Current Methods for Extraction and Concentration of Foodborne Bacteria with Glycan-Coated Magnetic Nanoparticles: A Review
Abstract
:1. Introduction
2. Magnetic Nanoparticles
2.1. Synthesis and Characteristics
2.2. Surface Modification
2.3. Applications of MNPs in Food Pathogen Extraction
3. Carbohydrate Functionalized (Glycan-Coated) Magnetic Separation
3.1. Mechanism of Glycan-Coated MNP Bacterial Adhesion
3.2. Glycan-Coated MNP Synthesis
3.3. Applications of Glycan-Coated MNPs
4. Immunomagnetic Separation Versus Glycan-Coated MNP Separation
4.1. Binding Mechanism
4.2. Specificity
4.3. Experimental Time and Cost
4.4. Storage
4.5. Current Research
5. Discussion
6. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scharff, R.L. Economic burden from health losses due to foodborne illness in the United States. J. Food Prot. 2012, 75, 123–131. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Estimates of the Global Burden of Foodborne Diseases: Foodborne Disease Burden Epidemiology Reference Group 2007–2015. 2015. Available online: https://apps.who.int/iris/handle/10665/199350 (accessed on 12 November 2021).
- Lund, B.M. Microbiological Food Safety for Vulnerable People. Int. J. Environ. Res. Public Health 2015, 12, 10117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lund, B.M.; O’Brien, S.J. The occurrence and prevention of foodborne disease in vulnerable people. Foodborne Pathog. Dis. 2011, 8, 961–973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussain, M.A.; Dawson, C.O. Economic impact of food safety outbreaks on food businesses. Foods 2013, 2, 585–589. [Google Scholar] [CrossRef] [Green Version]
- Bintsis, T. Foodborne pathogens. AIMS Microbiol. 2017, 3, 529–563. [Google Scholar] [CrossRef]
- Bennett, S.D.; Sodha, S.V.; Ayers, T.L.; Lynch, M.F.; Gould, L.H.; Tauxe, R.V. Produce-associated foodborne disease outbreaks, USA, 1998–2013. Epidemiol. Infect. 2018, 146, 1397–1406. [Google Scholar] [CrossRef] [Green Version]
- United States Department of Health and Human Services and United States Department of Agriculture. Dietary Guidelines for Americans 2015–2020. 2015. Available online: http://health.gov/dietaryguidelines/2015/guidelines/ (accessed on 3 November 2021).
- Stevens, K.A.; Jaykus, L.A. Bacterial separation and concentration from complex sample matrices: A review. Crit. Rev. Microbiol. 2004, 30, 7–24. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. Bacteriological Analytical Manual (BAM). 2021. Available online: https://www.fda.gov/food/laboratory-methods-food/bacteriological-analytical-manual-bam (accessed on 4 October 2021).
- Kim, J.-H.; Oh, S.-W. Pretreatment methods for nucleic acid-based rapid detection of pathogens in food: A review. Food Control 2021, 121, 107575. [Google Scholar] [CrossRef]
- Huang, F.; Zhang, Y.; Lin, J.; Liu, Y. Biosensors coupled with signal amplification technology for the detection of pathogenic bacteria: A review. Biosensors 2021, 11, 190. [Google Scholar] [CrossRef]
- Ali, A.A.; Altemimi, A.B.; Alhelfi, N.; Ibrahim, S.A. Application of Biosensors for Detection of Pathogenic Food Bacteria: A Review. Biosensors 2020, 10, 58. [Google Scholar] [CrossRef]
- Lim, M.-C.; Park, J.Y.; Park, K.; Ok, G.; Jang, H.-J.; Choi, S.-W. An automated system for separation and concentration of food-borne pathogens using immunomagnetic separation. Food Control 2016, 73, 1541–1547. [Google Scholar] [CrossRef]
- Thomas, M.C.; Shields, M.J.; Hahn, K.R.; Janzen, T.W.; Goji, N.; Amoako, K.K. Evaluation of DNA extraction methods for Bacillus anthracis spores isolated from spiked food samples. J. Appl. Microbiol. 2013, 115, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Seinige, D.; von Köckritz-Blickwede, M.; Krischek, C.; Klein, G.; Kehrenberg, C. Influencing factors and applicability of the viability Ema-qpcr for a detection and quantification of Campylobacter cells from water samples. PLoS ONE 2014, 9, e113812. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Lee, H.; Lee, S.; Kim, S.; Lee, J.; Ha, J.; Oh, H.; Yoon, Y. Comparison of Upgraded Methods for Detecting Pathogenic Escherichia coli in Foods Using Centrifugation or Filtration. Korean J. Food Sci. Anim. Resour. 2017, 37, 799–803. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Xu, Y.; Liu, H.; Peng, J.; Irudayaraj, J.; Cui, F. An integrated microsystem with dielectrophoresis enrichment and impedance detection for detection of Escherichia coli. Biomed. Microdevices 2017, 19, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.L.; Huang, D.Y.; Chen, Y.C. Using gadolinium ions as affinity probes to selectively enrich and magnetically isolate bacteria from complex samples. Anal. Chim. Acta 2020, 1113, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-T.; Reddy, P.M.; Ma, Y.-R.; Ho, Y.-P. Mass spectrometric identification of pathogens in foods using a zirconium hydroxide immobilization approach. Int. J. Mass Spectrom. 2012, 312, 45–52. [Google Scholar] [CrossRef]
- Triplett, O.A.; Xuan, J.; Foley, S.; Nayak, R.; Tolleson, W.H. Immunomagnetic Capture of Big Six Shiga Toxin–Producing Escherichia coli Strains in Apple Juice with Detection by Multiplex Real-Time PCR Eliminates Interference from the Food Matrix. J. Food Prot. 2019, 82, 1512–1523. [Google Scholar] [CrossRef]
- Diouani, M.; Sayhi, M.; Djafar, Z.; Ben Jomaa, S.; Belgacem, K.; Gharbi, H.; Ghita, M.; Popescu, L.-M.; Piticescu, R.; Laouini, D. Magnetic separation and centri-chronoamperometric detection of foodborne bacteria using antibiotic-coated metallic nanoparticles. Biosensors 2021, 11, 205. [Google Scholar] [CrossRef]
- Briceno, R.K.; Sergent, S.R.; Benites, S.M.; Alocilja, E.C. Nanoparticle-Based Biosensing Assay for Universally Accessible Low-Cost TB Detection with Comparable Sensitivity as Culture. Diagnostics 2019, 9, 222. [Google Scholar] [CrossRef] [Green Version]
- Matta, L.L.; Alocilja, E.C. Carbohydrate Ligands on Magnetic Nanoparticles for Centrifuge-Free Extraction of Pathogenic Contaminants in Pasteurized Milk. J. Food Prot. 2018, 81, 1941–1949. [Google Scholar] [CrossRef] [PubMed]
- Stinson, L.F.; Ma, J.; Rea, A.; Dymock, M.; Geddes, D.T. Centrifugation does not remove bacteria from the fat fraction of human milk. Sci. Rep. 2021, 11, 1–8. [Google Scholar] [CrossRef]
- Lindqvist, R. Preparation of PCR samples from food by a rapid and simple centrifugation technique evaluated by detection of Escherichia coli 0157:H7. Int. J. Food Microbiol. 1997, 37, 73–82. [Google Scholar] [CrossRef]
- Zhou, C.; Wang, J.; Li, R.; Ye, K. High-throughput sequencing analysis of the bacterial community for assessing the differences in extraction methods of bacteria separation from chilled pork. LWT 2020, 134, 110213. [Google Scholar] [CrossRef]
- Wolffs, P.F.G.; Glencross, K.; Thibaudeau, R.; Griffiths, M.W. Direct quantitation and detection of salmonellae in biological samples without enrichment, using two-step filtration and real-time PCR. Appl. Environ. Microbiol. 2006, 72, 896–3900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barre, L.; Brasseur, E.; Doux, C.; Lombard, B.; Besse, N.G. Sensitive enumeration of Listeria monocytogenes and other Listeria species in various naturally contaminated matrices using a membrane filtration method. Food Microbiol. 2015, 48, 171–177. [Google Scholar] [CrossRef]
- Dwivedi, H.P.; Jaykus, L.-A. Detection of pathogens in foods: The current state-of-the-art and future directions. Crit. Rev. Microbiol. 2011, 37, 40–63. [Google Scholar] [CrossRef]
- Kennedy, J.F.; Barker, S.A.; Humphreys, J.D. Microbial cells living immobilised on metal hydroxides. Nature 1976, 261, 242–244. [Google Scholar] [CrossRef]
- Yang, L. A Review of Multifunctions of Dielectrophoresis in Biosensors and Biochips for Bacteria Detection. Anal. Lett. 2012, 45, 187–201. [Google Scholar] [CrossRef]
- Hanson, C.; Barney, J.T.; Bishop, M.M.; Vargis, E. Simultaneous isolation and label-free identification of bacteria using contactless dielectrophoresis and Raman spectroscopy. Electrophoresis 2019, 40, 1446–1456. [Google Scholar] [CrossRef]
- Choi, W.; Min, Y.W.; Lee, K.Y.; Jun, S.; Lee, H.G. Dielectrophoresis-based microwire biosensor for rapid detection of Escherichia coli K-12 in ground beef. LWT 2020, 132, 109230. [Google Scholar] [CrossRef]
- Bhusal, N.; Shrestha, S.; Pote, N.; Alocilja, E.C. Nanoparticle-based biosensing of tuberculosis, an affordable and practical alternative to current methods. Biosensors 2019, 9, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castelló, J.; Gallardo, M.; Busquets, M.A.; Estelrich, J. Chitosan (or alginate)-coated iron oxide nanoparticles: A comparative study. Physicochem. Eng. Asp. 2015, 468, 151–158. [Google Scholar] [CrossRef]
- Ways, T.M.M.; Lau, W.M.; Khutoryanskiy, V.V. Chitosan and its derivatives for application in mucoadhesive drug delivery systems. Polymers 2018, 10, 267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matta, L.L.; Harrison, J.; Deol, G.S.; Alocilja, E.C. Carbohydrate-Functionalized Nanobiosensor for Rapid Extraction of Pathogenic Bacteria Directly from Complex Liquids with Quick Detection Using Cyclic Voltammetry. IEEE Trans. Nanotechnol. 2018, 17, 1006–1013. [Google Scholar] [CrossRef]
- You, S.-M.; Jeong, K.-B.; Luo, K.; Park, J.-S.; Park, J.-W.; Kim, Y.-R. Paper-based colorimetric detection of pathogenic bacteria in food through magnetic separation and enzyme-mediated signal amplification on paper disc. Anal. Chim. Acta 2021, 1151, 338252. [Google Scholar] [CrossRef]
- Benoit, P.W.; Donahue, D.W. Methods for Rapid Separation and Concentration of Bacteria in Food that Bypass Time-Consuming Cultural Enrichment. J. Food Prot. 2003, 66, 1935–1948. Available online: http://meridian.allenpress.com/jfp/article-pdf/66/10/1935/1675695/0362-028x-66_10_1935.pdf (accessed on 15 June 2021). [CrossRef]
- Matta, L.L. Biosensing Total Bacterial Load in Liquid Matrices to Improve Food Supply Chain Safety Using Carbohydrate-Functionalized Magnetic Nanoparticles for Cell Capture and Gold Nanoparticles for Signaling. Ph.D. Dissertation, Biosystems Engineering, Michigan State University, East Lansing, MI, USA, 2018. Available online: https://www-proquest-com.proxy1.cl.msu.edu/pqdtglobal/docview/2160987664/fulltextPDF/FA5C0BF3C28B4FC4PQ/1?accountid=12598 (accessed on 13 October 2021).
- El-Boubbou, K.; Gruden, C.; Huang, X. Magnetic Glyco-nanoparticles: A Unique Tool for Rapid Pathogen Detection, Decontamination, and Strain Differentiation. J. Am. Chem. Soc. 2007, 129, 52. [Google Scholar] [CrossRef]
- Wang, Z.; Cai, R.; Gao, Z.; Yuan, Y.; Yue, T. Immunomagnetic separation: An effective pretreatment technology for isolation and enrichment in food microorganisms detection. Compr. Rev. Food Sci. Food Saf. 2020, 19, 802–3824. [Google Scholar] [CrossRef]
- Kyeong, S.; Kim, J.; Chang, H.; Lee, S.H.; Son, B.S.; Lee, J.H.; Rho, W.-Y.; Pham, X.-H.; Jun, B.-H. Magnetic Nanoparticles. Adv. Exp. Med. Biol. 2021, 1309, 191–215. [Google Scholar] [CrossRef]
- Augustine, R.; Abraham, A.R.; Kalarikkal, N.; Thomas, S. Novel Approaches of Nanotechnology in Food; Academic Press: Cambridge, MA, USA, 2016; Volume 1, pp. 271–312. [Google Scholar] [CrossRef]
- Akbarzadeh, A.; Samiei, M.; Davaran, S. Magnetic nanoparticles: Preparation, physical properties, and applications in biomedicine. Nanoscale Res. Lett. 2012, 7, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lohcharoenkal, W.; Abbas, Z.; Rojanasakul, Y. Advances in nanotechnology-based biosensing of immunoregulatory cytokines. Biosensors 2021, 11, 364. [Google Scholar] [CrossRef] [PubMed]
- Tartaj, P.; Morales, M.P.; González-Carreño, T.; Veintemillas-Verdaguer, S.; Serna, C.J. Advances in magnetic nanoparticles for biotechnology applications. J. Magn. Magn. Mater. 2005, 290–291, 28–34. [Google Scholar] [CrossRef]
- Ramanaviciene, A.; Popov, A.; Baliunaite, E.; Brasiunas, B.; Kausaite-Minkstimiene, A.; Tamer, U.; Kirdaite, G.; Bernotiene, E.; Mobasheri, A. Magneto-Immunoassay for the Detection and Quantification of Human Growth Hormone. Biosensors 2022, 12, 65. [Google Scholar] [CrossRef]
- Khosroshahi, M.E.; Ghazanfari, L. Synthesis and functionalization of SiO2 coated Fe3O4 nanoparticles with amine groups based on self-assembly. Mater. Sci. Eng. C 2012, 32, 1043–1049. [Google Scholar] [CrossRef]
- Cardoso, V.F.; Francesko, A.; Ribeiro, C.; Bañobre-López, M.; Martins, P.; Lanceros-Mendez, S. Advances in Magnetic Nanoparticles for Biomedical Applications. Adv. Healthc. Mater. 2018, 7, 1700845. [Google Scholar] [CrossRef]
- Bilal, M.; Zhao, Y.; Rasheed, T.; Iqbal, H.M.N. Magnetic nanoparticles as versatile carriers for enzymes immobilization: A review. Int. J. Biol. Macromol. 2018, 120, 2530–2544. [Google Scholar] [CrossRef]
- Matta, L.L.; Alocilja, E.C. Emerging nano-biosensing with suspended MNP microbial extraction and EANP labeling. Biosens. Bioelectron. 2018, 117, 781–793. [Google Scholar] [CrossRef]
- Lu, A.-H.; Salabas, E.L.; Schüth, F. Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application. Angew. Chemie Int. Ed. 2007, 46, 1222–1244. [Google Scholar] [CrossRef]
- Pryazhnikov, D.V.; Kubrakova, I.V. Surface-Modified Magnetic Nanoscale Materials: Preparation and Study of Their Structure, Composition, and Properties. J. Anal. Chem. 2021, 76, 685–706. [Google Scholar] [CrossRef]
- Chen, C.-T.; Yu, J.-W.; Ho, Y.-P. Identification of bacteria in juice/lettuce using magnetic nanoparticles and selected reaction monitoring mass spectrometry. J. Food Drug Anal. 2018, 27, 575–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, N.; Choi, S.-W.; Chang, H.-J.; Chun, H.S. Rapid Detection of Escherichia coli O157:H7 in Fresh Lettuce Based on Localized Surface Plasmon Resonance Combined with Immunomagnetic Separation. J. Food Prot. 2018, 81, 713–718. [Google Scholar] [CrossRef] [PubMed]
- Vinayaka, A.C.; Ngo, T.A.; Kant, K.; Engelsmann, P.; Dave, V.P.; Shahbazi, M.-A.; Wolff, A.; Bang, D.D. Rapid detection of Salmonella enterica in food samples by a novel approach with combination of sample concentration and direct PCR. Biosens. Bioelectron. 2019, 129, 224–230. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Park, B.-J.; Kim, S.-H.; Seo, K.-H.; Jin, Y.-G.; Oh, D.-H. Detection of Listeria monocytogenes using Dynabeads ® anti-Listeria combined with real-time PCR in soybean sprouts. LWT 2018, 99, 533–539. [Google Scholar] [CrossRef]
- Yosief, H.O.; Weiss, A.A.; Iyer, S.S. Capture of Uropathogenic E. coli by Using Synthetic Glycan Ligands Specific for the Pap-Pilus. ChemBioChem 2013, 14, 251–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghazzal, M.N.; Goffin, J.; Gaigneaux, E.M.; Nizet, Y. Magnetic nanoparticle with high efficiency for bacteria and yeast extraction from contaminated liquid media. J. Taiwan Inst. Chem. Eng. 2017, 71, 62–68. [Google Scholar] [CrossRef]
- Chen, W.-J.; Tsai, P.-J.; Chen, Y.-C. Functional Nanoparticle-Based Proteomic Strategies for Characterization of Pathogenic Bacteria. Anal. Chem. 2008, 80, 9612–9621. [Google Scholar] [CrossRef]
- Kveton, F.; Blsakova, A.; Kasak, P.; Tkac, J. Glycan Nanobiosensors. Nanomaterials 2020, 10, 1406. [Google Scholar] [CrossRef]
- Pera, N.P.; Pieters, R.J. Towards bacterial adhesion-based therapeutics and detection methods. Medchemcomm 2014, 5, 1027–1035. [Google Scholar] [CrossRef]
- Park, S.; Kim, G.-H.; Park, S.-H.; Pai, J.; Rathwell, D.; Park, J.-Y.; Kang, Y.-S.; Shin, I. Probing Cell-Surface Carbohydrate Binding Proteins with Dual-Modal Glycan-Conjugated Nanoparticles. J. Am. Chem. Soc. 2015, 137, 5961–5968. [Google Scholar] [CrossRef]
- Campanero-Rhodes, M.A.; Palma, A.S.; Menéndez, M.; Solís, D. Microarray Strategies for Exploring Bacterial Surface Glycans and Their Interactions with Glycan-Binding Proteins. Front. Microbiol. 2020, 10, 2909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uribe, E.; Steele, T.J.; Richards, R.C.; Ewart, K.V. Ligand and pathogen specificity of the Atlantic salmon serum C-type lectin. Biochim. Biophys. Acta-Gen. Subj. 2013, 1830, 2129–2138. [Google Scholar] [CrossRef] [PubMed]
- Broeker, N.K.; Andres, D.; Kang, Y.; Gohlke, U.; Schmidt, A.; Kunstmann, S.; Santer, M.; Barbirz, S. Complex carbohydrate recognition by proteins: Fundamental insights from bacteriophage cell adhesion systems. Perspect. Sci. 2017, 11, 45–52. [Google Scholar] [CrossRef] [Green Version]
- Harden, V.P.; Harris, J.O. The isoelectric point of bacterial cells. J. Bacteriol. 1953, 65, 198–202. [Google Scholar] [CrossRef] [Green Version]
- Bayer, M.E.; Sloyer, J.L., Jr. The electrophoretic mobility of Gram-negative and Gram-positive bacteria: An electrokinetic analysis. Microbiology 1990, 136, 867–874. [Google Scholar] [CrossRef] [Green Version]
- Silhavy, T.J.; Kahne, D.; Walker, S. The Bacterial Cell Envelope. Cold Spring Harb. Perspect. Biol. 2010, 2, a000414. [Google Scholar] [CrossRef]
- Cohen, M. Notable aspects of glycan-protein interactions. Biomolecules 2015, 5, 2056–2072. [Google Scholar] [CrossRef] [Green Version]
- Floyd, K.A.; Eberly, A.R.; Hadjifrangiskou, M. Adhesion of Bacteria to Surfaces and Biofilm Formation on MEDICAL Devices; Elsevier Ltd.: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Sarti, F.; Bernkop-Schnürch, A. Chitosan and thiolated chitosan. Adv. Polym. Sci. 2011, 243, 93–110. [Google Scholar] [CrossRef]
- Rodrigues, N.F.M.; Neto, S.Y.; Luz, R.d.S.; Damos, F.S.; Yamanaka, H. Ultrasensitive Determination of Malathion Using Acetylcholinesterase Immobilized on Chitosan-Functionalized Magnetic Iron Nanoparticles. Biosensors 2018, 8, 16. [Google Scholar] [CrossRef] [Green Version]
- Fratila, R.M.; Moros, M.; de la Fuente, J.M. Recent advances in biosensing using magnetic glyconanoparticles. Anal. Bioanal. Chem. 2016, 408, 1783–1803. [Google Scholar] [CrossRef] [Green Version]
- Sommer, R.; Hauck, D.; Varrot, A.; Wagner, S.; Audfray, A.; Prestel, A.; Möller, H.M.; Imberty, A.; Titz, A. Cinnamide Derivatives of d-Mannose as Inhibitors of the Bacterial Virulence Factor LecB from Pseudomonas aeruginosa. ChemistryOpen 2015, 4, 756–767. [Google Scholar] [CrossRef]
- Wiseman, M.E.; Frank, C.W. Antibody Adsorption and Orientation on Hydrophobic Surfaces. Langmuir 2012, 28, 1765–1774. [Google Scholar] [CrossRef] [PubMed]
- Sinha, N.; Mohan, S.; Lipschultz, C.A.; Smith-Gill, S.J. Differences in Electrostatic Properties at Antibody–Antigen Binding Sites: Implications for Specificity and Cross-Reactivity. Biophys. J. 2002, 83, 2946–2968. [Google Scholar] [CrossRef] [Green Version]
- Bhunia, A.K. Biosensors and Bio-Based Methods for the Separation and Detection of Foodborne Pathogens. Adv. Food Nutr. Res. 2008, 54, 1–44. [Google Scholar] [CrossRef] [PubMed]
- Hyeon, J.-Y.; Deng, X. Rapid detection of Salmonella in raw chicken breast using real-time PCR combined with immunomagnetic separation and whole genome amplification. Food Microbiol. 2016, 63, 111–116. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Xue, L.; Guo, R.; Zheng, L.; Wang, S.; Yao, L.; Huo, X.; Liu, N.; Liao, M.; Li, Y.; et al. Combining impedance biosensor with immunomagnetic separation for rapid screening of Salmonella in poultry supply chains. Poult. Sci. 2020, 99, 1606–1614. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, S.; Cai, Y.; Yang, Y.; Hu, F.; Liu, X.; He, X. Rapid detection of Listeria monocytogenes using fluorescence immunochromatographic assay combined with immunomagnetic separation technique. Int. J. Food Sci. Technol. 2017, 52, 1559–1566. [Google Scholar] [CrossRef]
- Chai, Z.; Bi, H. Capture and identification of bacteria from fish muscle based on immunomagnetic beads and MALDI-TOF MS. Food Chem. X 2022, 13, 100225. [Google Scholar] [CrossRef]
- Bhandari, D.; Chen, F.C.; Bridgman, R.C. Detection of Salmonella Typhimurium in Romaine Lettuce Using a Surface Plasmon Resonance Biosensor. Biosensors 2019, 9, 94. [Google Scholar] [CrossRef] [Green Version]
- Tokunaga, Y.; Wakabayashi, Y.; Yonogi, S.; Saito, M.; Yamaguchi, N. Microfluidic rapid quantification of Salmonella enterica serovar Typhimurium collected from chicken meat using immunomagnetic separation after formaldehyde treatment. Int. J. Food Sci. Technol. 2021, 56, 5402–5408. [Google Scholar] [CrossRef]
- Quintela, I.A.; de los Reyes, B.G.; Lin, C.-S.; Wu, V.C.H. Simultaneous Colorimetric Detection of a Variety of Salmonella spp. in Food and Environmental Samples by Optical Biosensing Using Oligonucleotide-Gold Nanoparticles. Front. Microbiol. 2019, 10, 1138. [Google Scholar] [CrossRef] [PubMed]
- Park, J.Y.; Park, K.; Ok, G.; Chang, H.-J.; Park, T.J.; Choi, S.-W.; Lim, M.-C. Detection of Escherichia coli O157:H7 Using Automated Immunomagnetic Separation and Enzyme-Based Colorimetric Assay. Sensors 2020, 20, 1395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Method | Description | Advantages | Disadvantages | References |
---|---|---|---|---|
Centrifugation | Bacteria concentrated by centrifugation and food solution can be removed | Can concentrate from large sample volume, 5–30 min assay | Not selective, loss of bacteria adhered to food particles, captures dead cells | [19,20,25,26,27] |
Filtration | Samples passed through filters with various pore sizes, allowing bacteria to pass while eliminating food particles | 1–10 min assay, remove inhibitors in food matrix | Filter clogging is common, non-target bacteria often concentrated | [17,28,29] |
Metal hydroxides | Immobilization of titanium or zirconium hydroxides to bacteria through chelation followed by centrifugation | Cost-effective, maintains cell viability | Centrifuge required, needs enrichment step, limited research in foods | [19,20,30,31] |
Dielectrophoresis | Nonuniform electric field used to manipulate bacterial cells | Option for specificity, maintains cell viability | Potentially low capture in foods | [18,32,33,34] |
Glycan-coated MNP separation | Glycans on MNPs electrostatically bind, extract, and concentrate bacteria | Cost-effective, option for specificity | May bind to food particles, limited research in foods | [24,38,39,40,41,42] |
Immunomagnetic separation | MNPs coated with specific antibodies bind, extract, and concentrate target bacteria | High specificity and capture efficiency | Costly synthesis and storage, not standardized | [14,21,22,43] |
Coating | Bacteria | Matrix | Capture | Detection Method | Source |
---|---|---|---|---|---|
Glycan (not specified), cysteine-glycan | S. enteritidis, E. coli O157:H7, B. cereus | Milk (vitamin D, reduced fat, fat-free) | 73–90% * | N/A | [24] |
Cysteine-glycan | S. enteritidis, E. coli O157:H7, L. monocytogenes | Homogenized egg, vitamin D milk, apple cider | N/A | Cyclic voltammetry | [38] |
Lysine-SCGs | E. coli O157:H7 | Sausage | >90% ** | Colorimetric biosensor | [39] |
Biotinylated oligosaccharides | E. coli (UPEC) | PBS | 17–34% | N/A | [60] |
Mannose Galactose | E. coli strains (3) | PBS | 10–65% 15–75% | BacTiter-Glo assay | [42] |
Immunomagnetic Separation | Glycan-Coated MNPs | |
---|---|---|
Binding mechanism | Antibodies on MNP surface bind to antigens on cell surface | Glycans on MNP surface bind to proteins on bacteria surface |
Specificity | Very specific | Typically nonspecific, but specific glycans can be designed |
Experimental Cost/Time | Rapid, relatively high cost | Rapid, low cost (25% of cost for IMS) |
Storage | Antibodies require refrigeration | Room temperature |
Current research | Well-researched and regularly used with PCR and biosensors | Limited studies in food matrices |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dester, E.; Alocilja, E. Current Methods for Extraction and Concentration of Foodborne Bacteria with Glycan-Coated Magnetic Nanoparticles: A Review. Biosensors 2022, 12, 112. https://doi.org/10.3390/bios12020112
Dester E, Alocilja E. Current Methods for Extraction and Concentration of Foodborne Bacteria with Glycan-Coated Magnetic Nanoparticles: A Review. Biosensors. 2022; 12(2):112. https://doi.org/10.3390/bios12020112
Chicago/Turabian StyleDester, Emma, and Evangelyn Alocilja. 2022. "Current Methods for Extraction and Concentration of Foodborne Bacteria with Glycan-Coated Magnetic Nanoparticles: A Review" Biosensors 12, no. 2: 112. https://doi.org/10.3390/bios12020112
APA StyleDester, E., & Alocilja, E. (2022). Current Methods for Extraction and Concentration of Foodborne Bacteria with Glycan-Coated Magnetic Nanoparticles: A Review. Biosensors, 12(2), 112. https://doi.org/10.3390/bios12020112