Machine Learning Based Lens-Free Shadow Imaging Technique for Field-Portable Cytometry
Abstract
:1. Introduction
2. Methods
2.1. LSIT Imaging Setup
2.2. Preparation of Various Cell Lines
2.3. Dataset Creation
2.4. Denoising Modality
2.4.1. ELM
2.4.2. CNN
3. Results and Discussion
3.1. Performance of Denoising Algorithms
3.2. Performance of Classification Algorithm
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mudanyali, O.; Erlinger, A.; Seo, S.; Su, T.W.; Tseng, D.; Ozcan, A. Lensless On-Chip Imaging of Cells Provides a New Tool for High-Throughput Cell-Biology and Medical Diagnostics. J. Vis. Exp. 2009, e1650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, M.; Seo, D.; Oh, C.H.; Nam, M.H.; Kim, Y.J.; Seo, S. Low-Cost Telemedicine Device Performing Cell and Particle Size Measurement Based on Lens-Free Shadow Imaging Technology. Biosens. Bioelectron. 2015, 67, 715–723. [Google Scholar] [CrossRef] [PubMed]
- Roy, M.; Jin, G.; Seo, D.; Nam, M.H.; Seo, S. A Simple and Low-Cost Device Performing Blood Cell Counting Based on Lens-Free Shadow Imaging Technique. Sens. Actuators B Chem. 2014, 201, 321–328. [Google Scholar] [CrossRef]
- Roy, M.; Seo, D.; Oh, S.; Chae, Y.; Nam, M.H.; Seo, S. Automated Micro-Object Detection for Mobile Diagnostics Using Lens-Free Imaging Technology. Diagnostics 2016, 6, 17. [Google Scholar] [CrossRef]
- Roy, M.; Jin, G.; Pan, J.H.; Seo, D.; Hwang, Y.; Oh, S.; Lee, M.; Kim, Y.J.; Seo, S. Staining-Free Cell Viability Measurement Technique Using Lens-Free Shadow Imaging Platform. Sens. Actuators B Chem. 2016, 224, 577–583. [Google Scholar] [CrossRef]
- Liu, Y.; Gadepalli, K.; Norouzi, M.; Dahl, G.E.; Kohlberger, T.; Boyko, A.; Venugopalan, S.; Timofeev, A.; Nelson, P.Q.; Corrado, G.S.; et al. Detecting Cancer Metastases on Gigapixel Pathology Images. Available online: http://arxiv.org/abs/1703.02442 (accessed on 23 February 2022).
- Yu, K.H.; Beam, A.L.; Kohane, I.S. Artificial Intelligence in Healthcare. Nat. Biomed. Eng. 2018, 2, 719–731. [Google Scholar] [CrossRef]
- Liu, Y.; Kohlberger, T.; Norouzi, M.; Dahl, G.E.; Smith, J.L.; Mohtashamian, A.; Olson, N.; Peng, L.H.; Hipp, J.D.; Stumpe, M.C. Artificial Intelligence–Based Breast Cancer Nodal Metastasis Detection Insights into the Black Box for Pathologists. Arch. Pathol. Lab. Med. 2019, 143, 859–868. [Google Scholar] [CrossRef] [Green Version]
- Ardila, D.; Kiraly, A.P.; Bharadwaj, S.; Choi, B.; Reicher, J.J.; Peng, L.; Tse, D.; Etemadi, M.; Ye, W.; Corrado, G.; et al. End-to-End Lung Cancer Screening with Three-Dimensional Deep Learning on Low-Dose Chest Computed Tomography. Nat. Med. 2019, 25, 954–961. [Google Scholar] [CrossRef]
- Im, H.; Pathania, D.; McFarland, P.J.; Sohani, A.R.; Degani, I.; Allen, M.; Coble, B.; Kilcoyne, A.; Hong, S.; Rohrer, L.; et al. Design and Clinical Validation of a Point-of-Care Device for the Diagnosis of Lymphoma via Contrast-Enhanced Microholography and Machine Learning. Nat. Biomed. Eng. 2018, 2, 666–674. [Google Scholar] [CrossRef]
- Wang, P.; Xiao, X.; Glissen Brown, J.R.; Berzin, T.M.; Tu, M.; Xiong, F.; Hu, X.; Liu, P.; Song, Y.; Zhang, D.; et al. Development and Validation of a Deep-Learning Algorithm for the Detection of Polyps during Colonoscopy. Nat. Biomed. Eng. 2018, 2, 741–748. [Google Scholar] [CrossRef]
- Ballard, Z.S.; Joung, H.A.; Goncharov, A.; Liang, J.; Nugroho, K.; di Carlo, D.; Garner, O.B.; Ozcan, A. Deep Learning-Enabled Point-of-Care Sensing Using Multiplexed Paper-Based Sensors. Npj Digit. Med. 2020, 3, 66. [Google Scholar] [CrossRef] [PubMed]
- Rivenson, Y.; Göröcs, Z.; Günaydin, H.; Zhang, Y.; Wang, H.; Ozcan, A. Deep Learning Microscopy. Optica 2017, 4, 1437–1443. [Google Scholar] [CrossRef] [Green Version]
- Ozcan, A. Deep Learning-Enabled Holography (Conference Presentation). In Proceedings of the Label-Free Biomedical Imaging and Sensing (LBIS) 2020, San Francisco, CA, USA, 10 March 2020; Shaked, N.T., Hayden, O., Eds.; SPIE: Bellingham, DC, USA, 2020; p. 60. [Google Scholar]
- Wang, H.; Koydemir, H.C.; Qiu, Y.; Bai, B.; Zhang, Y.; Jin, Y.; Tok, S.; Yilmaz, E.C.; Gumustekin, E.; Luo, Y.; et al. Deep Learning Enables High-Throughput Early Detection and Classification of Bacterial Colonies Using Time-Lapse Coherent Imaging (Conference Presentation). In Proceedings of the Optics and Biophotonics in Low-Resource Settings VI, San Francisco, CA, USA, 9 March 2020; Levitz, D., Ozcan, A., Eds.; SPIE: Bellingham, DC, USA, 2020; p. 13. [Google Scholar]
- Liu, T.; de Haan, K.; Rivenson, Y.; Wei, Z.; Zeng, X.; Zhang, Y.; Ozcan, A. Enhancing Resolution in Coherent Microscopy Using Deep Learning (Conference Presentation). In Proceedings of the Quantitative Phase Imaging VI, San Jose, CA, USA, 11 March 2020; p. 3. [Google Scholar]
- Liu, T.; de Haan, K.; Bai, B.; Rivenson, Y.; Luo, Y.; Wang, H.; Karalli, D.; Fu, H.; Zhang, Y.; Fitzgerald, J.; et al. Deep Learning-Based Holographic Polarization Microscopy. ACS Photonics 2020, 7, 3023–3034. [Google Scholar] [CrossRef]
- Kunapuli, S.S.; Bh, P.C.; Singh, U. Enhanced Medical Image De-Noising Using Auto Encoders and MLP. In Proceedings of the International Conference on Intelligent Technologies and Applications, Bahawalpur, Pakistan, 6–8 November 2019; pp. 3–15. [Google Scholar]
- Indolia, S.; Goswami, A.K.; Mishra, S.P.; Asopa, P. Conceptual Understanding of Convolutional Neural Network—A Deep Learning Approach. Procedia Comput. Sci. 2018, 132, 679–688. [Google Scholar] [CrossRef]
- Yamashita, R.; Nishio, M.; Do, R.K.G.; Togashi, K. Convolutional Neural Networks: An Overview and Application in Radiology. Insights Imaging 2018, 9, 611–629. [Google Scholar] [CrossRef] [Green Version]
- Seo, S.; Su, T.W.; Tseng, D.K.; Erlinger, A.; Ozcan, A. Lensfree Holographic Imaging for On-Chip Cytometry and Diagnostics. Lab Chip 2009, 9, 777–787. [Google Scholar] [CrossRef]
- Mudanyali, O.; Tseng, D.; Oh, C.; Isikman, S.O.; Sencan, I.; Bishara, W.; Oztoprak, C.; Seo, S.; Khademhosseini, B.; Ozcan, A. Compact, Light-Weight and Cost-Effective Microscope Based on Lensless Incoherent Holography for Telemedicine Applications. Lab Chip 2010, 10, 1417–1428. [Google Scholar] [CrossRef] [Green Version]
- Jin, G.; Yoo, I.H.; Pack, S.P.; Yang, J.W.; Ha, U.H.; Paek, S.H.; Seo, S. Lens-Free Shadow Image Based High-Throughput Continuous Cell Monitoring Technique. Biosens. Bioelectron. 2012, 38, 126–131. [Google Scholar] [CrossRef]
- Vincent, P.; Larochelle, H.; Lajoie, I.; Bengio, Y.; Manzagol, P.-A. Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion. J. Mach. Learn. Res. 2010, 11, 3371–3408. [Google Scholar]
- Cambria, E.; Huang, G.-B.; Kasun, L.L.C.; Zhou, H.; Vong, C.M.; Lin, J.; Yin, J.; Cai, Z.; Liu, Q.; Li, K.; et al. Extreme Learning Machines. IEEE Intell. Syst. 2013, 28, 30–59. [Google Scholar] [CrossRef]
- Bucurica, M.; Dogaru, R.; Dogaru, I. A Comparison of Extreme Learning Machine and Support Vector Machine Classifiers. In Proceedings of the 2015 IEEE 11th International Conference on Intelligent Computer Communication and Processing (ICCP), Cluj-Napoca, Romania, 3–5 October 2015; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA; pp. 471–474. [Google Scholar]
- Huang, G.; Huang, G.-B.; Song, S.; You, K. Trends in Extreme Learning Machines: A Review. Neural Netw. 2015, 61, 32–48. [Google Scholar] [CrossRef]
- Liang, N.Y.; Huang, G.-B.; Saratchandran, P.; Sundararajan, N. A Fast and Accurate Online Sequential Learning Algorithm for Feedforward Networks. IEEE Trans. Neural Netw. 2006, 17, 1411–1423. [Google Scholar] [CrossRef] [PubMed]
- van Schaik, A.; Tapson, J. Online and Adaptive Pseudoinverse Solutions for ELM Weights. Neurocomputing 2015, 149, 233–238. [Google Scholar] [CrossRef] [Green Version]
- Roy, M.; Bose, S.K.; Kar, B.; Gopalakrishnan, P.K.; Basu, A. A Stacked Autoencoder Neural Network Based Automated Feature Extraction Method for Anomaly Detection in On-Line Condition Monitoring. In Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence (SSCI), Bangalore, India, 18–21 November 2018; pp. 1501–1507. [Google Scholar]
- Ahmed, F.E. Artificial Neural Networks for Diagnosis and Survival Prediction in Colon Cancer. Mol. Cancer 2005, 4, 29. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.D.; Pan, C.; Chen, X.; Wang, F. Abnormal Breast Identification by Nine-Layer Convolutional Neural Network with Parametric Rectified Linear Unit and Rank-Based Stochastic Pooling. J. Comput. Sci. 2018, 27, 57–68. [Google Scholar] [CrossRef]
- Munir, K.; Elahi, H.; Ayub, A.; Frezza, F.; Rizzi, A. Cancer Diagnosis Using Deep Learning: A Bibliographic Review. Cancers 2019, 11, 1235. [Google Scholar] [CrossRef] [Green Version]
- Shanthi, P.B.; Faruqi, F.; Hareesha, K.S.; Kudva, R. Deep Convolution Neural Network for Malignancy Detection and Classification in Microscopic Uterine Cervix Cell Images. Asian Pac. J. Cancer Prev. 2019, 20, 3447–3456. [Google Scholar] [CrossRef]
- Shen, L.; Margolies, L.R.; Rothstein, J.H.; Fluder, E.; McBride, R.; Sieh, W. Deep Learning to Improve Breast Cancer Detection on Screening Mammography. Sci. Rep. 2019, 9, 12495. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Chiang, H.T.; Hsieh, Y.Y.; Fu, S.W.; Hung, K.H.; Tsao, Y.; Chien, S.Y. Noise Reduction in ECG Signals Using Fully Convolutional Denoising Autoencoders. IEEE Access 2019, 7, 60806–60813. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, J.; Misic, J.; Misic, V.B.; Lv, S.; Chang, X. Assessing Optimizer Impact on DNN Model Sensitivity to Adversarial Examples. IEEE Access 2019, 7, 152766–152776. [Google Scholar] [CrossRef]
- Zhang, L.; Gao, H.J.; Zhang, J.; Badami, B. Optimization of the Convolutional Neural Networks for Automatic Detection of Skin Cancer. Open Med. 2020, 15, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Rączkowski, Ł.; Możejko, M.; Zambonelli, J.; Szczurek, E. ARA: Accurate, Reliable and Active Histopathological Image Classification Framework with Bayesian Deep Learning. Sci. Rep. 2019, 9, 14347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variance | Gaussian | Average | Median | Bilateral | BM3D | CNN | ELM |
---|---|---|---|---|---|---|---|
100 | 4.525580 | 4.237872 | 3.199475 | −0.02635 | 5.684597 | 6.06905 | 5.79161 |
200 | 4.613044 | 4.198564 | 3.068866 | −0.00640 | 5.713797 | 7.38544 | 6.31896 |
300 | 4.476552 | 4.259405 | 3.078091 | −0.10943 | 5.119646 | 7.26487 | 6.57256 |
400 | 4.674922 | 4.703331 | 3.405470 | −0.05448 | 3.792226 | 7.71265 | 6.36135 |
500 | 4.128021 | 4.201562 | 3.198964 | −0.14542 | 2.206876 | 7.72364 | 6.09254 |
600 | 4.023621 | 4.183404 | 2.908946 | −0.16924 | 1.683290 | 7.97877 | 6.19359 |
Sample Type | TP | TN | FP | FN | Accuracy | Precision | Recall | Specificity | Sensitivity | F1 | PPV | NPV |
---|---|---|---|---|---|---|---|---|---|---|---|---|
10 μm bead | 322 | 1614 | 2 | 6 | 0.9959 | 0.9938 | 0.9817 | 0.9988 | 0.9817 | 0.9877 | 0.9938 | 0.9963 |
20 μm bead | 324 | 1611 | 0 | 9 | 0.9954 | 1.0000 | 0.9730 | 1.0000 | 0.9730 | 0.9863 | 1.0000 | 0.9944 |
MCF7 | 184 | 1571 | 140 | 49 | 0.9028 | 0.5679 | 0.7897 | 0.9182 | 0.7897 | 0.6607 | 0.5679 | 0.9698 |
HepG2 | 276 | 1494 | 48 | 126 | 0.9105 | 0.8519 | 0.6866 | 0.9689 | 0.6866 | 0.7603 | 0.8519 | 0.9222 |
RBC | 324 | 1620 | 0 | 0 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
WBC | 324 | 1620 | 0 | 0 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaghashiya, R.; Shin, S.; Chauhan, V.; Kapadiya, K.; Sanghavi, S.; Seo, S.; Roy, M. Machine Learning Based Lens-Free Shadow Imaging Technique for Field-Portable Cytometry. Biosensors 2022, 12, 144. https://doi.org/10.3390/bios12030144
Vaghashiya R, Shin S, Chauhan V, Kapadiya K, Sanghavi S, Seo S, Roy M. Machine Learning Based Lens-Free Shadow Imaging Technique for Field-Portable Cytometry. Biosensors. 2022; 12(3):144. https://doi.org/10.3390/bios12030144
Chicago/Turabian StyleVaghashiya, Rajkumar, Sanghoon Shin, Varun Chauhan, Kaushal Kapadiya, Smit Sanghavi, Sungkyu Seo, and Mohendra Roy. 2022. "Machine Learning Based Lens-Free Shadow Imaging Technique for Field-Portable Cytometry" Biosensors 12, no. 3: 144. https://doi.org/10.3390/bios12030144
APA StyleVaghashiya, R., Shin, S., Chauhan, V., Kapadiya, K., Sanghavi, S., Seo, S., & Roy, M. (2022). Machine Learning Based Lens-Free Shadow Imaging Technique for Field-Portable Cytometry. Biosensors, 12(3), 144. https://doi.org/10.3390/bios12030144