Magnetic Immunosensor Coupled to Enzymatic Signal for Determination of Genomic DNA Methylation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals
2.2. Preparation of PB-Doped Carbon Electrode
2.3. Extraction of Genomic DNA
2.4. MBs Modification
2.5. Chronoamperometric Detection
3. Results and Discussion
3.1. Detection of H2O2 Using PB Electrodes
3.2. Selectivity of the Assay
3.3. Assay Optimization
3.4. Amperometric Detection of Global DNA Methylation
3.5. DNA Methylation Analysis in Cell Lines
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Schubeler, D. Function and information content of DNA methylation. Nature 2015, 517, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, B.; Cho, I.H.; Irudayaraj, J. Technical advances in global DNA methylation analysis in human cancers. J. Biol. Eng. 2017, 11, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Locke, W.J.; Guanzon, D.; Ma, C.K.; Liew, Y.J.; Duesing, K.R.; Fung, K.Y.C.; Ross, J.P. DNA Methylation Cancer Biomarkers: Translation to the Clinic. Front. Genet. 2019, 10, 1150. [Google Scholar] [CrossRef] [PubMed]
- Skvortsova, K.; Stirzaker, C.; Taberlay, P. The DNA methylation landscape in cancer. Essays Biochem. 2019, 63, 797–811. [Google Scholar] [CrossRef] [PubMed]
- Rodger, E.J.; Almomani, S.N.; Ludgate, J.L.; Stockwell, P.A.; Baguley, B.C.; Eccles, M.R.; Chatterjee, A. Comparison of Global DNA Methylation Patterns in Human Melanoma Tissues and Their Derivative Cell Lines. Cancers 2021, 13, 2123. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.W.; Zhu, X.Y.; Li, Y.Y.; Meng, Z.Q. Epigenetic regulation and cancer (Review). Oncol. Rep. 2014, 31, 523–532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baylin, S.B.; Jones, P.A. Epigenetic Determinants of Cancer. Csh. Perspect. Biol. 2016, 8, a019505. [Google Scholar] [CrossRef] [Green Version]
- Patel, S.A.; Vanharanta, S. Epigenetic determinants of metastasis. Mol. Oncol. 2017, 11, 79–96. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.F.; Yan, Q. The roles of epigenetics in cancer progression and metastasis. Biochem. J. 2021, 478, 3373–3393. [Google Scholar] [CrossRef]
- Yang, Z.; Jiang, W.; Liu, F.; Zhou, Y.; Yin, H.; Ai, S. A novel electrochemical immunosensor for the quantitative detection of 5-hydroxymethylcytosine in genomic DNA of breast cancer tissue. Chem. Commun. 2015, 51, 14671–14673. [Google Scholar] [CrossRef]
- Ibn Sina, A.; Carrascosa, L.G.; Liang, Z.Y.; Grewal, Y.S.; Wardiana, A.; Shiddiky, M.J.A.; Gardiner, R.A.; Samaratunga, H.; Gandhi, M.K.; Scott, R.J.; et al. Epigenetically reprogrammed methylation landscape drives the DNA self-assembly and serves as a universal cancer biomarker. Nat. Commun. 2018, 9, 4915. [Google Scholar] [CrossRef] [Green Version]
- Ibn Sina, A.A.; Carrascosa, L.G.; Trau, M. DNA Methylation-Based Point-of-Care Cancer Detection: Challenges and Possibilities. Trends Mol. Med. 2019, 25, 955–966. [Google Scholar] [CrossRef]
- Genereux, D.P.; Johnson, W.C.; Burden, A.F.; Stoger, R.; Laird, C.D. Errors in the bisulfite conversion of DNA: Modulating inappropriate- and failed-conversion frequencies. Nucleic Acids Res. 2008, 36, e150. [Google Scholar] [CrossRef] [Green Version]
- Owa, C.; Poulin, M.; Yan, L.Y.; Shioda, T. Technical adequacy of bisulfite sequencing and pyrosequencing for detection of mitochondria! DNA methylation: Sources and avoidance of false-positive detection. PLoS ONE 2018, 13, e0192722. [Google Scholar] [CrossRef] [Green Version]
- Ito, S.; Shen, L.; Dai, Q.; Wu, S.C.; Collins, L.B.; Swenberg, J.A.; He, C.; Zhang, Y. Tet Proteins Can Convert 5-Methylcytosine to 5-Formylcytosine and 5-Carboxylcytosine. Science 2011, 333, 1300–1303. [Google Scholar] [CrossRef] [Green Version]
- Kurinomaru, T.; Kurita, R. Bisulfite-free approaches for DNA methylation profiling. Anal. Methods 2017, 9, 1537–1549. [Google Scholar] [CrossRef]
- Bhattacharjee, R.; Moriam, S.; Nguyen, N.T.; Shiddiky, M.J.A. A bisulfite treatment and PCR-free global DNA methylation detection method using electrochemical enzymatic signal engagement. Biosens. Bioelectron. 2019, 126, 102–107. [Google Scholar] [CrossRef]
- Martisova, A.; Holcakova, J.; Izadi, N.; Sebuyoya, R.; Hrstka, R.; Bartosik, M. DNA Methylation in Solid Tumors: Functions and Methods of Detection. Int. J. Mol. 2021, 22, 4247. [Google Scholar] [CrossRef]
- Dai, Z.; Hu, X.; Wu, H.; Zou, X. A label-free electrochemical assay for quantification of gene-specific methylation in a nucleic acid sequence. Chem. Commun. 2012, 48, 1769–1771. [Google Scholar] [CrossRef]
- Jirakova, L.; Hrstka, R.; Campuzano, S.; Pingarron, J.M.; Bartosik, M. Multiplexed Immunosensing Platform Coupled to Hybridization Chain Reaction for Electrochemical Determination of MicroRNAs in Clinical Samples. Electroanalysis 2019, 31, 293–302. [Google Scholar] [CrossRef]
- Koo, K.M.; Soda, N.; Shiddiky, M.J.A. Magnetic nanomaterial-based electrochemical biosensors for the detection of diverse circulating cancer biomarkers. Curr. Opin. Electrochem. 2021, 25, 100645. [Google Scholar] [CrossRef]
- Farhana, F.Z.; Umer, M.; Saeed, A.; Pannu, A.S.; Husaini, S.; Sonar, P.; Firoz, S.H.; Shiddiky, M.J.A. e-MagnetoMethyl IP: A magnetic nanoparticle-mediated immunoprecipitation and electrochemical detection method for global DNA methylation. Analyst 2021, 146, 3654–3665. [Google Scholar] [CrossRef]
- Povedano, E.; Ruiz-Valdepenas Montiel, V.; Valverde, A.; Navarro-Villoslada, F.; Yanez-Sedeno, P.; Pedrero, M.; Montero-Calle, A.; Barderas, R.; Pelaez-Garcia, A.; Mendiola, M.; et al. Versatile Electroanalytical Bioplatforms for Simultaneous Determination of Cancer-Related DNA 5-Methyl- and 5-Hydroxymethyl-Cytosines at Global and Gene-Specific Levels in Human Serum and Tissues. ACS Sens. 2019, 4, 227–234. [Google Scholar] [CrossRef]
- Povedano, E.; Vargas, E.; Ruiz-Valdepenas, V.; Torrente-Rodriguez, R.M.; Pedrero, M.; Barderas, R.; San Segundo-Acosta, P.; Pelaez-Garcia, A.; Mendiola, M.; Hardisson, D.; et al. Electrochemical affinity biosensors for fast detection of gene-specific methylations with no need for bisulfite and amplification treatments. Sci. Rep. 2018, 8, 6418. [Google Scholar] [CrossRef]
- Povedano, E.; Gamella, M.; Torrente-Rodriguez, R.M.; Montiel, V.R.V.; Montero-Calle, A.; Solis-Fernandez, G.; Navarro-Villoslada, F.; Pelaez-Garcia, A.; Mendiola, M.; Hardisson, D.; et al. Multiplexed magnetic beads-assisted amperometric bioplatforms for global detection of methylations in nucleic acids. Anal. Chim. Acta 2021, 1182, 338946. [Google Scholar] [CrossRef]
- Povedano, E.; Valverde, A.; Ruiz-Valdepenas Montiel, V.; Pedrero, M.; Yanez-Sedeno, P.; Barderas, R.; San Segundo-Acosta, P.; Pelaez-Garcia, A.; Mendiola, M.; Hardisson, D.; et al. Rapid Electrochemical Assessment of Tumor Suppressor Gene Methylations in Raw Human Serum and Tumor Cells and Tissues Using Immunomagnetic Beads and Selective DNA Hybridization. Angew. Chem. Int. Ed. 2018, 57, 8194–8198. [Google Scholar] [CrossRef]
- Singh, A.; Park, S.; Yang, H. Glucose-Oxidase Label-Based Redox Cycling for an Incubation Period-Free Electrochemical Immunosensor. Anal. Chem. 2013, 85, 4863–4868. [Google Scholar] [CrossRef]
- Bruch, R.; Baaske, J.; Chatelle, C.; Meirich, M.; Madlener, S.; Weber, W.; Dincer, C.; Urban, G.A. CRISPR/Cas13a-Powered Electrochemical Microfluidic Biosensor for Nucleic Acid Amplification-Free miRNA Diagnostics. Adv. Mater. 2019, 31, 1905311. [Google Scholar] [CrossRef] [Green Version]
- Karyakin, A.A.; Karyakina, E.E.; Gorton, L. On the mechanism of H2O2 reduction at Prussian Blue modified electrodes. Electrochem. Commun. 1999, 1, 78–82. [Google Scholar] [CrossRef]
- Matos-Peralta, Y.; Antuch, M. Review-Prussian Blue and Its Analogs as Appealing Materials for Electrochemical Sensing and Biosensing. J. Electrochem. Soc. 2019, 167, 037510. [Google Scholar] [CrossRef]
- Cai, Y.; Liang, B.; Chen, S.; Zhu, Q.; Tu, T.; Wu, K.; Cao, Q.; Fang, L.; Liang, X.; Ye, X. One-step modification of nano-polyaniline/glucose oxidase on double-side printed flexible electrode for continuous glucose monitoring: Characterization, cytotoxicity evaluation and in vivo experiment. Biosens. Bioelectron. 2020, 165, 112408. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Zhang, B.; Xue, Z.; Ye, X.; Liang, B. An electrochemical immunosensor for global DNA methylation determination using magnetic bead-based enrichment and enzymatic amplification. In Proceedings of the IEEE International Conference on Flexible and Printable Sensors and Systems, Rotterdam, The Netherlands, 31 October–3 November 2021; pp. 1–4. [Google Scholar]
- Huang, B.; Liang, Y.; Zhang, B.; Cao, Q.; Tu, T.; Ye, X.; Liang, B. Au nanoflowers modified magnetic and flexible biosensor for bisulfite-free HCC global DNA methylation detection. In Proceedings of the 2020 IEEE SENSORS, Rotterdam, The Netherlands, 25–28 October 2020; pp. 1–4. [Google Scholar]
- Dincer, C.; Kling, A.; Chatelle, C.; Armbrecht, L.; Kieninger, J.; Weber, W.; Urban, G.A. Designed miniaturization of microfluidic biosensor platforms using the stop-flow technique. Analyst 2016, 141, 6073–6079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haque, M.H.; Bhattacharjee, R.; Islam, M.N.; Gopalan, V.; Nguyen, N.T.; Lam, A.K.; Shiddiky, M.J.A. Colorimetric and electrochemical quantification of global DNA methylation using a methyl cytosine-specific antibody. Analyst 2017, 142, 1900–1908. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, R.; Tanaka, S.; Moriam, S.; Masud, M.K.; Lin, J.J.; Alshehri, S.M.; Ahamad, T.; Salunkhe, R.R.; Nguyen, N.T.; Yamauchi, Y.; et al. Porous nanozymes: The peroxidase-mimetic activity of mesoporous iron oxide for the colorimetric and electrochemical detection of global DNA methylation. J. Mater. Chem. B 2018, 6, 4783–4791. [Google Scholar] [CrossRef] [Green Version]
- Wee, E.J.H.; Ngo, T.H.; Trau, M. Colorimetric detection of both total genomic and loci-specific DNA methylation from limited DNA inputs. Clin. Epigenetics 2015, 7, 65. [Google Scholar] [CrossRef] [Green Version]
Biosensor | LOD | Input DNA | Assay Time | Reference |
---|---|---|---|---|
MBD magnetic bead and HRP | 5% mehtylation | 50 ng | 2 h | [37] |
Gold-DNA affinity and HRP-5mC antibody | 5% methylation | 25 ng | 2 h | [35] |
Gold-DNA affinity and 5mC functionalized nanomaterials | 10% mehtylation | 50 ng | 1 h | [36] |
Immunosensor with 5mC antibody | 6.8 pM | (23–24,000) pM | 45 min | [24] |
Gold-DNA affinity and 5mC-GOx antibody | 5% methylation | 50 ng | 1 h | [17] |
Immuno-magnetic beads assay | 4.0 pg | (14–2500) pg | 45 min | [23] |
Competitive immunoassays | 60 pg | (0.17–7.2) ng | 45 min | [25] |
Immunomagnetic beads and enzymatic reaction | 5% methylation | 15 pg | 70 min | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Y.; Zhang, B.; Xue, Z.; Ye, X.; Liang, B. Magnetic Immunosensor Coupled to Enzymatic Signal for Determination of Genomic DNA Methylation. Biosensors 2022, 12, 162. https://doi.org/10.3390/bios12030162
Liang Y, Zhang B, Xue Z, Ye X, Liang B. Magnetic Immunosensor Coupled to Enzymatic Signal for Determination of Genomic DNA Methylation. Biosensors. 2022; 12(3):162. https://doi.org/10.3390/bios12030162
Chicago/Turabian StyleLiang, Yitao, Bin Zhang, Zexin Xue, Xuesong Ye, and Bo Liang. 2022. "Magnetic Immunosensor Coupled to Enzymatic Signal for Determination of Genomic DNA Methylation" Biosensors 12, no. 3: 162. https://doi.org/10.3390/bios12030162
APA StyleLiang, Y., Zhang, B., Xue, Z., Ye, X., & Liang, B. (2022). Magnetic Immunosensor Coupled to Enzymatic Signal for Determination of Genomic DNA Methylation. Biosensors, 12(3), 162. https://doi.org/10.3390/bios12030162