Efficient Detection of 2,6-Dinitrophenol with Silver Nanoparticle-Decorated Chitosan/SrSnO3 Nanocomposites by Differential Pulse Voltammetry
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Methods
2.2. Preparation of SrSnO3
2.3. Preparation of Ag-Decorated Chitosan/SrSnO3 NCs
2.4. Fabrication of GCE Using Ag-Decorated Chitosan/SrSnO3 NCs
3. Results and Discussion
3.1. Physical Characterization of Ag-Decorated Chitosan/SrSnO3 NCs
3.2. Surface Composition by XPS Analysis
3.3. Optical and Structural Characterization of Ag-Decorated Chitosan/SrSnO3 NCs
3.4. Electrochemical Characterization of Ag-Decorated Chitosan/SrSnO3 NC/GCE
3.5. Detection of 2,6-DNP with Ag-Decorated Chitosan/SrSnO3 NC/GCE
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Swarnalatha, B.; Anjaneyulu, Y. Studies on the heterogeneous photocatalytic oxidation of 2,6-dinitrophenol in aqueous TiO2 suspension. J. Mol. Catal. A Chem. 2004, 223, 161–165. [Google Scholar] [CrossRef]
- Subhan, M.A.; Saha, P.C.; Rahman, M.M.; Ahmed, J.; Asiri, A.M.; Al-Mamun, M. Fabrication of a 2,4-dinitrophenol sensor based on Fe3O4@Ag@Ni nanomaterials and studies on their antibacterial properties. New J. Chem. 2018, 42, 872–881. [Google Scholar] [CrossRef]
- Rahman, M.M.; Alam, M.M.; Asiri, A.M. 2-Nitrophenol sensor-based wet-chemically prepared binary doped Co3O4/Al2O3 nanosheets by an electrochemical approach. RSC Adv. 2018, 8, 960–970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Ni, Y.W.Y.; Kokot, S. A sensor based on blue luminescent graphene quantum dots for analysis of a common explosive substance and an industrial intermediate, 2,4,6-trinitrophenol. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 137, 1213–1221. [Google Scholar] [CrossRef]
- Liu, X.; Han, Y.; Shu, Y.; Wang, J.; Qiu, H. Fabrication and application of 2,4,6-trinitrophenol sensors based on fluorescent functional materials. J. Hazard. Mater. 2022, 425, 127987. [Google Scholar] [CrossRef]
- Tanwar, A.S.; Iyer, P.K. Fluorescence “Turn-On” Indicator Displacement Assay-Based Sensing of Nitroexplosive 2,4,6-Trinitrophenol in Aqueous Media via a Polyelectrolyte and Dye Complex. ACS Omega 2017, 2, 4424–4430. [Google Scholar] [CrossRef] [Green Version]
- Nagarkar, S.S.; Desai, A.V.; Ghosh, S.K. Engineering metal–organic frameworks for aqueous phase 2,4,6-trinitrophenol (TNP) sensing. CrystEngComm 2016, 18, 2994–3007. [Google Scholar] [CrossRef]
- Rahman, M.M.; Sheikh, T.A.; Asiri, A.M.; Alamry, K.A.; Hasnat, M.A. Fabrication of ultra-sensitive para-nitrophenol sensor based on facile Zn-doped Er2O3 nano-composites by electrochemical approach. Analytical Methods 2020, 12, 3470–3483. [Google Scholar] [CrossRef]
- Rahman, M.M.; Alam, M.M.; Hussain, M.M.; Asiri, A.M.; Zayed, M.E.M. Hydrothermally prepared Ag2O/CuO nanomaterial for an efficient chemical sensor development for environmental remediation. Environ. Nanotechnol. Monit. Manag. 2018, 10, 1–9. [Google Scholar] [CrossRef]
- Hwa, K.Y.; Sharma, T.S.K.; Ganguly, A. Design strategy of rGO–HNT–AgNPs based hybrid nanocomposite with enhanced performance for electrochemical detection of 4-nitrophenol. Inorg. Chem. Front. 2020, 7, 1981–1994. [Google Scholar] [CrossRef]
- Tang, Y.; Huang, R.; Liu, C.; Yang, S.; Lu, Z.; Luo, S. Electrochemical detection of 4-nitrophenol based on a glassy carbon electrode modified with a reduced graphene oxide/Au nanoparticle composite. Anal. Methods 2013, 5, 5508–5514. [Google Scholar] [CrossRef]
- Fischer, J.; Vanourkova, L.; Danhel, A.; Vyskocil, V.; Cizek, K.; Barek, J.; Peckova, K.; Yosypchuk, B.; Navratil, T. Voltammetric Determination of Nitrophenols at a Silver Solid Amalgam Electrode. Int. J. Electrochem. Sci. 2007, 2, 226–234. [Google Scholar]
- Khan, A.; Khan, A.A.P.; Rahman, M.M.; Asiri, A.M.; Inamuddin; Alamry, K.A.; Hamed, S.A. Preparation and characterization of PANI@G/CWO nanocomposite for enhanced 2-nitrophenol sensing. Appl. Surface Sci. 2017, 433, 696–704. [Google Scholar] [CrossRef]
- Singh, B.; Singh, A.; Sharma, A.; Mahajan, P.; Verma, S.; Padha, B.; Ahmed, A.; Arya, S. Electrochemical sensing and photocatalytic degradation of 2,4-dinitrophenol via bismuth (III) oxide nanowires. J. Mol. Struct. 2022, 1255, 132379. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, L.; Zhang, Y.; Tang, H. Electrochemical sensoring of 2,4-dinitrophenol by using composites of graphene oxide with surface molecular imprinted polymer. Sens. Actuators B: Chem. 2012, 171–172, 1151–1158. [Google Scholar] [CrossRef]
- Gholivand, M.B.; Behzad, L.M.; Hosseinkhani, H. Application of a Cu–chitosan/multiwalled carbon nanotube film-modified electrode for the sensitive determination of rutin. Anal. Biochem. 2016, 493, 35–43. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, X.; Cao, H.; Huang, Y. Chitosan-capped silver nanoparticles as a highly selective colorimetric probe for visual detection of aromatic ortho-trihydroxy phenols. Analyst 2013, 138, 2343–2349. [Google Scholar] [CrossRef]
- Deng, P.; Xu, Z.; Li, J. Simultaneous voltammetric determination of 2-nitrophenol and 4-nitrophenol based on an acetylene black paste electrode modified with a graphene-chitosan composite. Microchim. Acta. 2014, 181, 1077–1084. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, Y.; Liu, S.; Wang, L.; Gao, F.; Gao, F.; Sun, W. Voltammetric detection of bisphenol a by a chitosan–graphene composite modified carbon ionic liquid electrode. Thin Solid Films. 2012, 520, 4459–4464. [Google Scholar] [CrossRef]
- Cao, X.; Luo, L.; Ding, Y.; Zou, X.; Bian, R. Electrochemical methods for simultaneous determination of dopamine and ascorbic acid using cetylpyridine bromide/chitosan composite film-modified glassy carbon electrode. Sens. Actuators B Chem. 2008, 129, 941–946. [Google Scholar] [CrossRef]
- Oubiria, A.; Barcelo, D.; Marco, M.P. Effect of competitor design on immunoassay specificity: Development and evaluation of an enzyme-linked immunosorbent assay for 2,4-dinitrophenol. Anal. Chim. Acta 1999, 387, 267–279. [Google Scholar]
- Alam, M.K.; Rahman, M.M.; Abbas, M.; Torati, S.R.; Asiri, A.M.; Kim, D.; Kim, C.G. Ultra-sensitive 2-nitrophenol detection based on reduced graphene oxide/ZnO nanocomposites. J. Electroanalytical Chem. 2017, 788, 66–73. [Google Scholar] [CrossRef]
- Ivanov, Y.D.; Malsagova, K.A.; Pleshakova, T.O.; Galiullin, R.A.; Kozlov, A.F.; Shumov, I.D.; Ivanova, I.A.; Archakov, A.I.; Popov, G.P.; Latyshev, A.V.; et al. Ultrasensitive detection of 2,4-Dinitrophenol using nanowire biosensor. J. Nanotechnology. 2018, 2018, 9549853. [Google Scholar] [CrossRef] [Green Version]
- Faisal, M.; Harraz, F.A.; Ismail, A.A.; Al-Saiari, M.A.; Al-Sayari, S.A.; Al-Assiri, M.S. Novel synthesis of Polyaniline/SrSnO3 nanocomposites with enhanced photocatalytic activity. Ceram Int. 2019, 45, 20484–20492. [Google Scholar] [CrossRef]
- Faisal, M.; Ismail, A.A.; Harraz, F.A.; Al-Sayari, S.A.; El-Toni, A.M.; Al-Assiri, M.S. Synthesis of Highly Dispersed Silver Doped g-C3N4 Nanocomposites with Enhanced Visible-Light Photocatalytic Activity. Mater. Des. 2016, 98, 223–230. [Google Scholar] [CrossRef]
- Parashar, P.K.; Komarala, V.K. Engineered optical properties of silver-aluminum alloy nanoparticles embedded in SiON matrix for maximizing light confnement in plasmonic silicon solar cells. Sci. Rep. 2017, 7, 12520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Firet, N.J.; Blommaert, M.A.; Burdyny, T.; Venugopal, A.; Bohra, D.; Longo, A.; Smith, W.A. Operando EXAFS study reveals presence of oxygen in oxide-derived silver catalysts for electrochemical CO2 reduction. J. Mater. Chem. A. 2019, 7, 2597–2607. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Liu, Y.; Wu, Y.; Li, X. Influence of Mn Doping on the Sensing Properties of SnO2 Nanobelt to Ethanol. Am. J. Anal. Chem. 2017, 8, 60–71. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Li, J.; Wang, Y.; Yu, K.; Tang, X.; Zhang, Y.; Wang, S.; We, C. Construction of 1D SnO2-coated ZnO nanowire heterojunction for their improved n-butylamine sensing performances. Sci. Rep. 2017, 6, 35079. [Google Scholar] [CrossRef] [Green Version]
- Tong, W.; Wang, Y.; Bian, Y.; Wang, A.; Han, N.; Chen, Y. Sensitive Cross-Linked SnO2:NiO Networks for MEMS Compatible Ethanol Gas Sensors. Nanoscale Res. Lett. 2020, 15, 35. [Google Scholar] [CrossRef]
- Zheng, Z.; Wei, Y.; Wang, G.; Gong, Y.; Zhang, X. Surface characterization and cytocompatibility of three chitosan/polycation composite membranes for guided bone regeneration. J. Biomater. Appl. 2009, 24, 209–229. [Google Scholar] [CrossRef] [PubMed]
- Li, P.C.; Liao, G.M.; Kumar, S.R.; Shih, C.M.; Yang, C.C.; Wang, D.M.; Lue, S.J. Fabrication and Characterization of Chitosan Nanoparticle-Incorporated Quaternized Poly(Vinyl Alcohol) Composite Membranes as Solid Electrolytes for Direct Methanol Alkaline Fuel Cells. Electrochim. Acta. 2016, 187, 616–628. [Google Scholar] [CrossRef]
- Cheng, J.; Xu, Q.; Wang, X.; Li, Z.; Wu, F.; Shao, J.; Xie, H. Ultrahigh-surface-area nitrogen-doped hierarchically porous carbon materials derived from chitosan and betaine hydrochloride sustainable precursors for high-performance supercapacitors. Sustain. Energy Fuels 2019, 3, 1215–1224. [Google Scholar] [CrossRef]
- Wang, X.; Lin, Q.; Pan, H.; Jia, S.; Wu, H.; Shi, Y.; Wang, Z. Oxidation modification of chitosan-based mesoporous carbon by soft template method and the adsorption and release properties of hydroxycamptothecin. Sci. Rep. 2020, 10, 15772. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhao, X.; Huang, P.; Wang, M.; Huang, Y.; Zhou, Y.; Lin, Y.; Qu, M.; Yu, Z. Enhanced electrochemical performance of SrF2-modified Li4Ti5O12 composite anode materials for lithium-ion batteries. J. Alloys Compd. 2017, 693, 61–69. [Google Scholar] [CrossRef]
- Atuchin, V.V.; Kesler, V.G.; Zaitsev, A.I.; Molokeev, M.S.; Aleksandrovsky, A.S.; Kuzubov, A.A.; Ignatova, N.Y. Electronic structure of α-SrB4O7: Experiment and theory. J. Phys. Condens. Matter. 2013, 25, 085503. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Sun, Z.; Zhang, L.; Xie, H. Photodegradation of Gas Phase Benzene by SnO2 Nanoparticles by Direct Hole Oxidation Mechanism. Catalysts 2020, 10, 117. [Google Scholar] [CrossRef] [Green Version]
- Debataraja, A.; Zulhendri, D.W.; Yuliarto, B.; Nugraha, H.; Sunendar, B. Investigation of Nanostructured SnO2 Synthesized with Polyol Technique for CO Gas Sensor Applications. Procedia Eng. 2017, 170, 60–64. [Google Scholar] [CrossRef]
- Rahman, M.M.; Hussain, M.M.; Asiri, A.M. A novel approach towards hydrazine sensor development using SrO·CNT nanocomposites. RSC Adv. 2016, 6, 65338–65348. [Google Scholar] [CrossRef]
- Tabah, B.; Nagvenkar, A.P.; Perkas, N.; Gedanken, A. Solar-Heated Sustainable Biodiesel Production from Waste Cooking Oil Using a Sonochemically Deposited SrO Catalyst on Microporous Activated Carbon. Energy Fuels. 2017, 31, 6228–6239. [Google Scholar] [CrossRef]
- Priyadharsini, C.I.; Sumathi, M.; Prakasam, A.; Anbarasan, P.M.; Sathiyapriya, R.; Aroulmoji, V. Effect of Mg Doping on Structural and Optical Properties of SnO2 Nanoparticles by Chemical Co-Precipitation Method. Int. J. Adv. Sci. Eng. 2017, 3, 428–434. [Google Scholar]
- Elci, A.; Demirtas, O.; Ozturk, I.M.; Bek, A.; Esenturk, E.N. Synthesis of tin oxide-coated gold nanostars and evaluation of their surface-enhanced Raman scattering activities. J. Mater. Sci. 2018, 53, 16345–16356. [Google Scholar] [CrossRef]
- Rahman, M.M.; Alam, M.M.; Asiri, A.M.; Uddin, J. Assessment of Melamine in Different Water Samples with ZnO-doped Co3O4 Nanoparticles on a Glassy Carbon Electrode by Differential Pulse Voltammetry. Chem. Asian J. 2021, 16, 1820–1831. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Alam, M.M.; Alfaifi, S.Y.M.; Asiri, A.M.; Ali, M.M. Sensitive Detection of Thiourea Hazardous Toxin with Sandwich-Type Nafion/CuO/ZnO Nanospikes/Glassy Carbon Composite Electrodes. Polymers 2021, 13, 3998. [Google Scholar] [CrossRef] [PubMed]
- Elgrishi, N.; Rountree, K.J.; McCarthy, B.D.; Rountree, E.S.; Eisenhart, T.T.; Dempsey, J.L. A Practical Beginner’s Guide to Cyclic Voltammetry. J. Chem. Educ. 2018, 95, 197–206. [Google Scholar] [CrossRef]
- Wang, X.; Zeng, H.; Zhao, L.; Lin, J.M. A selective optical chemical sensor for 2,6-dinitrophenol based on fluorescence quenching of a novel functional polymer. Talanta 2006, 70, 160–168. [Google Scholar] [CrossRef]
- Xiao, W.; Xiao, D.; Yuan, H. A Functionalized Mesoporous Silica Sensor for the Determination of p-Nitrophenol or 2,4-Dinitrophenol Based on Fluorescence Quenching. Sens. Lett. 2007, 5, 445–449. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, W.; Wang, L.; Zhuang, Q.; Ni, Y. Electrochemical determination of 2,4,6-trinitrophenol using a hybrid film composed of a copper-based metal organic framework and electroreduced graphene oxide. Microchim. Acta. 2018, 185, 315. [Google Scholar] [CrossRef]
- Alam, M.M.; Asiri, A.M.; Rahman, M.M. Electrochemical Detection of 2-Nitrophenol Using a Glassy Carbon Electrode Modified with BaO Nanorods. Chem. Asian J. 2021, 16, 1475–1485. [Google Scholar] [CrossRef]
- Cordero-Rando, M.M.; Barea-Zamora, M.; Barbera-Salvador, J.M.; Rodrõguez, I.N.; Munoz-Leyva, J.A.; Cisneros, J.L.H.H. Electrochemical Study of 4-Nitrophenol at a Modi®ed Carbon Paste Electrode. Mikrochim. Acta. 1999, 132, 7–11. [Google Scholar] [CrossRef]
- Ahmad, K.; Mohammad, A.; Mathur, P.; Mobin, S.M. Preparation of SrTiO3 perovskite decorated rGO and electrochemical detection of nitroaromatics. Electrochim. Acta. 2016, 215, 435–446. [Google Scholar] [CrossRef]
- Hutton, E.A.; Ogorevc, B.; Smyth, M.R. Cathodic Electrochemical Detection of Nitrophenols at a Bismuth Film Electrode for Use in Flow Analysis. Electroanalysis 2004, 16, 19. [Google Scholar] [CrossRef]
- Rahman, M.M.; Alam, M.M.; Asiri, A.M.; Chowdhury, M.A.; Uddin, J. Electrocatalysis of 2,6-dinitrophenol based on PbO-ZnO microstructures. Catalysts 2022, 12, 727. [Google Scholar] [CrossRef]
- Wahid, A.; Asiri, A.M.; Rahman, M.M. One-step facile synthesis of Nd2O3/ZnO nanorods for an efficient selective 2,4-dinitrophenol sensor probe. Appl. Surf. Sci. 2019, 487, 1253–1261. [Google Scholar] [CrossRef]
Electrode Materials | LOQ | LDR | Sensitivity | Ref. |
---|---|---|---|---|
PVC (FPVC) | 1.00 μM | 2.5 µM∼7.5 mM | --- | [46] |
Mesoporous silica | 3.52 μM | 3.62~72.4 mM | --- | [47] |
Cu–BTC/GCE | 0.1 μM | 0.2~10 μM | 15.98 A μM−1 cm−2 | [48] |
BaO NR/GCE | 0.50 μM | 1.5~9.0 μM | 17.6 μA μM−1 cm−2 | [49] |
CPE | 0.04 mM | 0.2~10 mM | --- | [50] |
Ag–Chitosan/SrSnO3 NC/GCE | 0.18 µM | 1.5~13.5 µM | 54.03 μA μM−1 cm−2 | This study |
Real Samples | Added 2,6-DNP Conc. (µM) | Measured 2,6-DNP Conc. a by Ag-Decorated Chitosan/SrSnO3 NCs (µM) | Average Recovery b (%) | RSD c (%) (n = 3) | ||
---|---|---|---|---|---|---|
R1 | R2 | R3 | ||||
Underground water | 6.00 | 5.96 | 5.90 | 5.92 | 98.78 | 0.52 |
Sea water | 6.00 | 5.92 | 5.88 | 5.94 | 98.56 | 0.52 |
Tap water | 6.00 | 5.86 | 6.06 | 5.96 | 99.03 | 1.68 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faisal, M.; Alam, M.M.; Ahmed, J.; Asiri, A.M.; Alsaiari, M.; Alruwais, R.S.; Madkhali, O.; Rahman, M.M.; Harraz, F.A. Efficient Detection of 2,6-Dinitrophenol with Silver Nanoparticle-Decorated Chitosan/SrSnO3 Nanocomposites by Differential Pulse Voltammetry. Biosensors 2022, 12, 976. https://doi.org/10.3390/bios12110976
Faisal M, Alam MM, Ahmed J, Asiri AM, Alsaiari M, Alruwais RS, Madkhali O, Rahman MM, Harraz FA. Efficient Detection of 2,6-Dinitrophenol with Silver Nanoparticle-Decorated Chitosan/SrSnO3 Nanocomposites by Differential Pulse Voltammetry. Biosensors. 2022; 12(11):976. https://doi.org/10.3390/bios12110976
Chicago/Turabian StyleFaisal, M., M. M. Alam, Jahir Ahmed, Abdullah M. Asiri, Mabkhoot Alsaiari, Raja Saad Alruwais, O. Madkhali, Mohammed M. Rahman, and Farid A. Harraz. 2022. "Efficient Detection of 2,6-Dinitrophenol with Silver Nanoparticle-Decorated Chitosan/SrSnO3 Nanocomposites by Differential Pulse Voltammetry" Biosensors 12, no. 11: 976. https://doi.org/10.3390/bios12110976
APA StyleFaisal, M., Alam, M. M., Ahmed, J., Asiri, A. M., Alsaiari, M., Alruwais, R. S., Madkhali, O., Rahman, M. M., & Harraz, F. A. (2022). Efficient Detection of 2,6-Dinitrophenol with Silver Nanoparticle-Decorated Chitosan/SrSnO3 Nanocomposites by Differential Pulse Voltammetry. Biosensors, 12(11), 976. https://doi.org/10.3390/bios12110976