Self-Assembly of Nanodiamonds and Plasmonic Nanoparticles for Nanoscopy
Abstract
:1. Introduction
2. Functionalization and Hybridization Assay
3. Optical Properties of Nanodiamonds and GNPs
4. Emission Coupling between GNP–Nanodiamond Pairs
5. Potential of the Coupled System for Nanoscopy
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hsiao, W.W.-W.; Hui, Y.Y.; Tsai, P.-C.; Chang, H.-C. Fluorescent Nanodiamond: A Versatile Tool for Long-Term Cell Tracking, Super-Resolution Imaging, and Nanoscale Temperature Sensing. Acc. Chem. Res. 2016, 49, 400–407. [Google Scholar] [CrossRef]
- Hemelaar, S.R.; de Boer, P.; Chipaux, M.; Zuidema, W.; Hamoh, T.; Martinez, F.P.; Nagl, A.; Hoogenboom, J.P.; Giepmans, B.; Schirhagl, R. Nanodiamonds as multi-purpose labels for microscopy. Sci. Rep. 2017, 7, 720. [Google Scholar] [CrossRef]
- Torelli, M.D.; Nunn, N.A.; Shenderova, O.A. A Perspective on Fluorescent Nanodiamond Bioimaging. Small 2019, 15, e1902151. [Google Scholar] [CrossRef]
- Mochalin, V.N.; Shenderova, O.; Ho, D.; Gogotsi, Y. The properties and applications of nanodiamonds. Nat. Nanotechnol. 2012, 7, 11–23. [Google Scholar] [CrossRef]
- Aharonovich, I.; Castelletto, S.; Simpson, D.; Stacey, A.; McCallum, J.; Greentree, A.; Prawer, S. Two-Level Ultrabright Single Photon Emission from Diamond Nanocrystals. Nano Lett. 2009, 9, 3191–3195. [Google Scholar] [CrossRef]
- Kovaříček, P.; Cebecauer, M.; Neburkova, J.; Bartoň, J.; Fridrichová, M.; Drogowska, K.A.; Cigler, P.; Lehn, J.-M.; Kalbac, M. Proton-Gradient-Driven Oriented Motion of Nanodiamonds Grafted to Graphene by Dynamic Covalent Bonds. ACS Nano 2018, 12, 7141–7147. [Google Scholar] [CrossRef]
- Kucsko, G.; Maurer, P.C.; Yao, N.; Kubo, M.; Noh, H.J.; Lo, P.K.; Park, H.; Lukin, M.D. Nanometre-scale thermometry in a living cell. Nature 2013, 500, 54–58. [Google Scholar] [CrossRef]
- Broadway, D.A.; Dontschuk, N.; Tsai, A.; Lillie, S.E.; Lew, C.T.-K.; McCallum, J.; Johnson, B.; Doherty, M.; Stacey, A.; Hollenberg, L.; et al. Spatial mapping of band bending in semiconductor devices using in situ quantum sensors. Nat. Electron. 2018, 1, 502–507. [Google Scholar] [CrossRef]
- Hall, L.T.; Hill, C.D.; Cole, J.H.; Städler, B.; Caruso, F.; Mulvaney, P.; Wrachtrup, J.; Hollenberg, L.C.L. Monitoring ion-channel function in real time through quantum decoherence. Proc. Natl. Acad. Sci. USA 2010, 107, 18777–18782. [Google Scholar] [CrossRef] [Green Version]
- Degena, C.L. Scanning magnetic field microscope with a diamond single-spin sensor. Appl. Phys. Lett. 2008, 92, 243111. [Google Scholar] [CrossRef] [Green Version]
- McGuinness, L.P.; Yan, Y.; Stacey, A.; Simpson, D.A.; Hall, L.T.; Maclaurin, D.; Prawer, S.; Mulvaney, P.; Wrachtrup, J.; Caruso, F.; et al. Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells. Nat. Nanotechnol. 2011, 6, 358–363. [Google Scholar] [CrossRef] [PubMed]
- Schirhagl, R.; Chang, K.; Loretz, M.; Degen, C.L. Nitrogen-Vacancy Centers in Diamond: Nanoscale Sensors for Physics and Biology. Annu. Rev. Phys. Chem. 2014, 65, 83–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohan, N.; Chen, C.-S.; Hsieh, H.-H.; Wu, Y.-C.; Chang, H.-C. In Vivo Imaging and Toxicity Assessments of Fluorescent Nanodiamonds in Caenorhabditis elegans. Nano Lett. 2010, 10, 3692–3699. [Google Scholar] [CrossRef] [PubMed]
- Simpson, D.A.; Morrisroe, E.; McCoey, J.M.; Lombard, A.H.; Mendis, D.C.; Treussart, F.; Hall, L.T.; Petrou, S.; Hollenberg, L.C.L. Non-Neurotoxic Nanodiamond Probes for Intraneuronal Temperature Mapping. ACS Nano 2017, 11, 12077–12086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schermelleh, L.; Ferrand, A.; Huser, T.; Eggeling, C.; Sauer, M.; Biehlmaier, O.; Drummen, G.P.C. Super-resolution microscopy demystified. Nat. Cell Biol. 2019, 21, 72–84. [Google Scholar] [CrossRef]
- Vicidomini, G.; Bianchini, P.; Diaspro, A. STED super-resolved microscopy. Nat. Methods 2018, 15, 173–182. [Google Scholar] [CrossRef]
- Nitrogen-Vacancy color center in diamond—Emerging nanoscale applications in bioimaging and biosensing. Curr. Opin. Chem. Biol. 2014, 20, 69–77. [CrossRef] [Green Version]
- Rajendran, P.; Kaufmann, S.; Vörös, J.; Zenobi-Wong, M.; Demkó, L. Femtomolar oligonucleotide detection by a one-step gold nanoparticle-based assay. Colloids Surf. B Biointerfaces 2015, 135, 193–200. [Google Scholar] [CrossRef]
- Hwu, S.; Blickenstorfer, Y.; Tiefenauer, R.F.; Gonnelli, C.; Schmidheini, L.; Lüchtefeld, I.; Hoogenberg, B.-J.; Gisiger, A.B.; Vörös, J. Dark-Field Microwells toward High-Throughput Direct miRNA Sensing with Gold Nanoparticles. ACS Sensors 2019, 4, 1950–1956. [Google Scholar] [CrossRef]
- Elghanian, R.; Storhoff, J.J.; Mucic, R.C.; Letsinger, R.L.; Mirkin, C.A. Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles. Science 1997, 277, 1078–1081. [Google Scholar] [CrossRef] [Green Version]
- Aramesh, M.; Shimoni, O.; Ostrikov, K.; Prawer, S.; Cervenka, J. Surface charge effects in protein adsorption on nanodia-monds. Nanoscale 2015, 7, 5726–5736. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-Q.; Chen, M.; Lam, R.; Xu, X.; Osawa, E.; Ho, D. Polymer-Functionalized Nanodiamond Platforms as Vehicles for Gene Delivery. ACS Nano 2009, 3, 2609–2616. [Google Scholar] [CrossRef] [PubMed]
- Krüger, A.; Liang, Y.; Jarre, G.; Stegk, J. Surface functionalisation of detonation diamond suitable for biological applications. J. Mater. Chem. 2006, 16, 2322–2328. [Google Scholar] [CrossRef]
- Knickerbocker, T.; Strother, T.; Schwartz, M.P.; Russell, J.N.; Butler, J.; Smith, L.M.; Hamers, R.J. DNA-Modified Diamond Surfaces. Langmuir 2003, 19, 1938–1942. [Google Scholar] [CrossRef]
- Strother, T.; Hamers, R.J.; Smith, L.M. Covalent attachment of oligodeoxyribonucleotides to amine-modified Si (001) surfaces. Nucleic Acids Res. 2000, 28, 3535–3541. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.K.; Pal, T. Interparticle Coupling Effect on the Surface Plasmon Resonance of Gold Nanoparticles: From Theory to Applications. Chem. Rev. 2007, 107, 4797–4862. [Google Scholar] [CrossRef] [PubMed]
- Aramesh, M.; Cervenka, J.; Roberts, A.; Djalalian-Assl, A.; Rajasekharan, R.; Fang, J.; Ostrikov, K.; Prawer, S. Coupling of a single-photon emitter in nanodiamond to surface plasmons of a nanochannel-enclosed silver nanowire. Opt. Express 2014, 22, 15530–15541. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Inam, F.A.; Ly, A.; Bradac, C.; Ramakrishna, S.A. Silver Columnar Thin-Film-Based Half-Wavelength Antennas for Bright Directional Emission from Nanodiamond Nitrogen-Vacancy Centers. Phys. Rev. Appl. 2019, 11, 034002. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Huck, A.; Andersen, U.L. Efficient Coupling of a Single Diamond Color Center to Propagating Plasmonic Gap Modes. Nano Lett. 2013, 13, 1221–1225. [Google Scholar] [CrossRef]
- Huck, A.; Kumar, S.; Shakoor, A.; Andersen, U.L. Controlled Coupling of a Single Nitrogen-Vacancy Center to a Silver Nanowire. Phys. Rev. Lett. 2011, 106, 096801. [Google Scholar] [CrossRef] [Green Version]
- Ureña, E.B.; Gonzalez-Ballestero, C.; Geiselmann, M.; Marty, R.; Radko, I.; Holmgaard, T.; Alaverdyan, Y.; Moreno, E.; Garcia-Vidal, F.; Bozhevolnyi, S.I.; et al. Coupling of individual quantum emitters to channel plasmons. Nat. Commun. 2015, 6, 7883. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Steinsultz, N.; Ouyang, M. Nanodiamond-based nanostructures for coupling nitrogen-vacancy centres to metal nanoparticles and semiconductor quantum dots. Nat. Commun. 2016, 7, 11820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gómez, D.E.; Roberts, A.; Davis, T.; Vernon, K.C. Surface plasmon hybridization and exciton coupling. Phys. Rev. B 2012, 86, 035411. [Google Scholar] [CrossRef] [Green Version]
- Tiefenauer, R.F.; Dalgaty, T.; Keplinger, T.; Tian, T.; Shih, C.-J.; Vörös, J.; Aramesh, M. Monolayer Graphene Coupled to a Flexible Plasmonic Nanograting for Ultrasensitive Strain Monitoring. Small 2018, 14, e1801187. [Google Scholar] [CrossRef]
- Djalalian-Assl, A.; Cadusch, J.J.; Balaur, E.; Aramesh, M. Tunable surface plasmon wave plates. Opt. Lett. 2016, 41, 3146–3148. [Google Scholar] [CrossRef]
- Link, S.; El-Sayed, M.A. Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles. J. Phys. Chem. B 1999, 103, 4212–4217. [Google Scholar] [CrossRef]
- Sannomiya, T.; Hafner, C. Multiple Multipole Program Modelling for Nano Plasmonic Sensors. J. Comput. Theor. Nanosci. 2010, 7, 1587–1595. [Google Scholar] [CrossRef]
- Zavelani-Rossi, M.; Celebrano, M.; Biagioni, P.; Polli, D.; Finazzi, M.; Duò, L.; Cerullo, G.; Labardi, M.; Allegrini, M.; Grand, J.; et al. Near-field second-harmonic generation in single gold nanoparticles. Appl. Phys. Lett. 2008, 92, 093119. [Google Scholar] [CrossRef]
- Roloff, L.; Klemm, P.; Gronwald, I.; Huber, R.; Lupton, J.M.; Bange, S. Light Emission from Gold Nanoparticles under Ultrafast Near-Infrared Excitation: Thermal Radiation, Inelastic Light Scattering, or Multiphoton Luminescence? Nano Lett. 2017, 17, 7914–7919. [Google Scholar] [CrossRef]
- Lippitz, M.; van Dijk, A.M.A.; Orrit, M. Third-Harmonic Generation from Single Gold Nanoparticles. Nano Lett. 2005, 5, 799–802. [Google Scholar] [CrossRef]
- Ai, Q.; Gui, L.; Paone, D.; Metzger, B.; Mayer, M.; Weber, K.; Fery, A.; Giessen, H. Ultranarrow Second-Harmonic Resonances in Hybrid Plasmon-Fiber Cavities. Nano Lett. 2018, 18, 5576–5582. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishna, G.; Varnavski, O.; Kim, J.; Lee, D.; Goodson, T. Quantum-Sized Gold Clusters as Efficient Two-Photon Absorbers. J. Am. Chem. Soc. 2008, 130, 5032–5033. [Google Scholar] [CrossRef] [PubMed]
- Olesiak-Banska, J.; Waszkielewicz, M.; Obstarczyk, P.; Samoc, M. Two-photon absorption and photoluminescence of colloidal gold nanoparticles and nanoclusters. Chem. Soc. Rev. 2019, 48, 4087–4117. [Google Scholar] [CrossRef] [PubMed]
- Rane, T.D.; Armani, A.M. Two-Photon Microscopy Analysis of Gold Nanoparticle Uptake in 3D Cell Spheroids. PLoS ONE 2016, 11, e0167548. [Google Scholar] [CrossRef]
- Anger, P.; Bharadwaj, P.; Novotny, L. Enhancement and Quenching of Single-Molecule Fluorescence. Phys. Rev. Lett. 2006, 96, 113002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schietinger, S.; Barth, M.; Aichele, T.; Benson, O. Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature. Nano Lett. 2009, 9, 1694–1698. [Google Scholar] [CrossRef]
- Chikkaraddy, R.; de Nijs, B.; Benz, F.; Barrow, S.J.; Scherman, O.A.; Rosta, E.; Demetriadou, A.; Fox, P.; Hess, O.; Baumberg, J.J. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 2016, 535, 127–130. [Google Scholar] [CrossRef] [Green Version]
- Efros, A.L.; Nesbitt, D.J. Origin and control of blinking in quantum dots. Nat. Nanotechnol. 2016, 11, 661–671. [Google Scholar] [CrossRef]
- Efros, A.L.; Rosen, M. Random Telegraph Signal in the Photoluminescence Intensity of a Single Quantum Dot. Phys. Rev. Lett. 1997, 78, 1110–1113. [Google Scholar] [CrossRef]
- Godiksen, R.H.; Wang, S.; Raziman, T.V.; Guimarães, M.H.D.; Rivas, J.G.; Curto, A.G. Correlated Exciton Fluctuations in a Two-Dimensional Semiconductor on a Metal. Nano Lett. 2020, 20, 4829–4836. [Google Scholar] [CrossRef]
- Li, S.; Chen, X.-D.; Zhao, B.-W.; Dong, Y.; Zou, C.-W.; Guo, G.-C.; Sun, F.-W. Optical far-field super-resolution microscopy using nitrogen vacancy center ensemble in bulk diamond. Appl. Phys. Lett. 2016, 109, 111107. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Tzeng, Y.-K.; Zhu, Z.; Huang, Z.; Chen, X.; Liu, Y.; Chang, H.-C.; Huang, L.; Li, W.-D.; Xi, P. Sub-diffraction imaging of nitrogen-vacancy centers in diamond by stimulated emission depletion and structured illumination. RSC Adv. 2014, 4, 11305–11310. [Google Scholar] [CrossRef]
- Prabhakar, N.; Peurla, M.; Koho, S.; Deguchi, T.; Näreoja, T.; Chang, H.-C.; Rosenholm, J.M.; Hänninen, P.E. STED-TEM Correlative Microscopy Leveraging Nanodiamonds as Intracellular Dual-Contrast Markers. Small 2017, 14, 1701807. [Google Scholar] [CrossRef] [PubMed]
- Rittweger, E.; Han, K.Y.; Irvine, S.E.; Eggeling, C.; Hell, S.W. STED microscopy reveals crystal colour centres with nano-metric resolution. Nat. Photonics 2009, 3, 144–147. [Google Scholar] [CrossRef]
- Han, K.Y.; Willig, K.; Rittweger, E.; Jelezko, F.; Eggeling, C.; Hell, S.W. Three-Dimensional Stimulated Emission Depletion Microscopy of Nitrogen-Vacancy Centers in Diamond Using Continuous-Wave Light. Nano Lett. 2009, 9, 3323–3329. [Google Scholar] [CrossRef] [Green Version]
- Arroyo-Camejo, S.; Adam, M.-P.; Besbes, M.; Hugonin, J.-P.; Jacques, V.; Greffet, J.-J.; Roch, J.-F.; Hell, S.W.; Treussart, F. Stimulated Emission Depletion Microscopy Resolves Individual Nitrogen Vacancy Centers in Diamond Nanocrystals. ACS Nano 2013, 7, 10912–10919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wildanger, D.; Patton, B.R.; Schill, H.; Marseglia, L.; Hadden, J.P.; Knauer, S.; Schönle, A.; Rarity, J.G.; O’Brien, J.L.; Hell, S.W.; et al. Solid Immersion Facilitates Fluorescence Microscopy with Nanometer Resolution and Sub-Ångström Emitter Localization. Adv. Mater. 2012, 24, OP309–OP313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tzeng, Y.-K.; Faklaris, O.; Chang, B.-M.; Kuo, Y.; Hsu, J.-H.; Chang, H.-C. Superresolution Imaging of Albumin-Conjugated Fluorescent Nanodiamonds in Cells by Stimulated Emission Depletion. Angew. Chem. Int. Ed. 2011, 50, 2262–2265. [Google Scholar] [CrossRef] [PubMed]
- Vogelsang, J.; Steinhauer, C.; Forthmann, C.; Stein, I.H.; Person-Skegro, B.; Cordes, T.; Tinnefeld, P. Make them Blink: Probes for Super-Resolution Microscopy. ChemPhysChem 2010, 11, 2475–2490. [Google Scholar] [CrossRef]
- Dempsey, G.T.; Vaughan, J.C.; Chen, K.H.; Bates, M.; Zhuang, X. Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging. Nat. Methods 2011, 8, 1027–1036. [Google Scholar] [CrossRef]
- Bradac, C.; Gaebel, T.; Naidoo, N.; Sellars, M.; Twamley, J.; Brown, L.; Barnard, A.; Plakhotnik, T.; Zvyagin, A.; Rabeau, J.R. Observation and control of blinking nitrogen-vacancy centres in discrete nanodiamonds. Nat. Nanotechnol. 2010, 5, 345–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfender, M.; Aslam, N.; Waldherr, G.; Neumann, P.; Wrachtrup, J. Single-spin stochastic optical reconstruction microscopy. Proc. Natl. Acad. Sci. USA 2014, 111, 14669–14674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbiero, M.; Castelletto, S.; Gan, X.; Gu, M. Spin-manipulated nanoscopy for single nitrogen-vacancy center localizations in nanodiamonds. Light Sci. Appl. 2017, 6, e17085. [Google Scholar] [CrossRef] [Green Version]
- Chen, E.H.; Gaathon, O.; Trusheim, M.E.; Englund, D. Wide-Field Multispectral Super-Resolution Imaging Using Spin-Dependent Fluorescence in Nanodiamonds. Nano Lett. 2013, 13, 2073–2077. [Google Scholar] [CrossRef] [PubMed]
- Borglin, J.; Guldbrand, S.; Evenbratt, H.; Kirejev, V.; Grönbeck, H.; Ericson, M.B. Insights on proximity effect and multiphoton induced luminescence from gold nanospheres in far field optical microscopy. Appl. Phys. Lett. 2015, 107, 234101. [Google Scholar] [CrossRef] [Green Version]
- Farrer, R.A.; Butterfield, F.L.; Chen, V.W.; Fourkas, J.T. Highly Efficient Multiphoton-Absorption-Induced Luminescence from Gold Nanoparticles. Nano Lett. 2005, 5, 1139–1142. [Google Scholar] [CrossRef]
- Marti, D.; Stoller, P.; Ruosch, M.; Ricka, J.; Frenz, M. Combined scattering confocal and multiphoton luminescence imaging of gold nanospheres. In Plasmonics in Biology and Medicine V; SPIE: Bellingham, WA, USA, 2008; Volume 6869, pp. 96–107. [Google Scholar] [CrossRef]
- Deschamps, J.; Mund, M.; Schroeder, D.; Ries, J. Open-Source Tools for Automated Localization Microscopy. Biophys. J. 2020, 118, 147a. [Google Scholar] [CrossRef]
- Aramesh, M.; Tran, P.A.; Ostrikov, K.; Prawer, S. Conformal nanocarbon coating of alumina nanocrystals for bio-sensing and bioimaging. Carbon 2017, 122, 422–427. [Google Scholar] [CrossRef]
- Rosi, N.L.; Giljohann, D.A.; Thaxton, C.S.; Lytton-Jean, A.K.R.; Han, M.S.; Mirkin, C.A. Oligonucleotide-Modified Gold Nanoparticles for Intracellular Gene Regulation. Science 2006, 312, 1027–1030. [Google Scholar] [CrossRef]
- Ohta, S.; Glancy, D.; Chan, W.C.W. DNA-controlled dynamic colloidal nanoparticle systems for mediating cellular interaction. Science 2016, 351, 841–845. [Google Scholar] [CrossRef]
- Nunn, N.; D’Amora, M.; Prabhakar, N.; Panich, A.M.; Froumin, N.; Torelli, M.D.; Vlasov, I.; Reineck, P.; Gibson, B.; Rosenholm, J.M.; et al. Fluorescent single-digit detonation nanodiamond for biomedical applications. Methods Appl. Fluoresc. 2018, 6, 035010. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.; Mohammadniaei, M.; Zhang, H.; Yoon, J.; Choi, H.K.; Guo, S.; Guo, P.; Choi, J.-W. Single Functionalized pRNA/Gold Nanoparticle for Ultrasensitive MicroRNA Detection Using Electrochemical Surface-Enhanced Raman Spectroscopy. Adv. Sci. 2019, 7, 1902477. [Google Scholar] [CrossRef] [PubMed]
- Storhoff, J.J.; Elghanian, R.; Mucic, R.C.; Mirkin, C.A.; Letsinger, R.L. One-Pot Colorimetric Differentiation of Polynucleotides with Single Base Imperfections Using Gold Nanoparticle Probes. J. Am. Chem. Soc. 1998, 120, 1959–1964. [Google Scholar] [CrossRef]
- Rueden, C.T.; Schindelin, J.; Hiner, M.C.; DeZonia, B.E.; Walter, A.E.; Arena, E.T.; Eliceiri, K.W. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinform. 2017, 18, 529. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.B.; Christy, R.W. Optical Constants of the Noble Metals. Phys. Rev. B 1972, 6, 4370–4379. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schmidheini, L.; Tiefenauer, R.F.; Gatterdam, V.; Frutiger, A.; Sannomiya, T.; Aramesh, M. Self-Assembly of Nanodiamonds and Plasmonic Nanoparticles for Nanoscopy. Biosensors 2022, 12, 148. https://doi.org/10.3390/bios12030148
Schmidheini L, Tiefenauer RF, Gatterdam V, Frutiger A, Sannomiya T, Aramesh M. Self-Assembly of Nanodiamonds and Plasmonic Nanoparticles for Nanoscopy. Biosensors. 2022; 12(3):148. https://doi.org/10.3390/bios12030148
Chicago/Turabian StyleSchmidheini, Lukas, Raphael F. Tiefenauer, Volker Gatterdam, Andreas Frutiger, Takumi Sannomiya, and Morteza Aramesh. 2022. "Self-Assembly of Nanodiamonds and Plasmonic Nanoparticles for Nanoscopy" Biosensors 12, no. 3: 148. https://doi.org/10.3390/bios12030148
APA StyleSchmidheini, L., Tiefenauer, R. F., Gatterdam, V., Frutiger, A., Sannomiya, T., & Aramesh, M. (2022). Self-Assembly of Nanodiamonds and Plasmonic Nanoparticles for Nanoscopy. Biosensors, 12(3), 148. https://doi.org/10.3390/bios12030148