Ultrasensitive Electrochemical Detection of Butylated Hydroxy Anisole via Metalloporphyrin Covalent Organic Frameworks Possessing Variable Catalytic Active Sites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Por−COF−366, MPor−COF−366 (M = Fe, Mn, Cu)
2.3. Preparation of MPor−COF−366 (M = Fe, Mn, Cu) Modified Electrode
2.4. Preparation of Samples
2.5. Characterizations
2.6. Electrochemical Analysis
3. Results and Discussions
3.1. Characterizations of Synthesized Composites
3.2. Electrochemical Properties
3.3. Optimization of the Experimental Parameters
3.4. Analytical Performance
3.5. Interference, Stability, and BHA Detection
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, P.; Han, C.Y.; Zhou, F.Y.; Lu, J.S.; Han, X.G.; Wang, Z.W. Electrochemical determination of tert-butylhydroquinone and butylated hydroxyanisole at choline functionalized film supported graphene interface. Sens. Actuators B Chem. 2016, 224, 885–891. [Google Scholar] [CrossRef]
- Wang, L.; Yang, R.; Wang, H.; Li, J.J.; Qu, L.B.; Harrington, P.B. High-selective and sensitive voltammetric sensor for butylated hydroxyanisole based on AuNPs-PVP-graphene nanocomposites. Talanta 2015, 138, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Yue, X.Y.; Song, W.S.; Zhu, W.X.; Wang, J.L.; Wang, Y.R. In situ surface electrochemical co-reduction route towards controllable construction of AuNPs/ERGO electrochemical sensing platform for simultaneous determination of BHA and TBHQ. Electrochim. Acta 2015, 182, 847–855. [Google Scholar] [CrossRef]
- Freitas, K.H.; Fatibello-Filho, O. Simultaneous determination of butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) in food samples using a carbon composite electrode modified with Cu3(PO4)2 immobilized in polyester resin. Talanta 2010, 81, 1102–1108. [Google Scholar] [CrossRef] [PubMed]
- Manoranjitham, J.J.; Narayanan, S.S. Electrochemical sensor for determination of butylated hydroxyanisole (BHA) in food products using poly O-cresolphthalein complexone coated multiwalledcarbon nanotubes electrode. Food Chem. 2021, 342, 128246. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Zamarreño, M.M.; González-Maza, I.; Sánchez-Pérez, A.; Carabias Martínez, R. Analysis of synthetic phenolic antioxidants in edible oils by micellar electrokinetic capillary chromatography. Food Chem. 2007, 100, 1722–1727. [Google Scholar] [CrossRef]
- Akkbik, M.; Assim, Z.B.; Ahmad, F.B. Optimization and Validation of RP-HPLC-UV/Vis Method for Determination Phenolic Compounds in Several Personal Care Products. Int. J. Anal. Chem. 2011, 2011, 858153. [Google Scholar] [CrossRef]
- Chen, M.; Hu, X.J.; Tai, Z.G.; Qin, H.; Tang, H.N.; Liu, M.S.; Yang, Y.L. Determination of Four Synthetic Phenolic Antioxidants in Edible Oils by High-Performance Liquid Chromatography with Cloud Point Extraction Using Tergitol TMN-6. Food Anal Methods 2012, 6, 28–35. [Google Scholar] [CrossRef]
- Davoli, E.; Bastone, A.; Bianchi, G.; Salmona, M.; Diomede, L. A simple headspace gas chromatography/mass spectrometry method for the quantitative determination of the release of the antioxidants butylated hydroxyanisole and butylated hydroxytoluene from chewing gum. Rapid Commun. Mass Spectrom. 2017, 31, 859–864. [Google Scholar] [CrossRef]
- Capitan-Vallvey, L.F.; Valencia, M.C.; Nicolas, E.A. Monoparameter sensors for the determination of the antioxidants butylated hydroxyanisole and n-propyl gallate in foods and cosmetics by flow injection spectrophotometry. Analyst 2001, 126, 897–902. [Google Scholar] [CrossRef]
- Shu, Y.; Li, B.; Xu, Q.; Gu, P.; Xiao, X.; Liu, F.P.; Yu, L.Y.; Pang, H.; Hu, X.Y. Cube-like CoSn(OH)6 nanostructure for sensitive electrochemical detection of H2O2 in human serum sample. Sens. Actuators B Chem. 2017, 241, 528–533. [Google Scholar] [CrossRef]
- Wang, J.; Li, N.; Xu, Y.X.; Pang, H. Two-Dimensional MOF and COF Nanosheets: Synthesis and Applications in Electrochemistry. Chem. Eur. J. 2020, 26, 6402–6422. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.L.; Xie, Y.; Sun, X.; Wang, Y.; Wang, Y. Tunable construction of crystalline and shape-tailored Co3O4@TAPB-DMTP-COF composites for the enhancement of tert-butylhydroquinone electrocatalysis. Sens. Actuators B Chem. 2021, 331, 129438. [Google Scholar] [CrossRef]
- Wang, J.; Xu, Q.; Xia, W.W.; Shu, Y.; Jin, D.Q.; Zang, Y.; Hu, X.Y. High sensitive visible light photoelectrochemical sensor based on in-situ prepared flexible Sn3O4 nanosheets and molecularly imprinted polymers. Sens. Actuators B Chem. 2018, 271, 215–224. [Google Scholar] [CrossRef]
- Zhu, R.M.; Ding, J.W.; Jin, L.; Pang, H. Interpenetrated structures appeared in supramolecular cages, MOFs, COFs. Coord. Chem. Rev. 2019, 389, 119–140. [Google Scholar] [CrossRef]
- Huang, Z.L.; Xu, Q.; Hu, X.Y. Covalent organic frameworks functionalized carbon fiber paper for the capture and detection of hydroxyl radical in the atmosphere. Chin. Chem. Lett 2020, 31, 2495–2498. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, Y.L.; Huang, W.; Wang, Y.; Hu, X.Y. A novel AuNPs-doped COFs composite as electrochemical probe for chlorogenic acid detection with enhanced sensitivity and stability. Sens. Actuators B Chem. 2018, 276, 362–369. [Google Scholar] [CrossRef]
- Xie, Y.; Zhang, T.; Chen, Y.L.; Wang, Y.; Wang, L. Fabrication of core-shell magnetic covalent organic frameworks composites and their application for highly sensitive detection of luteolin. Talanta 2020, 213, 120843. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, C.Y.; Liu, J.B.; Liu, L.Z.; Tuo, W.; Zhu, H.T.Z.; Lu, S.; Li, X.P.; Stang, P.J. Self-Assembly of Porphyrin-Based Metallacages into Octahedra. J. Am. Chem. Soc. 2020, 142, 17903–17907. [Google Scholar] [CrossRef]
- Cai, W.R.; Zeng, H.B.; Xue, H.G.; Marks, R.S.; Cosnier, S.; Zhang, X.J.; Shan, D. Enhanced Electrochemiluminescence of Porphyrin-Based Metal-Organic Frameworks Controlled via Coordination Modulation. Anal. Chem. 2020, 92, 1916–1924. [Google Scholar] [CrossRef]
- Liu, M.J.; Cao, S.M.; Feng, B.Q.; Dong, B.X.; Ding, Y.X.; Zheng, Q.H.; Teng, Y.L.; Li, Z.W.; Liu, W.L.; Feng, L.G. Revealing the structure-activity relationship of two Cu-porphyrin-based metal-organic frameworks for the electrochemical CO2-to-HCOOH transformation. Dalton Trans. 2020, 49, 14995–15001. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.T.; Han, C.; Wang, Z.J.; Wu, X.; Su, F.; Li, M.Y.; Zhang, Q.Y.; Jing, X.B. Porphyrin-Based Organoplatinum(II) Metallacycles With Enhanced Photooxidization Reactivity. Front Chem. 2020, 8, 262. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.F.; Wang, Y.; Ma, Y.; Mal, A.; Gao, X.Y.; Gao, L.; Qiao, L.J.; Li, X.B.; Wu, L.Z.; Wang, C. Rational design of isostructural 2D porphyrin-based covalent organic frameworks for tunable photocatalytic hydrogen evolution. Nat. Commun. 2021, 12, 1354. [Google Scholar] [CrossRef] [PubMed]
- Wan, S.; Gándara, F.; Asano, A.; Furukawa, H.; Saeki, A.; Dey, S.K.; Liao, L.; Ambrogio, M.W.; Botros, Y.Y.; Duan, X.F.; et al. Covalent Organic Frameworks with High Charge Carrier Mobility. Chem. Mater. 2011, 23, 4094–4097. [Google Scholar] [CrossRef]
- Wang, D.W.; Zhang, Z.; Lin, L.; Liu, F.; Wang, Y.B.; Guo, Z.P.; Li, Y.H.; Tian, H.Y.; Chen, X.S. Porphyrin-based covalent organic framework nanoparticles for photoacoustic imaging-guided photodynamic and photothermal combination cancer therapy. Biomaterials 2019, 223, 119459. [Google Scholar] [CrossRef]
- Meng, F.L.; Qian, H.L.; Yan, X.P. Conjugation-regulating synthesis of high photosensitizing activity porphyrin-based covalent organic frameworks for photodynamic inactivation of bacteria. Talanta 2021, 233, 122536. [Google Scholar] [CrossRef]
- Xu, Q.T.; Xue, H.G.; Guo, S.P. FeS2 walnut-like microspheres wrapped with rGO as anode material for high-capacity and long-cycle lithium-ion batteries. Electrochim. Acta 2018, 292, 1–9. [Google Scholar] [CrossRef]
- Dai, L.X.; Li, W.L.; Zhou, K.H.; Tang, D.M.; Han, Y.; Wu, X.Y.; Wu, H.Y.; Diao, G.W.; Chen, M. Interfacial anchoring effect for enhanced lithium storage performance of sesame balls-like Fe3O4/C hollow nanospheres. J. Electroanal. Chem. 2019, 855, 113626. [Google Scholar] [CrossRef]
- Shu, Y.; Xu, J.; Chen, J.Y.; Xu, Q.; Xiao, X.; Jin, D.Q.; Pang, H.; Hu, X.Y. Ultrasensitive electrochemical detection of H2O2 in living cells based on ultrathin MnO2 nanosheets. Sens. Actuators B Chem. 2017, 252, 72–78. [Google Scholar] [CrossRef]
- Wei, C.Z.; Cheng, C.; Ma, L.; Liu, M.N.; Kong, D.C.; Du, W.M.; Pang, H. Mesoporous hybrid NiOx-MnOx nanoprisms for flexible solid-state asymmetric supercapacitors. Dalton Trans. 2016, 45, 10789–10797. [Google Scholar] [CrossRef]
- Gao, Y.J.; Yang, F.Y.; Yu, Q.H.; Fan, R.; Yang, M.; Rao, S.Q.; Lan, Q.C.; Yang, Z.J.; Yang, Z.Q. Three-dimensional porous Cu@Cu2O aerogels for direct voltammetric sensing of glucose. Mikrochim Acta 2019, 186, 192. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Dong, J.; Li, K.; Zhou, M.; Xia, W.W.; Shen, X.S.; Han, J.R.; Zeng, X.H.; Cai, W.P. Quantum dot-assembled mesoporous CuO nanospheres based on laser ablation in water. RSC Adv. 2015, 5, 19479–19483. [Google Scholar] [CrossRef]
- Jiang, J.J.; Ding, D.; Wang, J.; Lin, X.Y.; Diao, G.W. Three-dimensional nitrogen-doped graphene-based metal-free electrochemical sensors for simultaneous determination of ascorbic acid, dopamine, uric acid, and acetaminophen. Analyst 2021, 146, 964–970. [Google Scholar] [CrossRef] [PubMed]
- Mao, A.R.; Li, H.B.; Yu, L.Y.; Hu, X.Y. Electrochemical sensor based on multi-walled carbon nanotubes and chitosan-nickel complex for sensitive determination of metronidazole. J. Electroanal. Chem. 2017, 799, 257–262. [Google Scholar] [CrossRef]
- Yang, C.; Liu, M.M.; Bai, F.Q.; Guo, Z.Z.; Liu, H.; Zhong, G.X.; Peng, H.P.; Chen, W.; Lin, X.H.; Lei, Y.; et al. An electrochemical biosensor for sensitive detection of nicotine-induced dopamine secreted by PC12 cells. J. Electroanal. Chem. 2019, 832, 217–224. [Google Scholar] [CrossRef]
- Ziyatdinova, G.; Guss, E.; Budnikov, H. Amperometric sensor based on MWNT and electropolymerized carminic acid for the simultaneous quantification of TBHQ and BHA. J. Electroanal. Chem. 2020, 859, 113885. [Google Scholar] [CrossRef]
- Lin, X.Y.; Ni, Y.N.; Kokot, S. Glassy carbon electrodes modified with gold nanoparticles for the simultaneous determination of three food antioxidants. Anal. Chim. Acta 2013, 765, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Caramit, R.P.; de Freitas Andrade, A.G.; Gomes de Souza, J.B.; de Araujo, T.A.; Viana, L.H.; Trindade, M.A.G.; Ferreira, V.S. A new voltammetric method for the simultaneous determination of the antioxidants TBHQ and BHA in biodiesel using multi-walled carbon nanotube screen-printed electrodes. Fuel 2013, 105, 306–313. [Google Scholar] [CrossRef] [Green Version]
- Roushani, M.; Sarabaegi, M. Electrochemical detection of butylated hydroxyanisole based on glassy carbon electrode modified by iridium oxide nanoparticles. J. Electroanal. Chem. 2014, 717, 147–152. [Google Scholar] [CrossRef]
- Gan, T.; Zhao, A.X.; Wang, S.H.; Lv, Z.; Sun, J.Y. Hierarchical triple-shelled porous hollow zinc oxide spheres wrapped in graphene oxide as efficient sensor material for simultaneous electrochemical determination of synthetic antioxidants in vegetable oil. Sens. Actuators B Chem. 2016, 235, 707–716. [Google Scholar] [CrossRef]
- Ng, K.L.; Tan, G.H.; Khor, S.M. Graphite nanocomposites sensor for multiplex detection of antioxidants in food. Food Chem. 2017, 237, 912–920. [Google Scholar] [CrossRef] [PubMed]
- De Araujo, T.A.; Barbosa, A.M.; Viana, L.H.; Ferreira, V.S. Voltammetric determination of tert-butylhydroquinone in biodiesel using a carbon paste electrode in the presence of surfactant. Colloids Surf. B 2010, 79, 409–414. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.N.; Hao, J.C. Tert-butylhydroquinone recognition of molecular imprinting electrochemical sensor based on core-shell nanoparticles. Food Chem. 2013, 139, 1001–1007. [Google Scholar] [CrossRef] [PubMed]
Electrode Materials | Line Range (μM) | Detection Limit (μM) | Ref. |
---|---|---|---|
Poly carminic acid/MWCNT 1 | 0.25–75 | 0.23 | [36] |
AuNPs 2/GCE | 0.55–8.3 | 0.22 | [37] |
SPE–MWCNT 3 | 0.5–10 | 0.18 | [38] |
GCE/IrOxNPs 4 | 1–280 | 0.60 | [39] |
ZnO TPHS 5@GO 6 hybrid/GCE | 0.3–60 | 0.04 | [40] |
Au-NP/Graphite | 3.3–400 | 0.5 | [41] |
Surfactant/CPE 7 | 1.1–10.2 | 0.07 | [42] |
Core-shell MIP 8/GCE | 0.6–300 | 1.62 | [43] |
FePor−COF−366/GCE | 0.04–1000 | 0.015 | This Work |
Samples | Added (μM) | Obtained (μM) | RSD (%) | Recovery (%) |
---|---|---|---|---|
Peanut oil | 0 | Not detected | - | - |
5.0 | 4.98 | 2.8 | 99.6 | |
50.0 | 50.6 | 3.4 | 101.2 | |
Rapeseed oil | 0 | Not detected | - | - |
5.0 | 4.92 | 1.5 | 98.4 | |
50.0 | 49.4 | 2.3 | 100.4 | |
Corn oil | 0 | Not detected | - | - |
5.0 | 5.11 | 3.0 | 102.2 | |
50.0 | 49.4 | 2.1 | 98.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, H.; Sun, X.; Zha, X.; Khan, S.U.; Wang, Y. Ultrasensitive Electrochemical Detection of Butylated Hydroxy Anisole via Metalloporphyrin Covalent Organic Frameworks Possessing Variable Catalytic Active Sites. Biosensors 2022, 12, 975. https://doi.org/10.3390/bios12110975
Chu H, Sun X, Zha X, Khan SU, Wang Y. Ultrasensitive Electrochemical Detection of Butylated Hydroxy Anisole via Metalloporphyrin Covalent Organic Frameworks Possessing Variable Catalytic Active Sites. Biosensors. 2022; 12(11):975. https://doi.org/10.3390/bios12110975
Chicago/Turabian StyleChu, Huacong, Xin Sun, Xiaoqian Zha, Shifa Ullah Khan, and Yang Wang. 2022. "Ultrasensitive Electrochemical Detection of Butylated Hydroxy Anisole via Metalloporphyrin Covalent Organic Frameworks Possessing Variable Catalytic Active Sites" Biosensors 12, no. 11: 975. https://doi.org/10.3390/bios12110975
APA StyleChu, H., Sun, X., Zha, X., Khan, S. U., & Wang, Y. (2022). Ultrasensitive Electrochemical Detection of Butylated Hydroxy Anisole via Metalloporphyrin Covalent Organic Frameworks Possessing Variable Catalytic Active Sites. Biosensors, 12(11), 975. https://doi.org/10.3390/bios12110975