Methods 2022, 15, 820–832. [Google Scholar] [CrossRef]
- YHuang, i.; Su, Z.; Li, W.; Ren, J. Recent Progresses on Biosensors for Escherichia coli Detection. Food Anal. Methods 2022, 15, 338–366. [Google Scholar]
- Couto, R.A.S.; Chen, L.; Kuss, S.; Compton, R.G. Detection of Escherichia coli bacteria by impact electrochemistry. Analyst 2018, 143, 4840. [Google Scholar] [CrossRef]
- Raj, P.; Oh, M.H.; Han, K.; Lee, T.Y. Label-Free Electrochemical Biosensor Based on Au@MoS2–PANI for Escherichia coli Detection. Chemosensors 2021, 9, 49. [Google Scholar] [CrossRef]
- El-Moghazy, A.Y.; Wisuthiphaet, N.; Yang, X.; Sun, G.; Nitin, N. Electrochemical biosensor based on genetically engineered bacteriophage T7 for rapid detection of Escherichia coli on fresh produce. Food Control 2022, 135, 108811. [Google Scholar] [CrossRef]
- Blot, M.; Disson, O.; Leclercq, A.; Moura, A.; Bracq-Dieye, H.; Thouvenot, P.; Valès, G.; Burroni, B.; Lupo, A.; Lecuit, M. Listeria-Associated Lymphadenitis: A Series of 11 Consecutive Cases and Review of the Literature. Open Forum Infect. Dis. 2022, 9, ofab598. [Google Scholar] [CrossRef]
- Liu, R.; Zhang, Y.; Ali, S.; Haruna, S.A.; He, P.; Li, H.; Ouyang, Q.; Chen, Q. Development of a fluorescence aptasensor for rapid and sensitive detection of Listeria monocytogenes in food. Food Control 2021, 122, 107808. [Google Scholar] [CrossRef]
- Qia, X.; Wang, Z.; Luc, R.; Liua, J.; Lia, Y.; Chen, Y. One-step and DNA amplification-free detection of Listeria monocytogenes in ham samples: Combining magnetic relaxation switching and DNA hybridization reaction. Food Chem. 2021, 338, 127837. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Lin, C.; Wang, J.; Oh, D.H. Advances in Rapid Detection Methods for Foodborne Pathogens. J. Microbiol. Biotechnol. 2014, 24, 297–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jampasa, S.; Ngamrojanavanich, N.; Rengpipat, S.; Chailapakul, O.; Kalcher, K.; Chaiyo, S. Ultrasensitive electrochemiluminescence sensor based on nitrogen-decorated carbon dots for Listeria monocytogenes determination using a screen-printed carbon electrode. Biosens. Bioelectron. 2021, 188, 113323. [Google Scholar] [CrossRef]
- Mishra, A.; Pilloton, R.; Jain, S.; Roy, S.; Khanuja, M.; Mathur, A.; Narang, J. Paper-Based Electrodes Conjugated with Tungsten Disulfide Nanostructure and Aptamer for Impedimetric Detection of Listeria monocytogenes. Biosensors 2022, 12, 88. [Google Scholar] [CrossRef] [PubMed]
- Kahyaoglu, L.N.; Irudayaraj, J. New approaches in microbial pathogen detection. Adv. Microb. Food Saf. 2013, 78, 202–226. [Google Scholar]
- Yee, M.Y.; Shamsuddin, S.; Nizam, Q.N.H.; Sidik, M.R.; Yusop, F.F.M.; Saeid, F.H.M.; Aziah, I. Detection methods of avian influenza—Current and novel approaches. Malays. J. Microbiol. 2019, 15, 492–504. [Google Scholar]
- Lee, T.; Park, S.Y.; Jang, H.; Kim, G.; Lee, Y.; Park, C.; Mohammadniaei, M.; Lee, M.; Min, J. Fabrication of electrochemical biosensor consisted of multi-functional DNA structure/porous au nanoparticle for avian influenza virus (H5N1) in chicken serum. Mater. Sci. Eng. C 2019, 99, 511–519. [Google Scholar] [CrossRef]
- Panigrahy, B.; Senne, D.A.; Pedersen, J.C.; Shafer, A.L.; Pearson, J.E. Susceptibility of pigeons to avian influenza. Avian Dis. 1996, 40, 600–604. [Google Scholar] [CrossRef]
- MaManzano, r.; Viezzi, S.; Mazerat, S.; Marks, R.S.; Vidic, J. Rapid and label-free electrochemical DNA biosensor for detecting hepatitis A virus. Biosens. Bioelectron. 2018, 100, 89–95. [Google Scholar] [CrossRef]
- Hwang, H.J.; Ryu, M.Y.; Park, C.Y.; Ahn, J.; Park, H.J.; Choi, C.; Ha, S.D.; Park, T.J.; Park, J.P. High sensitive and selective electrochemical biosensor: Label-free detection of human norovirus using affinity peptide as molecular binder. Biosens. Bioelectron. 2017, 87, 164–170. [Google Scholar] [CrossRef]
- Jiang, H.; Sun, Z.; Zhang, C.; Weng, X. 3D-architectured aptasensor for ultrasensitive electrochemical detection of norovirus based on phosphorene-gold nanocomposites. Sens. Actuators B Chem. 2022, 354, 131232. [Google Scholar] [CrossRef]
- Dong, S.; Yan, J.; Zhou, S.; Zhou, Q. Mycotoxins Detection Based on Electrochemical Approaches. Electroanalysis 2022, 34, 132–147. [Google Scholar] [CrossRef]
- Meng, D.; Gan, X.; Tian, T. An Electrochemical Sensing Method for Aflatoxin B1 Detection Based on Pt-coordinated Titanium-based Porphyrin. MOF 2022, 17, 220247. [Google Scholar] [CrossRef]
- Wang, N.; Liu, Q.; Hu, X.; Wang, F.; Hu, M.; Yu, Q.; Zhang, G. Electrochemical immunosensor based on AuNPs/Zn/Ni-ZIF-8-800@graphene for rapid detection of aflatoxin B1 in peanut oil. Anal. Biochem. 2022, 650, 114710. [Google Scholar] [CrossRef]
- Mazaafrianto, D.N.; Ishida, A.; Maeki, M.; Tani, H.; Tokeshi, M. An Electrochemical Sensor Based on Structure Switching of Dithiol-modified Aptamer for Simple Detection of Ochratoxin A. Anal. Sci. 2019, 35, 1221–1226. [Google Scholar] [CrossRef]
- Ji, Y.M.; Zhang, K.H.; Pan, Z.N.; Ju, J.Q.; Zhang, H.L.; Liu, J.C.; Wang, Y.; Sun, S.C. High-dose zearalenone exposure disturbs G2/M transition during mouse oocyte maturation. Reprod. Toxicol. 2022, 110, 172–179. [Google Scholar] [CrossRef]
- Radi, A.E.; Eissa, A.; Wahdan, T. Voltammetric behavior of mycotoxin zearalenone at a single walled carbon nanotube screen-printed electrode. Anal. Methods 2019, 11, 4494–4500. [Google Scholar] [CrossRef]
- Curulli, A. Recent Advances in Electrochemical Sensing Strategies for Food. Biosensors 2022, 12, 503. [Google Scholar] [CrossRef]
- Sundhoro, M.; Agnihotra, S.R.; Khan, N.D.; Barnes, A.; BelBruno, J.; Mendecki, L. Rapid and accurate electrochemical sensor for food allergen detection in complex foods. Sci. Rep. 2021, 11, 20831. [Google Scholar] [CrossRef]
- Sundhoro, M.; Agnihotra, S.R.; Amberger, B.; Augustus, K.; Khan, N.D.; Barnes, A.; BelBruno, J.; Mendecki, L. An electrochemical molecularly imprinted polymer sensor for rapid and selective food allergen detection. Food Chem. 2021, 344, 128648. [Google Scholar] [CrossRef]
- Freitas, M.; Neves, M.M.P.S.; Nouws, H.P.A.; Delerue-Matos, C. Electrochemical Immunosensor for the Simultaneous Determination of Two Main Peanut Allergenic Proteins (Ara h 1 and Ara h 6) in Food Matrices. Foods 2021, 10, 1718. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Su, R.; Li, H.; Guo, J.; Hildebrandt, N.; Sun, C. Fluorescent Aptasensors: Design Strategies and Applications in Analyzing Chemical Contamination of Food. Anal. Chem. 2022, 94, 193–224. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Yang, L. Development of enzymatic electrochemical biosensors for organophosphorus pesticide detection. J. Environ. Sci. Health Part B 2021, 56, 168–180. [Google Scholar] [CrossRef] [PubMed]
- Maltzman, S.L.; Minteer, S.D. Mitochondrial-based voltammetric sensor for pesticides. Anal. Methods 2012, 4, 1202. [Google Scholar] [CrossRef]
- Nevin, T.; Selcan, K.; Cihat, T.; Gülsen, B. Highly sensitive and selective rGO based Non-Enzymatic electrochemical sensor for propamocarb fungicide pesticide detection. Food Chem. 2022, 372, 131267. [Google Scholar]
- Ma, Y.; Jiang, H.; Shen, C.; Hou, C.; Huo, D.; Wu, H.; Yang, M. Detection of Carbendazim Residues with a Colorimetric Sensor Based on Gold Nanoparticles. J. Appl. Spectrosc. 2017, 84, 460–465. [Google Scholar] [CrossRef]
- Liu, R.; Li, B.; Li, F.; Dubovyk, V.; Chang, Y.; Li, D.; Ding, K.; Ran, Q.; Wang, G.; Zhao, H. A novel electrochemical sensor based on β-cyclodextrin functionalized carbon nanosheets@carbon nanotubes for sensitive detection of bactericide carbendazim in apple juice. Food Chem. 2022, 384, 132573. [Google Scholar] [CrossRef]
- Yang, J.; Qi, L.; Uqaili, J.A.; Shi, D.; Yin, L.; Liu, Z.; Tao, X.; Dai, L.; Lan, C. The terahertz metamaterial sensor for imidacloprid detection. Int. J. RF Microw. Comput. Aided Eng. 2021, 31, e22840. [Google Scholar] [CrossRef]
- Tang, F.; Hua, Q.; Wang, X.; Luan, F.; Wang, L.; Li, Y.; Zhuang, X.; Tian, C. A novel electrochemiluminescence sensor based on a molecular imprinting technique and UCNPs@ZIF-8 nanocomposites for sensitive determination of imidacloprid. Analyst 2022, 147, 3917. [Google Scholar] [CrossRef]
- Pham, D.S.; Nguyen, X.A.; Marsh, P.; Chu, S.S.; Lau, M.P.H.; Nguyen, A.H.; Cao, H. A Fluidics-Based Biosensor to Detect and Characterize Inhibition Patterns of Organophosphate to Acetylcholinesterase in Food Materials. Micromachines 2021, 12, 397. [Google Scholar] [CrossRef]
- Surucu, O. Trace determination of heavy metals and electrochemical removal of lead from drinking water. Chem. Pap. 2021, 75, 4227–4238. [Google Scholar] [CrossRef]
- Chailapakul, O.; Korsrisakul, S.; Siangproh, W.; Grudpan, K. Fast and simultaneous detection of heavy metals using a simple and reliable microchip-electrochemistry route: An alternative approach to food analysis. Talanta 2008, 74, 683–689. [Google Scholar] [CrossRef] [PubMed]
- Lahrich, S.; el Mhammedi, M.A. Review—Application of Deficient Apatites Materials in Electrochemical Detection of Heavy Metals: Case of Mercury (II) in Seawater and Fish Samples. J. Electrochem. Soc. 2019, 166, B1567–B1576. [Google Scholar] [CrossRef]
- Wisarut, K.; Phichanan, D.; Kriangsak, S.; Nuanlaorr, R.; Nunticha, L.; Piyada, J.; Thitirat, M.; Weena, S. An application of miniaturized electrochemical sensing for determination of arsenic in herbal medicines. Methods 2022, 14, 3087. [Google Scholar]
- Narouei, F.H.; Livernois, L.; Andreescu, D.; Andreescu, S. Highly sensitive mercury detection using electroactive gold-decorated polymer nanofibers. Sens. Actuators B Chem. 2021, 329, 129267. [Google Scholar] [CrossRef]
- Yuan, M.; Qian, S.; Cao, H.; Yu, J.; Ye, T.; Wu, X.; Chen, L.; Xu, F. An ultra-sensitive electrochemical aptasensor for simultaneous quantitative detection of Pb2+ and Cd2+ in fruit and vegetable. Food Chem. 2022, 382, 132173. [Google Scholar] [CrossRef]
- Tan, Z.; Wu, W.; Feng, C.; Wu, H.; Zhang, Z. Simultaneous determination of heavy metals by an electrochemical method based on a nanocomposite consisting of fluorinated graphene and gold nanocage. Microchim. Acta 2020, 187, 414. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, C.; Long, Y.; Chen, Q.; Zhang, W.; Liu, G. Food additives: From functions to analytical Methods. Crit. Rev. Food Sci. Nutr. 2021, 61, 1–21. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, S.; Du, Y.; Cao, D.; Wang, G.R.; Yuan, Z.Q. Improved food additive analysis by ever-increasing nanotechnology. J. Food Drug Anal. 2020, 28, 622–640. [Google Scholar] [CrossRef]
- Rao, H.; Chen, M.; Ge, H.; Lu, Z.; Liu, X.; Zou, P.; Wang, X.; He, H.; Zeng, X.; Wang, Y. A novel electrochemical sensor based on Au@PANI composites film modified glassy carbon electrode binding molecular imprinting technique for the determination of melamine. Biosens. Bioelectron. 2017, 87, 1029–1035. [Google Scholar] [CrossRef]
- Rahmana, M.M.; Ahmed, J. Cd-doped Sb2O4 nanostructures modified glassy carbon electrode for efficient detection of melamine by electrochemical approach. Biosens. Bioelectron. 2018, 102, 631–636. [Google Scholar] [CrossRef] [PubMed]
- An, Q.; Feng, X.; Zhou, Z.; Zhan, T.; Lian, S.; Zhu, J.; Han, G.; Chen, Z.; Kraatz, H. One step construction of an electrochemical sensor for melamine detection in milk towards an integrated portable system. Food Chem. 2022, 383, 132403. [Google Scholar] [CrossRef] [PubMed]
- Ensafi, A.A.; Rezaei, B.; Amini, M.; Heydari-Bafrooei, E. A novel sensitive DNA–biosensor for detection of a carcinogen, Sudan II, using electrochemically treated pencil graphite electrode by voltammetric methods. Talanta 2012, 88, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wang, S.; Zhang, L. Electrochemical Sensor Based on MWCNTs/AuNPs/GCE for Sensitive Determination of Sudan I Content in Food Samples. ESG 2020, 15, 11168–11179. [Google Scholar] [CrossRef]
- Heydari, M.; Ghoreishi, S.M.; Khoobi, A. Novel electrochemical procedure for sensitive determination of Sudan II based on nanostructured modified electrode and multivariate optimization. Measurement 2019, 142, 105–112. [Google Scholar] [CrossRef]
- Shi, Z.; Tian, Y.; Wu, X.; Li, C.; Yu, L. A one-piece lateral flow impedimetric test strip for label-free clenbuterol detection. Anal. Methods 2015, 7, 4957. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, T.; Chen, S.; Wang, X.; Reynoso, L.C. Highly Sensitive Electrochemical Sensor Based on rGO/Fe3O4 Composite as Electrocatalyst for Clenbuterol Detection in Doping Analysis. Int. J. Electrochem. Sci. 2022, 17, 220128. [Google Scholar] [CrossRef]
- Jing, H.; Ouyang, H.; Li, W.; Long, Y. Molten salt synthesis of BCNO nanosheets for the electrochemical detection of clenbuterol. Microchem. J. 2022, 178, 107359. [Google Scholar] [CrossRef]
- Zheng, Y.; Karimi-Maleh, H.; Fu, L. Advances in Electrochemical Techniques for the Detection and Analysis of Genetically Modified Organisms: An Analysis Based on Bibliometrics. Chemosensors 2022, 10, 194. [Google Scholar] [CrossRef]
- Farías, M.E.; Correa, N.M.; Sosa, L.; Niebylski, A.M.; Molina, P.G. A simple electrochemical immunosensor for sensitive detection of transgenic soybean protein CP4-EPSPS in seeds. Talanta 2022, 237, 122910. [Google Scholar] [CrossRef]
- Gao, H.; Cui, D.; Zhai, S.; Yang, Y.; Wu, Y.; Yan, X.; Gang, W. A label-free electrochemical impedimetric DNA biosensor for genetically modifed soybean detection based on gold carbon dots. Microchim. Acta 2022, 189, 216. [Google Scholar] [CrossRef] [PubMed]
- Cui, D.; Zhai, S.; Yang, Y.; Wu, Y.; Li, J.; Yan, X.; Shen, P.; Gao, H.; Wu, G. A Label-Free Electrochemical Impedance Genosensor Coupled with Recombinase Polymerase Amplification for Genetically Modified Maize Detection. Agriculture 2022, 12, 454. [Google Scholar] [CrossRef]
Analyte | Electrode | Electrochemical Method | Linearity Range | LOD | Assay Time | Ref. |
---|---|---|---|---|---|---|
Genistein | Carbon | DPV | 100 ppb–10 ppm | 100 ppb | — | [41] |
Ara h 1 Ara h 6 | SPCE | LSV | 0–1000 ng/mL 0–1.0 ng/mL | 5.2 ng/mL 0.017 ng/mL | 2 h 20 min | [42] |
Analyte | Electrode | Electrochemical Method | Linearity Range | LOD | Assay Time | Ref. |
---|---|---|---|---|---|---|
As | SPGE | SWASV | 0.1–3.0 ppm | 0.03 ppm | <3 min | [55] |
Hg2+ | SPCE | SWASV | 0.8–12.0 nM | 0.23 nM | — | [56] |
Cd2+ Pb2+ | Au | SWV | 0.1–1000 nmol/L | 89.31 pmol/L 16.44 pmol/L | 15 min | [57] |
Hg2+ Cd2+ Pb2+ Cu2+ Zn2+ | GCE | SWASV | 6–7000, 4–6000, 6–5000, 4–4000, 6–5000 μg/L | 0.08, 0.09, 0.05, 0.19, 0.01 μg/L | — | [58] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.; Lin, X.; Zhang, M.; Li, Y.; Luo, C.; Wu, J. Review of Electrochemical Biosensors for Food Safety Detection. Biosensors 2022, 12, 959. https://doi.org/10.3390/bios12110959
Wang K, Lin X, Zhang M, Li Y, Luo C, Wu J. Review of Electrochemical Biosensors for Food Safety Detection. Biosensors. 2022; 12(11):959. https://doi.org/10.3390/bios12110959
Chicago/Turabian StyleWang, Ke, Xiaogang Lin, Maoxiao Zhang, Yu Li, Chunfeng Luo, and Jayne Wu. 2022. "Review of Electrochemical Biosensors for Food Safety Detection" Biosensors 12, no. 11: 959. https://doi.org/10.3390/bios12110959
APA StyleWang, K., Lin, X., Zhang, M., Li, Y., Luo, C., & Wu, J. (2022). Review of Electrochemical Biosensors for Food Safety Detection. Biosensors, 12(11), 959. https://doi.org/10.3390/bios12110959