Decoding Vagus-Nerve Activity with Carbon Nanotube Sensors in Freely Moving Rodents
Abstract
:1. Introduction
2. Materials and Methods
2.1. CNTY Electrode Manufacture
2.2. Surgery
2.3. Recording
2.4. Signal Processing
2.5. Histology
2.6. Statistical Methods
3. Results
3.1. CNTY Electrodes Record Stable Spikes from Freely Moving Animals
3.2. Spike Clusters’ Activity Is Correlated with Eating
3.3. Spike Cluster Interspike Intervals Show Changes in Bursting Related to Eating
3.4. Spike-Cluster-Firing Rates Can Be Used to Classify Eating Compared to Other Behavior
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liao, D.; Cai, J.; Brancati, F.L.; Folsom, A.; Barnes, R.W.; Tyroler, H.A.; Heiss, G. Association of vagal tone with serum insulin, glucose, and diabetes mellitus—The ARIC Study. Diabetes Res. Clin. Pract. 1995, 30, 211–221. [Google Scholar] [CrossRef]
- Ronkainen, E.; Korpelainen, J.T.; Heikkinen, E.; Myllyla, V.V.; Huikuri, H.V.; Isojarvi, J.I.T. Cardiac autonomic control in patients with refractory epilepsy before and during vagus nerve stimulation treatment: A one-year follow-up study. Epilepsia 2006, 47, 556–562. [Google Scholar] [CrossRef] [PubMed]
- Sivakumar, S.; Namath, A.G.; Tuxhorn, I.E.; Lewis, S.J.; Galán, R.F. Decreased heart rate and enhanced sinus arrhythmia during interictal sleep demonstrate autonomic imbalance in generalized epilepsy. J. Neurophysiol. 2016, 115, 1988–1999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grassi, G. Assessment of sympathetic cardiovascular drive in human hypertension: Achievements and perspectives. Hypertension 2009, 54, 690–697. [Google Scholar] [CrossRef] [Green Version]
- Porges, W. Cardiac Vagal Tone: A Physiological Index of Stress. Neurosci. Biobehav. Rev. 1995, 19, 225–233. [Google Scholar] [CrossRef]
- Gidron, Y.; Deschepper, R.; De Couck, M.; Thayer, J.F.; Velkeniers, B. The Vagus Nerve Can Predict and Possibly Modulate Non-Communicable Chronic Diseases: Introducing a Neuroimmunological Paradigm to Public Health. J. Clin. Med. 2018, 7, 371. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.J.; Shan, W.; Wu, J.P.; Wang, Q. Research progress of vagus nerve stimulation in the treatment of epilepsy. CNS Neurosci. Ther. 2019, 5, 1222–1228. [Google Scholar] [CrossRef]
- Cracchiolo, M.; Ottaviani, M.M.; Panarese, A.; Strauss, I.; Vallone, F.; Mazzoni, A.; Micera, S. Bioelectronic medicine for the autonomic nervous system: Clinical applications and perspectives. J. Neural Eng. 2021, 18, 041002. [Google Scholar] [CrossRef]
- Mei, N.; Condamin, M.; Boyer, A. The composition of the vagus nerve of the cat. Cell Tissue Res. 1980, 209, 423–431. [Google Scholar] [CrossRef]
- Prechtl, J.C.; Powley, T.L. The fiber composition of the abdominal vagus of the rat. Anat. Embryol. 1990, 181, 101–115. [Google Scholar] [CrossRef]
- Kral, J.G.; Görtz, L.; Hermansson, G.; Wallin, G.S. Gastroplasty for obesity: Long-term weight loss improved by vagotomy. World J. Surg. 1993, 17, 75–78. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.; Sarfeh, J.; Howard, L. Truncal vagotomy in hypothalamic obesity. Lancet 1983, 321, 1330–1331. [Google Scholar] [CrossRef]
- Prologo, J.D.; Lin, E.; Bergquist, S.H.; Knight, J.; Matta, H.; Brummer, M.; Singh, A.; Patel, Y.; Corn, D. Percutaneous CT-Guided Cryovagotomy in Patients with Class I or Class II Obesity: A Pilot Trial. Obesity 2019, 27, 1255–1265. [Google Scholar] [CrossRef] [PubMed]
- Loper, H.; Leinen, M.; Bassoff, L.; Sample, J.; Romero-Ortega, M.; Gustafson, K.J.; Taylor, D.M.; Schiefer, M.A. Both high fat and high carbohydrate diets impair vagus nerve signaling of satiety. Sci. Rep. 2021, 11, 10394. [Google Scholar] [CrossRef] [PubMed]
- Kral, J.G.; Wencesley, A.E.; Ae, P.; Wolfe, B.M. Vagal Nerve Function in Obesity: Therapeutic Implications. World J. Surg. 2009, 33, 1995–2006. [Google Scholar] [CrossRef]
- Tan, D.W.; Schiefer, M.A.; Keith, M.W.; Anderson, J.R.; Tyler, J.; Tyler, D.J. A neural interface provides long-term stable natural touch perception. Sci. Transl. Med. 2014, 6, 257ra138. [Google Scholar] [CrossRef] [Green Version]
- Dweiri, Y.M.; Eggers, T.E.; Gonzalez-Reyes, L.E.; Drain, J.; McCallum, G.A.; Durand, D.M. Stable Detection of Movement Intent from Peripheral Nerves: Chronic Study in Dogs. Proc. IEEE 2016, 105, 50–65. [Google Scholar] [CrossRef]
- Eggers, T.E.; Dweiri, Y.M.; McCallum, G.A.; Durand, D.M. Recovering Motor Activation with Chronic Peripheral Nerve Computer Interface. Sci. Rep. 2018, 8, 14149. [Google Scholar] [CrossRef] [Green Version]
- Sabetian, P.; Sadat-Nejad, Y.; Yoo, P.B. Classification of directionally specific vagus nerve activity using an upper airway obstruction model in anesthetized rodents. Sci. Rep. 2021, 11, 10682. [Google Scholar] [CrossRef]
- Koh, R.G.L.; Nachman, A.I.; Zariffa, J. Classification of naturally evoked compound action potentials in peripheral nerve spatiotemporal recordings. Sci. Rep. 2019, 9, 11145. [Google Scholar] [CrossRef] [Green Version]
- Lago, N.; Yoshida, K.; Koch, K.P.; Navarro, X. Assessment of Biocompatibility of chronically implanted polyimide and platinum intrafascicular electrodes. IEEE Trans. Biomed. Eng. 2007, 54, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Badia, J.; Boretius, T.; Pascual-Font, A.; Udina, E.; Stieglitz, T.; Navarro, X. Biocompatibility of chronically implanted transverse intrafascicular multichannel electrode (TIME) in the rat sciatic nerve. IEEE Trans. Biomed. Eng. 2011, 58, 2324–2332. [Google Scholar] [CrossRef] [PubMed]
- Rijnbeek, E.H.; Eleveld, N.; Olthuis, W. Update on peripheral nerve electrodes for closed-loop neuroprosthetics. Front. Neurosci. 2018, 12, 350. [Google Scholar] [CrossRef] [PubMed]
- Jiman, A.A.; Ratze, D.C.; Welle, E.J.; Patel, P.R.; Richie, J.M.; Bottorff, E.C.; Seymour, J.P.; Chestek, C.A.; Bruns, T.M. Multi-channel intraneural vagus nerve recordings with a novel high-density carbon fiber microelectrode array. Sci. Rep. 2020, 10, 15501. [Google Scholar] [CrossRef]
- Patel, P.R.; Popov, P.; Caldwell, C.M.; Welle, E.J.; Egert, D.; Pettibone, J.R.; Roossien, D.H.; Becker, J.B.; Berke, J.D.; Chestek, C.A.; et al. High density carbon fiber arrays for chronic electrophysiology, fast scan cyclic voltammetry, and correlative anatomy. J. Neural Eng. 2020, 17, 056029. [Google Scholar] [CrossRef]
- McCallum, G.A.; Sui, X.; Qiu, C.; Marmerstein, J.; Zheng, Y.; Eggers, T.E.; Hu, C.; Dai, L.; Durand, D.M. Chronic interfacing with the autonomic nervous system using carbon nanotube (CNT) yarn electrodes. Sci. Rep. 2017, 7, 11644. [Google Scholar] [CrossRef]
- Marmerstein, J.T.; McCallum, G.A.; Durand, D.M. Direct measurement of vagal tone in rats does not show correlation to HRV. Sci. Rep. 2021, 11, 1210. [Google Scholar] [CrossRef]
- Ozaki, N.; Sengupta, J.N.; Gebhart, G.F. Mechanosensitive Properties of Gastric Vagal Afferent Fibers in the Rat. J. Neurophysiol. 1999, 82, 2210–2220. [Google Scholar] [CrossRef]
- Schwartz, G.J.; McHugh, P.R.; Moran, T.H. Integration of vagal afferent responses to gastric loads and cholecystokinin in rats. Am. J. Physiol. Integr. Comp. Physiol. 1991, 261, R64–R69. [Google Scholar] [CrossRef]
- Date, Y.; Murakami, N.; Toshinai, K.; Matsukura, S.; Niijima, A.; Matsuo, H.; Kangawa, K.; Nakazato, M. The role of the gastric afferent vagal nerve in ghrelin-induced feeding and growth hormone secretion in rats. Gastroenterology 2002, 123, 1120–1128. [Google Scholar] [CrossRef]
- Strader, A.D.; Woods, S.C. Gastrointestinal hormones and food intake. Gastroenterology 2005, 128, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Davison, J.S.; Grundy, D. Modulation of single vagal efferent fibre discharge by gastrointestinal afferents in the rat. J. Physiol. 1978, 284, 69–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deisseroth, K.; Clarity Resource Center. Available online: http://clarityresourcecenter.org/ (accessed on 21 January 2017).
- Chung, K.; Deisseroth, K. CLARITY for mapping the nervous system. Nat. Methods 2013, 10, 508–513. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y. Design and Fabrication of a Highly Flexible Neural Interface. Ph.D. Dissertation, Case Western Reserve University, Cleveland, OH, USA, 2017. [Google Scholar]
- Groves, D.A.; Brown, V.J. Vagal nerve stimulation: A review of its applications and potential mechanisms that mediate its clinical effects. Neurosci. Biobehav. Rev. 2005, 29, 493–500. [Google Scholar] [CrossRef]
- Pardo, J.V.; Sheikh, S.A.; Kuskowski, M.A.; Surerus-Johnson, C.; Hagen, M.C.; Lee, J.T.; Rittberg, B.R.; Adson, D.E. Weight loss during chronic, cervical vagus nerve stimulation in depressed patients with obesity: An observation. Int. J. Obes. 2007, 31, 1756–1759. [Google Scholar] [CrossRef] [Green Version]
- Johnson, R.L.; Wilson, C.G. A review of vagus nerve stimulation as a therapeutic intervention. J. Inflamm. Res. 2018, 11, 203–213. [Google Scholar] [CrossRef] [Green Version]
- Murakami, N.; Hayashida, T.; Kuroiwa, T.; Nakahara, K.; Ida, T.; Mondal, M.S.; Nakazato, M.; Kojima, M.; Kangawa, K. Role for central ghrelin in food intake and secretion profile of stomach ghrelin in rats. J. Endocrinol. 2002, 174, 283–288. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, G.J.; Moran, T.H.; White, W.O.; Ladenheim, E.E. Relationships between gastric motility and gastric vagal afferent responses to CCK and GRP in rats differ. Am. J. Physiol. Content 1997, 272, R1726–R1733. [Google Scholar] [CrossRef]
- Schwartz, G.J.; McHugh, P.R.; Moran, T.H. Gastric loads and cholecystokinin synergistically stimulate rat gastric vagal afferents. Am. J. Physiol. Integr. Comp. Physiol. 1993, 265, R872–R876. [Google Scholar] [CrossRef]
- Marques, C.; Meireles, M.; Norberto, S.; Leite, J.; Freitas, J.; Pestana, D.; Faria, A.; Calhau, C. High-fat diet-induced obesity Rat model: A comparison between Wistar and Sprague-Dawley Rat. Adipocyte 2015, 5, 11–21. [Google Scholar] [CrossRef] [Green Version]
- Johannessen, H.; Révész, D.F.; Kodama, Y.; Cassie, N.; Skibicka, K.P.; Barrett, P.; Dickson, S.; Holst, J.J.; Rehfeld, J.F.; van der Plasse, G.; et al. Vagal blocking for obesity control: A possible mechanism-of-action. Obes. Surg. 2017, 27, 177–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarr, M.G.; The EMPOWER Study Group; Billington, C.J.; Brancatisano, R.; Brancatisano, A.; Toouli, J.; Kow, L.; Nguyen, N.T.; Blackstone, R.; Maher, J.W.; et al. The EMPOWER Study: Randomized, Prospective, Double-Blind, Multicenter Trial of Vagal Blockade to Induce Weight Loss in Morbid Obesity. Obes. Surg. 2012, 22, 1771–1782. [Google Scholar] [CrossRef] [PubMed]
- Horbach, T.; Thalheimer, A.; Seyfried, F.; Eschenbacher, F.; Schuhmann, P.; Meyer, G. Abiliti® Closed-Loop Gastric Electrical Stimulation System for Treatment of Obesity: Clinical Results with a 27-Month Follow-Up. Obes. Surg. 2015, 25, 1779–1787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horbach, T.; Meyer, G.; Morales-Conde, S.; Alarcón, I.; Favretti, F.; Anselmino, M.; Rovera, G.M.; Dargent, J.; Stroh, C.; Susewind, M.; et al. Closed-loop gastric electrical stimulation versus laparoscopic adjustable gastric band for the treatment of obesity: A randomized 12-month multicenter study. Int. J. Obes. 2016, 40, 1891–1898. [Google Scholar] [CrossRef]
Cluster Group | Rat 1 | Rat 2 | Before Eating | During Eating | After Eating | |||
---|---|---|---|---|---|---|---|---|
Group I | 19 | 0 | ↑ | p << 0.0001 | ↑ | p << 0.0001 | ↑ | p << 0.0001 |
Group II | 13 | 13 | ↑ | p << 0.0001 | ─ | p = 0.024 | ↑ | p << 0.0001 |
Group III | 24 | 0 | ↑ | p << 0.0001 | ↓ | p ≤ 0.001 | ↑ | p << 0.0001 |
Group IV | 0 | 59 | ↑ | p << 0.0001 | ↑ | p = << 0.0001 | ─ | p = 0.95 |
Group V | 0 | 1 | ↑ | p << 0.0001 | ─ | p = 0.0093 | ↓ | p = << 0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marmerstein, J.T.; McCallum, G.A.; Durand, D.M. Decoding Vagus-Nerve Activity with Carbon Nanotube Sensors in Freely Moving Rodents. Biosensors 2022, 12, 114. https://doi.org/10.3390/bios12020114
Marmerstein JT, McCallum GA, Durand DM. Decoding Vagus-Nerve Activity with Carbon Nanotube Sensors in Freely Moving Rodents. Biosensors. 2022; 12(2):114. https://doi.org/10.3390/bios12020114
Chicago/Turabian StyleMarmerstein, Joseph T., Grant A. McCallum, and Dominique M. Durand. 2022. "Decoding Vagus-Nerve Activity with Carbon Nanotube Sensors in Freely Moving Rodents" Biosensors 12, no. 2: 114. https://doi.org/10.3390/bios12020114
APA StyleMarmerstein, J. T., McCallum, G. A., & Durand, D. M. (2022). Decoding Vagus-Nerve Activity with Carbon Nanotube Sensors in Freely Moving Rodents. Biosensors, 12(2), 114. https://doi.org/10.3390/bios12020114