A Review of Electrochemical Sensors for the Detection of Glycated Hemoglobin
Abstract
:1. Introduction
2. Direct Type Electrochemical HbA1c Sensors
2.1. Amperometric Sensors
2.2. Potentiometric Sensors
2.3. Impedimetric Sensors
3. Indirect Type Electrochemical HbA1c Sensors
- (1)
- Enzymatic hydrolysis: HbA1c is proteolytically decomposed, and its β-chain glycated nitrogen terminus is hydrolyzed to produce FV or FVH.
- (2)
- Enzymatic catalysis: FV and FVH are oxidized to produce H2O2 by FAO and FPOX. In addition, in indirect MIC type sensors, FV usually participates in a redox reaction with other electronic mediators and does not produce H2O2.
- (3)
- H2O2 determination: The produced H2O2 can be determined electrochemically, and the results are further used to determine the content of HbA1c in samples. The process can be described by steps (1)–(4), as follows.
3.1. FAO Type
3.2. FPOX Type
3.3. MIC Type
4. Comparison of the Characteristics of Direct and Indirect Electrochemical HbA1c Sensors
5. Conclusions and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviation
ARS | Alizarin red s |
arPES | Amine-reactive phenazine ethosulfate |
AQBA | Anthraquinone boronic acid |
AI | Artificial intelligence |
BSA | Bovine serum albumin |
CHIT | Chitosan |
CMOS | Complementary metal oxide semiconductor |
DM | Diabetes mellitus |
DPV | Differential pulse voltammetry |
ESM | Eggshell membrane |
Fc | Ferrocene |
Fc[CO-Cys(Trt)-OMe]2 | Ferrocene diformylcysteine |
Fc[CO-Glu-Cys-Gly-OH] | Ferrocene glutathione |
FcAb | Ferrocene-tagged anti-HbA1c antibody |
FIA | Flow injection analysis |
FTO | Fluorine-doped tin oxide |
FAO | Fructosyl amino acid oxidase |
FPOX | Fructosyl peptide oxidase |
FV | Fructosyl valine |
FVH | Fructosyl valine histidine |
GHA | GHb-targeted aptamer |
GC | Glassy carbon |
GCE | Glassy carbon electrode |
GOx | Glucose oxidase |
GA | Glutaraldehyde |
HbA1c | Glycated hemoglobin |
GPP | Glycated pentapeptide |
AuNFs | Gold nanoflowers |
AuNPs | Gold nanoparticles |
GO | Graphene oxide |
GS | Graphite sheet |
Hp | Haptoglobin |
Hb | Hemoglobin |
HJNH | Heterojunction nano hybrid material |
HPLC | High performance liquid chromatography |
H2O2 | Hydrogen peroxide |
IFG | Impaired fasting glucose |
IGT | Impaired glucose tolerance |
ITO | Indium tin oxide |
IFCC | International Federation of Clinical Chemistry |
MPBA | Mercaptophenyl boronic acid |
MIC | Molecularly imprinted catalyst |
MIP | Molecularly imprinted polymer |
NWCNT | Multiwalled carbon nanotube |
Nf | Nafion |
NSPC | N, S-doped porous carbon |
OGTT | Oral glucose tolerance test |
PtNPs | Platinum nanoparticles |
PBA | Phenylboronic acid |
PBS | Phosphate buffered saline |
POCT | Point-of-care test |
PET | Polyethylene terephthalate |
PIN5COOH | Polyindole-5-carboxylic acid |
pTTBA | Poly(terthiophene benzoic acid) |
PVI | Polyvinyl imidazole |
PAPBA | Poly(3-aminophenylboric acid) |
PB | Prussian Blue |
PQQ | Pyrroloquinoline quinine |
RGO | Reduced graphene oxide |
RVC | Reticulated vitreous carbon |
SPCE | Screen-printed carbon electrode |
SAM | Self-assembled monolayer |
SPR | Surface plasmon resonance |
SELEX | Systematic evolution of ligands by exponential enrichment |
TEOS | Tetraethyl silica |
T3BA | Thiophene-3-boronic acid |
TiO2 | Titanium dioxide |
TBO | Toluidine blue O |
Tris | Tris(hydroxymethyl) aminomethane |
FDMA | 1,1′-di(aminomethyl)ferrocene |
MU | 11-mercapto-1-undecanol |
PTA | 12-phosphotungstic acid |
APBA | 3-aminophenylboronic acid |
MPA | 3-mercaptopropionic acid |
4-MPBA | 4-mercaptophenyl boric acid |
References
- Yang, H.; Tian, T.; Wu, D.; Guo, D.; Lu, J. Prevention and treatment effects of edible berries for three deadly diseases: Cardiovascular disease, cancer and diabetes. Crit. Rev. Food Sci. Nutr. 2018, 59, 1903–1912. [Google Scholar] [CrossRef] [PubMed]
- Subramaniam, M.; Abdin, E.; Vaingankar, J.A.; Chang, S.; Sambasivam, R.; Jeyagurunathan, A.; Seow, L.S.E.; Van Dam, R.; Chow, W.L.; Chong, S.A. Association of adverse childhood experiences with diabetes in adulthood: Results of a cross-sectional epidemiological survey in Singapore. BMJ Open 2021, 11, e045167. [Google Scholar] [CrossRef] [PubMed]
- Deshmukh, C.D.; Jain, A. Diabetes Mellitus: A Review. Int. J. Pure Appl. Biosci. 2015, 3, 224–230. [Google Scholar]
- American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2007, 30, S42–S47. [Google Scholar] [CrossRef] [Green Version]
- Yadav, J.; Rani, A.; Singh, V.; Murari, B.M. Prospects and limitations of non-invasive blood glucose monitoring using near-infrared spectroscopy. Biomed. Signal Process. Control 2015, 18, 214–227. [Google Scholar] [CrossRef]
- Lenters-Westra, E.; Schindhelm, R.K.; Bilo, H.J.; Slingerland, R.J. Haemoglobin A1c: Historical overview and current concepts. Diabetes Res. Clin. Pract. 2013, 99, 75–84. [Google Scholar] [CrossRef]
- Lin, H.; Yi, J. Current Status of HbA1c Biosensors. Sensors 2017, 17, 1798. [Google Scholar] [CrossRef] [Green Version]
- Chehregosha, H.; Khamseh, M.E.; Malek, M.; Hosseinpanah, F.; Ismail-Beigi, F. A View beyond HbA1c: Role of Continuous Glucose Monitoring. Diabetes Ther. 2019, 10, 853–863. [Google Scholar] [CrossRef] [Green Version]
- Sherwani, S.I.; Khan, H.A.; Ekhzaimy, A.; Masood, A.; Sakharkar, M.K. Significance of HbA1c Test in Diagnosis and Prognosis of Diabetic Patients. Biomark. Insights 2016, 11, BMI-S38440. [Google Scholar] [CrossRef]
- Navar, L.G.; Gööz, M.; Ahia, C.L.; Holt, E.W.; Krousel-Wood, M. Diabetes Care Its Association with Glycosylated Hemoglobin Level. Am. J. Med. Sci. 2014, 347, 245–247. [Google Scholar] [CrossRef]
- Genuth, S.M.; Palmer, J.P.; Nathan, D.M. Classification and diagnosis of diabetes. In Diabetes in America, 3rd ed.; National Institute of Diabetes and Digestive and Kidney Diseases: Bethesda, MD, USA, 2018. [Google Scholar]
- del Castillo, E.; Montes-Bayón, M.; Añón, E.; Sanz-Medel, A. Quantitative targeted biomarker assay for glycated haemoglobin by multidimensional LC using mass spectrometric detection. J. Proteom. 2011, 74, 35–43. [Google Scholar] [CrossRef]
- Koval, D.; Kašička, V.; Cottet, H. Analysis of glycated hemoglobin A1c by capillary electrophoresis and capillary isoelectric focusing. Anal. Biochem. 2011, 413, 8–15. [Google Scholar] [CrossRef]
- Li, Y.; Jeppsson, J.-O.; Jörntén-Karlsson, M.; Larsson, E.L.; Jungvid, H.; Galaev, I.Y.; Mattiasson, B. Application of shielding boronate affinity chromatography in the study of the glycation pattern of haemoglobin. J. Chromatogr. B 2002, 776, 149–160. [Google Scholar] [CrossRef]
- Thevarajah, M.; Nadzimah, M.; Chew, Y. Interference of hemoglobinA1c (HbA1c) detection using ion-exchange high performance liquid chromatography (HPLC) method by clinically silent hemoglobin variant in University Malaya Medical Centre (UMMC)—A case report. Clin. Biochem. 2009, 42, 430–434. [Google Scholar] [CrossRef]
- Sirén, H.; Laitinen, P.; Turpeinen, U.; Karppinen, P. Direct monitoring of glycohemoglobin A1c in the blood samples of diabetic patients by capillary electrophoresis: Comparison with an immunoassay method. J. Chromatogr. A 2002, 979, 201–207. [Google Scholar] [CrossRef]
- Moon, J.-M.; Kim, D.-M.; Kim, M.H.; Han, J.-Y.; Jung, D.-K.; Shim, Y.-B. A disposable amperometric dual-sensor for the detection of hemoglobin and glycated hemoglobin in a finger prick blood sample. Biosens. Bioelectron. 2017, 91, 128–135. [Google Scholar] [CrossRef]
- Thiruppathi, M.; Lee, J.-F.; Chen, C.C.; Ho, J.-A.A. A disposable electrochemical sensor designed to estimate glycated hemoglobin (HbA1c) level in whole blood. Sens. Actuators B Chem. 2020, 329, 129119. [Google Scholar] [CrossRef]
- Ang, S.H.; Thevarajah, M.; Alias, Y.; Khor, S.M. Current aspects in hemoglobin A1c detection: A review. Clin. Chim. Acta 2015, 439, 202–211. [Google Scholar] [CrossRef]
- Bunyarataphan, S.; Dharakul, T.; Fucharoen, S.; Paiboonsukwong, K.; Japrung, D. Glycated Albumin Measurement Using an Electrochemical Aptasensor for Screening and Monitoring of Diabetes Mellitus. Electroanalysis 2019, 31, 2254–2261. [Google Scholar] [CrossRef]
- Ahmadi, A.; Kabiri, S.; Omidfar, K. Advances in HbA1c Biosensor Development Based on Field Effect Transistors: A Review. IEEE Sens. J. 2020, 20, 8912–8921. [Google Scholar] [CrossRef]
- Hussain, K.K.; Moon, J.-M.; Park, D.-S.; Shim, Y.-B. Electrochemical Detection of Hemoglobin: A Review. Electroanalysis 2017, 29, 2190–2199. [Google Scholar] [CrossRef]
- Wang, B.; Anzai, J.-I. Recent Progress in Electrochemical HbA1c Sensors: A Review. Materials 2015, 8, 1187–1203. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Takahashi, S.; Du, X.; Anzai, J.-I. Electrochemical Biosensors Based on Ferroceneboronic Acid and Its Derivatives: A Review. Biosensors 2014, 4, 243–256. [Google Scholar] [CrossRef] [Green Version]
- Yazdanpanah, S.; Rabiee, M.; Tahriri, M.; Abdolrahim, M.; Tayebi, L. Glycated hemoglobin-detection methods based on electrochemical biosensors. TrAC Trends Anal. Chem. 2015, 72, 53–67. [Google Scholar] [CrossRef]
- Pundir, C.S.; Chawla, S. Determination of glycated hemoglobin with special emphasis on biosensing methods. Anal. Biochem. 2014, 444, 47–56. [Google Scholar] [CrossRef]
- Newman, J.D.; Turner, A.P.F. Home blood glucose biosensors: A commercial perspective. Biosens. Bioelectron. 2005, 20, 2435–2453. [Google Scholar] [CrossRef] [Green Version]
- Faridbod, F.; Gupta, V.K.; Zamani, H.A. Electrochemical Sensors and Biosensors. Int. J. Electrochem. 2011, 2011, 352546. [Google Scholar] [CrossRef] [Green Version]
- Stöllner, D.; Stöcklein, W.; Scheller, F.; Warsinke, A. Membrane-immobilized haptoglobin as affinity matrix for a hemoglobin-A1c immunosensor. Anal. Chim. Acta 2002, 470, 111–119. [Google Scholar] [CrossRef]
- Sharma, P.; Panchal, A.; Yadav, N.; Narang, J. Analytical techniques for the detection of glycated haemoglobin underlining the sensors. Int. J. Biol. Macromol. 2020, 155, 685–696. [Google Scholar] [CrossRef]
- Torres-Rivero, K.; Florido, A.; Bastos-Arrieta, J. Recent Trends in the Improvement of the Electrochemical Response of Screen-Printed Electrodes by Their Modification with Shaped Metal Nanoparticles. Sensors 2021, 21, 2596. [Google Scholar] [CrossRef]
- Liu, A.; Xu, S.; Deng, H.; Wang, X. A new electrochemical hba1c biosensor based on flow injection and screen-printed electrode. Int. J. Electrochem. Sci. 2016, 11, 3086–3094. [Google Scholar] [CrossRef]
- Liu, L.; Xia, N.; Xing, Y.; Deng, D. Boronic acid-based electrochemical sensors for detection of biomolecules. Int. J. Electrochem. Sci. 2013, 8, 11161–11174. [Google Scholar]
- Song, S.Y.; Yoon, H.C. Boronic acid-modified thin film interface for specific binding of glycated hemoglobin (HbA1c) and electrochemical biosensing. Sens. Actuators B Chem. 2009, 140, 233–239. [Google Scholar] [CrossRef]
- Song, S.Y.; Han, Y.D.; Park, Y.M.; Jeong, C.Y.; Yang, Y.J.; Kim, M.S.; Ku, Y.; Yoon, H.C. Bioelectrocatalytic detection of glycated hemoglobin (HbA1c) based on the competitive binding of target and signaling glycoproteins to a boronate-modified surface. Biosens. Bioelectron. 2012, 35, 355–362. [Google Scholar] [CrossRef]
- Acree, T.E. The Chemistry of Sugars in Boric Acid Solutions. In Carbohydrates in Solution; Isbell, H.C., Ed.; American Chemical Society: Washington, DC, USA, 1973; pp. 208–219. [Google Scholar]
- Sun, X.; Xu, S.Y.; Flower, S.E.; Fossey, J.S.; Qian, X.; James, T.D. "Integrated" and "insulated" boronate-based fluorescent probes for the detection of hydrogen peroxide. Chem. Commun. 2013, 49, 8311–8313. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.-M.; Shim, Y.-B. Disposable Amperometric Glycated Hemoglobin Sensor for the Finger Prick Blood Test. Anal. Chem. 2013, 85, 6536–6543. [Google Scholar] [CrossRef]
- Chopra, A.; Rawat, S.; Bhalla, V.; Suri, C.R. Point-of-Care Amperometric Testing of Diabetic Marker (HbA1c) Using Specific Electroactive Antibodies. Electroanalysis 2014, 26, 469–472. [Google Scholar] [CrossRef]
- Zhou, Y.; Dong, H.; Liu, L.; Hao, Y.; Chang, Z.; Xu, M. Fabrication of electrochemical interface based on boronic acid-modified pyrroloquinoline quinine/reduced graphene oxide composites for voltammetric determination of glycated hemoglobin. Biosens. Bioelectron. 2015, 64, 442–448. [Google Scholar] [CrossRef]
- Wang, J.-Y.; Chou, T.-C.; Chen, L.-C.; Ho, K.-C. Using poly(3-aminophenylboronic acid) thin film with binding-induced ion flux blocking for amperometric detection of hemoglobin A1c. Biosens. Bioelectron. 2014, 63, 317–324. [Google Scholar] [CrossRef]
- Wang, X.; Su, J.; Zeng, D.; Liu, G.; Liu, L.; Xu, Y.; Wang, C.; Liu, X.; Wang, L.; Mi, X. Gold nano-flowers (Au NFs) modified screen-printed carbon electrode electrochemical biosensor for label-free and quantitative detection of glycated hemoglobin. Talanta 2019, 201, 119–125. [Google Scholar] [CrossRef]
- Pandey, I.; Tiwari, J.D. A novel dual imprinted conducting nanocubes based flexible sensor for simultaneous detection of hemoglobin and glycated haemoglobin in gestational diabetes mellitus patients. Sens. Actuators B Chem. 2019, 285, 470–478. [Google Scholar] [CrossRef]
- Nallal, M.; Iyengar, G.A.; Pill-Lee, K. New Titanium Dioxide-Based Heterojunction Nanohybrid for Highly Selective Photoelectrochemical–Electrochemical Dual-Mode Sensors. ACS Appl. Mater. Interfaces 2017, 9, 37166–37183. [Google Scholar] [CrossRef]
- Li, Z.; Li, J.; Dou, Y.; Wang, L.; Song, S. A Carbon-Based Antifouling Nano-Biosensing Interface for Label-Free POCT of HbA1c. Biosensors 2021, 11, 118. [Google Scholar] [CrossRef]
- Hossain, M.M.; Moon, J.-M.; Gurudatt, N.; Park, D.-S.; Choi, C.S.; Shim, Y.-B. Separation detection of hemoglobin and glycated hemoglobin fractions in blood using the electrochemical microfluidic channel with a conductive polymer composite sensor. Biosens. Bioelectron. 2019, 142, 111515. [Google Scholar] [CrossRef]
- Liu, A.; Anzai, J.-I. Ferrocene-Containing Polyelectrolyte Multilayer Films: Effects of Electrochemically Inactive Surface Layers on the Redox Properties. Langmuir 2003, 19, 4043–4046. [Google Scholar] [CrossRef]
- Takahashi, S.; Anzai, J.-I. Recent Progress in Ferrocene-Modified Thin Films and Nanoparticles for Biosensors. Materials 2013, 6, 5742–5762. [Google Scholar] [CrossRef] [Green Version]
- Han, G.-C.; Su, X.; Hou, J.; Ferranco, A.; Feng, X.-Z.; Zeng, R.; Chen, Z.; Kraatz, H.-B. Disposable electrochemical sensors for hemoglobin detection based on ferrocenoyl cysteine conjugates modified electrode. Sens. Actuators B Chem. 2018, 282, 130–136. [Google Scholar] [CrossRef]
- Davydova, A.; Vorobyeva, M.; Bashmakova, E.; Vorobjev, P.; Krasheninina, O.; Tupikin, A.; Kabilov, M.; Krasitskaya, V.; Frank, L.; Venyaminova, A. Development and characterization of novel 2′-F-RNA aptamers specific to human total and glycated hemoglobins. Anal. Biochem. 2019, 570, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Eissa, S.; Almusharraf, A.Y.; Zourob, M. A comparison of the performance of voltammetric aptasensors for glycated haemoglobin on different carbon nanomaterials-modified screen printed electrodes. Mater. Sci. Eng. C 2019, 101, 423–430. [Google Scholar] [CrossRef]
- Eissa, S.; Zourob, M. Aptamer- Based Label-Free Electrochemical Biosensor Array for the Detection of Total and Glycated Hemoglobin in Human Whole Blood. Sci. Rep. 2017, 7, 1016. [Google Scholar] [CrossRef] [Green Version]
- Jaberi, S.Y.S.; Ghaffarinejad, A.; Omidinia, E. An electrochemical paper based nano-genosensor modified with reduced graphene oxide-gold nanostructure for determination of glycated hemoglobin in blood. Anal. Chim. Acta 2019, 1078, 42–52. [Google Scholar] [CrossRef]
- Duanghathaipornsuk, S.; Reaver, N.G.F.; Cameron, B.D.; Kim, D.-S. Adsorption Kinetics of Glycated Hemoglobin on Aptamer Microarrays with Antifouling Surface Modification. Langmuir 2021, 37, 4647–4657. [Google Scholar] [CrossRef]
- Liu, G.; Khor, S.M.; Iyengar, S.G.; Gooding, J.J. Development of an electrochemical immunosensor for the detection of HbA1c in serum. Analyst 2012, 137, 829–832. [Google Scholar] [CrossRef]
- Özge Karaşallı, M.; Derya Koyuncu, Z. A Novel Label-Free Immunosensor Based on Electrochemically Reduced Graphene Oxide for Determination of Hemoglobin A1c. Russ. J. Electrochem. 2020, 56, 715–723. [Google Scholar] [CrossRef]
- Molazemhosseini, A.; Magagnin, L.; Vena, P.; Liu, C.-C. Single-Use Disposable Electrochemical Label-Free Immunosensor for Detection of Glycated Hemoglobin (HbA1c) Using Differential Pulse Voltammetry (DPV). Sensors 2016, 16, 1024. [Google Scholar] [CrossRef] [Green Version]
- Saraoglu, H.M.; Selvi, A.O.; Ebeoglu, M.A.; Tasaltin, C. Electronic Nose System Based on Quartz Crystal Microbalance Sensor for Blood Glucose and HbA1c Levels from Exhaled Breath Odor. IEEE Sens. J. 2013, 13, 4229–4235. [Google Scholar] [CrossRef]
- Pandey, I.; Tiwari, J.D. Conducting artificial enzymatic nanocubes based electronic sensor for simultaneous detection of hemoglobin and glycated hemoglobin in diabetic patients. In Proceedings of the 2018 5th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), Gorakhpur, India, 2–4 November 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Xue, Q.; Bian, C.; Tong, J.; Sun, J.; Zhang, H.; Xia, S. FET immunosensor for hemoglobin A1c using a gold nanofilm grown by a seed-mediated technique and covered with mixed self-assembled monolayers. Mikrochim. Acta 2011, 176, 65–72. [Google Scholar] [CrossRef]
- Xue, Q.; Bian, C.; Tong, J.; Sun, J.; Zhang, H.; Xia, S. A micro potentiometric immunosensor for hemoglobin-A1c level detection based on mixed SAMs wrapped nano-spheres array. Biosens. Bioelectron. 2011, 26, 2689–2693. [Google Scholar] [CrossRef]
- Sun, Y.-H.; Chen, G.-Y.; Lin, C.-T.; Huang, J.-C.; Huang, Y.-J.; Wen, C.-H. A sub-micron CMOS-based ISFET array for biomolecular sensing. In Proceedings of the 2016 IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Sendai, Japan, 17–20 April 2016; pp. 528–531. [Google Scholar] [CrossRef]
- Bian, C.; Xue, Q.-N.; Sun, J.-Z.; Zhang, H.; Xia, S.-H. Micro Potentiometric Label-free Immunosensor for Glycated Hemoglobin. Chin. J. Anal. Chem. 2010, 38, 332–336. [Google Scholar] [CrossRef]
- Xue, Q.; Bian, C.; Tong, J.; Sun, J.; Zhang, H.; Xia, S. CMOS and MEMS based micro hemoglobin-A1c biosensors fabricated by various antibody immobilization methods. Sens. Actuators A Phys. 2011, 169, 282–287. [Google Scholar] [CrossRef]
- Tanaka, J.; Ishige, Y.; Iwata, R.; Maekawa, B.; Nakamura, H.; Sawazaki, T.; Kamahori, M. Direct detection for concentration ratio of HbA1c to total hemoglobin by using potentiometric immunosensor with simple process of denaturing HbA1c. Sens. Actuators B Chem. 2017, 260, 396–399. [Google Scholar] [CrossRef]
- Liu, H.; Crooks, R.M. Determination of Percent Hemoglobin A1c Using a Potentiometric Method. Anal. Chem. 2012, 85, 1834–1839. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Li, G.; Xiao, W.; Qi, H.; Li, G. Glucose-responsive vesicular sensor based on boronic acid–glucose recognition in the ARS/PBA/DBBTAB covesicles. Sens. Actuators B Chem. 2006, 119, 695–700. [Google Scholar] [CrossRef]
- Katz, E.; Willner, I. Probing Biomolecular Interactions at Conductive and Semiconductive Surfaces by Impedance Spectroscopy: Routes to Impedimetric Immunosensors, DNA-Sensors, and Enzyme Biosensors. Electroanalysis 2003, 15, 913–947. [Google Scholar] [CrossRef]
- Ramanavicius, A.; Finkelsteinas, A.; Cesiulis, H.; Ramanaviciene, A. Electrochemical impedance spectroscopy of polypyrrole based electrochemical immunosensor. Bioelectrochemistry 2010, 79, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-J.; Anandan, V.; Zhang, G. Electrochemical fabrication and evaluation of highly sensitive nanorod-modified electrodes for a biotin/avidin system. Biosens. Bioelectron. 2008, 23, 1117–1124. [Google Scholar] [CrossRef] [PubMed]
- O’Grady, M.L.; Parker, K.K. Dynamic control of protein-protein interactions. Langmuir 2008, 24, 316–322. [Google Scholar] [CrossRef]
- Xiao, Y.; Li, C.M.; Liu, Y. Electrochemical impedance characterization of antibody–antigen interaction with signal amplification based on polypyrrole–streptavidin. Biosens. Bioelectron. 2007, 22, 3161–3166. [Google Scholar] [CrossRef]
- Park, J.-Y.; Chang, B.-Y.; Nam, H.; Park, S.-M. Selective Electrochemical Sensing of Glycated Hemoglobin (HbA1c) on Thiophene-3-Boronic Acid Self-Assembled Monolayer Covered Gold Electrodes. Anal. Chem. 2008, 80, 8035–8044. [Google Scholar] [CrossRef]
- Hu, W.-L.; Jang, L.-S.; Hsieh, K.-M.; Fan, C.-W.; Chen, M.-K.; Wang, M.-H. Ratio of HbA1c to hemoglobin on ring-shaped interdigital electrode arrays based on impedance measurement. Sens. Actuators B Chem. 2014, 203, 736–744. [Google Scholar] [CrossRef]
- Chuang, Y.-C.; Lan, K.-C.; Hsieh, K.-M.; Jang, L.-S.; Chen, M.-K. Detection of glycated hemoglobin (HbA1c) based on impedance measurement with parallel electrodes integrated into a microfluidic device. Sens. Actuators B Chem. 2012, 171–172, 1222–1230. [Google Scholar] [CrossRef]
- Hsieh, K.-M.; Lan, K.-C.; Hu, W.-L.; Chen, M.-K.; Jang, L.-S.; Wang, M.-H. Glycated hemoglobin (HbA1c) affinity biosensors with ring-shaped interdigital electrodes on impedance measurement. Biosens. Bioelectron. 2013, 49, 450–456. [Google Scholar] [CrossRef]
- Boonyasit, Y.; Chailapakul, O.; Laiwattanapaisal, W. A multiplexed three-dimensional paper-based electrochemical impedance device for simultaneous label-free affinity sensing of total and glycated haemoglobin: The potential of using a specific single-frequency value for analysis. Anal. Chim. Acta 2016, 936, 1–11. [Google Scholar] [CrossRef]
- Chen, K.-J.; Wang, C.-H.; Liao, C.-W.; Lee, C.-K. Recombinant fructosyl peptide oxidase preparation and its immobilization on polydopamine coating for colorimetric determination of HbA1c. Int. J. Biol. Macromol. 2018, 120, 325–331. [Google Scholar] [CrossRef]
- Zhou, W.-J.; Wu, Y.-X.; Yi, J. Standardization and technology development of measurement of glycated human hemoglobin. Prog. Biochem. Biophys. 2015, 42, 443–456. [Google Scholar]
- Savino, S.; Fraaije, M.W. The vast repertoire of carbohydrate oxidases: An overview. Biotechnol. Adv. 2020, 51, 107634. [Google Scholar] [CrossRef]
- Sode, K.; Takahashi, Y.; Ohta, S.; Tsugawa, W.; Yamazaki, T. A new concept for the construction of an artificial dehydrogenase for fructosylamine compounds and its application for an amperometric fructosylamine sensor. Anal. Chim. Acta 2001, 435, 151–156. [Google Scholar] [CrossRef]
- Yamazaki, T.; Ohta, S.; Yanai, Y.; Sode, K. Molecular Imprinting Catalyst Based Artificial Enzyme Sensor for Fructosylamines. Anal. Lett. 2003, 36, 75–89. [Google Scholar] [CrossRef]
- Sakurabayashi, I.; Watano, T.; Yonehara, S.; Ishimaru, K.; Hirai, K.; Komori, T.; Yagi, M. New Enzymatic Assay for Glycohemoglobin. Clin. Chem. 2003, 49, 269–274. [Google Scholar] [CrossRef] [Green Version]
- Yin, C.; Chao, Z.; Gao, S.; Jiang, H.; Sun, J. New advance in laser interferometry. Proc. Opt. Measur. Nondestruct. Test. Tech. Appl. 2000, 4221, 19–23. [Google Scholar]
- Ferri, S.; Kim, S.; Tsugawa, W.; Sode, K. Review of Fructosyl Amino Acid Oxidase Engineering Research: A Glimpse into the Future of Hemoglobin A1c Biosensing. J. Diabetes Sci. Technol. 2009, 3, 585–592. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Guo, Q.; Cui, D. Recent Advances in Nanotechnology Applied to Biosensors. Sensors 2009, 9, 1033–1053. [Google Scholar] [CrossRef] [Green Version]
- Maduraiveeran, G.; Sasidharan, M.; Ganesan, V. Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosens. Bioelectron. 2018, 103, 113–129. [Google Scholar] [CrossRef]
- Qu, L.; Xia, S.; Bian, C.; Sun, J.; Han, J. A micro-potentiometric hemoglobin immunosensor based on electropolymerized polypyrrole–gold nanoparticles composite. Biosens. Bioelectron. 2009, 24, 3419–3424. [Google Scholar] [CrossRef]
- Pohanka, M. Glycated Hemoglobin and Methods for Its Point of Care Testing. Biosensors 2021, 11, 70. [Google Scholar] [CrossRef]
- Gupta, S.; Jain, U.; Chauhan, N. Laboratory diagnosis of HbA1c: A review. J. Nanomed. Res. 2017, 5, 00120. [Google Scholar]
- Qiu, L.; Zou, H.; Wang, X.; Feng, Y.; Zhang, X.; Zhao, J.; Zhang, X.; Li, Q. Enhancing the interfacial interaction of carbon nanotubes fibers by Au nanoparticles with improved performance of the electrical and thermal conductivity. Carbon 2018, 141, 497–505. [Google Scholar] [CrossRef]
- Jain, U.; Singh, A.; Kuchhal, N.K.; Chauhan, N. Glycated hemoglobin biosensing integration formed on Au nanoparticle-dotted tubular TiO2 nanoarray. Anal. Chim. Acta 2016, 945, 67–74. [Google Scholar] [CrossRef]
- Jain, U.; Chauhan, N. Glycated hemoglobin detection with electrochemical sensing amplified by gold nanoparticles embedded N-doped graphene nanosheet. Biosens. Bioelectron. 2017, 89, 578–584. [Google Scholar] [CrossRef]
- Jain, U.; Gupta, S.; Chauhan, N. Detection of glycated hemoglobin with voltammetric sensing amplified by 3D-structured nanocomposites. Int. J. Biol. Macromol. 2017, 101, 896–903. [Google Scholar] [CrossRef]
- Jain, U.; Gupta, S.; Chauhan, N. Construction of an amperometric glycated hemoglobin biosensor based on Au–Pt bimetallic nanoparticles and poly (indole-5-carboxylic acid) modified Au electrode. Int. J. Biol. Macromol. 2017, 105, 549–555. [Google Scholar] [CrossRef] [PubMed]
- Chawla, S.; Pundir, C.S. An amperometric hemoglobin A1c biosensor based on immobilization of fructosyl amino acid oxidase onto zinc oxide nanoparticles–polypyrrole film. Anal. Biochem. 2012, 430, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-P.; Yu, X.-D.; Xu, J.-J.; Chen, H.-Y. Gold nanoparticles-coated magnetic microspheres as affinity matrix for detection of hemoglobin A1c in blood by microfluidic immunoassay. Biosens. Bioelectron. 2011, 26, 4779–4784. [Google Scholar] [CrossRef] [PubMed]
- Zacco, E.; Pividori, M.I.; Alegret, S.; Galve, R.; Marco, M.-P. Electrochemical Magnetoimmunosensing Strategy for the Detection of Pesticides Residues. Anal. Chem. 2006, 78, 1780–1788. [Google Scholar] [CrossRef] [PubMed]
- Chawla, S.; Pundir, C.S. An electrochemical biosensor for fructosyl valine for glycosylated hemoglobin detection based on core–shell magnetic bionanoparticles modified gold electrode. Biosens. Bioelectron. 2011, 26, 3438–3443. [Google Scholar] [CrossRef]
- Mohanta, D.; Barman, K.; Jasimuddin, S.; Ahmaruzzaman, M. MnO doped SnO2 nanocatalysts: Activation of wide band gap semiconducting nanomaterials towards visible light induced photoelectrocatalytic water oxidation. J. Colloid Interface Sci. 2017, 505, 756–762. [Google Scholar] [CrossRef]
- Chauhan, N.; Jain, U. Influence of Zinc Oxide Nanorods on The Sensitivity of a Glycated Hemoglobin Biosensor. Adv. Mater. Lett. 2016, 7, 666–672. [Google Scholar] [CrossRef]
- Liu, S.; Leng, J.; Aquino, T.C. Development of Disposable Single-Use Biosensor for Fructosyl Valine and Glycated Hemoglobin A1c. J. Sens. Technol. 2019, 9, 45–53. [Google Scholar] [CrossRef] [Green Version]
- Shi, Q.; Teng, Y.; Hu, Z.; Zhang, Y.; Liu, W. One-step Electrodeposition of Tris(hydroxymethyl) Aminomethane—Prussian Blue on Screen-printed electrode for Highly Efficient Detection of Glycosylated Hemoglobin. Electroanalysis 2018. [Google Scholar] [CrossRef]
- Shahbazmohammadi, H.; Sardari, S.; Omidinia, E. An amperometric biosensor for specific detection of glycated hemoglobin based on recombinant engineered fructosyl peptide oxidase. Int. J. Biol. Macromol. 2019, 142, 855–865. [Google Scholar] [CrossRef]
- Ogawa, N.; Kimura, T.; Umehara, F.; Katayama, Y.; Nagai, G.; Suzuki, K.; Aisaka, K.; Maruyama, Y.; Itoh, T.; Hashimoto, W.; et al. Creation of haemoglobin A1c direct oxidase from fructosyl peptide oxidase by combined structure-based site specific mutagenesis and random mutagenesis. Sci. Rep. 2019, 9, 942. [Google Scholar] [CrossRef]
- Hatada, M.; Saito, S.; Yonehara, S.; Tsugawa, W.; Asano, R.; Ikebukuro, K.; Sode, K. Development of glycated peptide enzyme sensor based flow injection analysis system for haemoglobin A1c monitoring using quasi-direct electron transfer type engineered fructosyl peptide oxidase. Biosens. Bioelectron. 2021, 177, 112984. [Google Scholar] [CrossRef]
- Nanjo, Y.; Hayashi, R.; Yao, T. An enzymatic method for the rapid measurement of the hemoglobin A1c by a flow-injection system comprised of an electrochemical detector with a specific enzyme-reactor and a spectrophotometer. Anal. Chim. Acta 2007, 583, 45–54. [Google Scholar] [CrossRef]
- Ahmad, O.S.; Bedwell, T.S.; Esen, C.; Garcia-Cruz, A.; Piletsky, S.A. Molecularly Imprinted Polymers in Electrochemical and Optical Sensors. Trends Biotechnol. 2019, 37, 294–309. [Google Scholar] [CrossRef]
- Wang, P.; Zhu, H.; Liu, J.; Ma, Y.; Yao, J.; Dai, X.; Pan, J. Double affinity integrated MIPs nanoparticles for specific separation of glycoproteins: A combination of synergistic multiple bindings and imprinting effect. Chem. Eng. J. 2018, 358, 143–152. [Google Scholar] [CrossRef]
- Rajkumar, R.; Warsinke, A.; Möhwald, H.; Scheller, F.W.; Katterle, M. Development of fructosyl valine binding polymers by covalent imprinting. Biosens. Bioelectron. 2007, 22, 3318–3325. [Google Scholar] [CrossRef]
- Sode, K.; Ohta, S.; Yanai, Y.; Yamazaki, T. Construction of a molecular imprinting catalyst using target analogue template and its application for an amperometric fructosylamine sensor. Biosens. Bioelectron. 2003, 18, 1485–1490. [Google Scholar] [CrossRef]
- Yamazaki, T.; Ohta, S.; Sode, K. Operational Condition of a Molecular Imprinting Catalyst-based Fructosyl-valine Sensor. Electrochemistry 2008, 76, 590–593. [Google Scholar] [CrossRef] [Green Version]
- Yamazaki, T. An Amperometric Sensor Based on Gold Electrode Modified by Soluble Molecularly Imprinted Catalyst for Fructosyl Valine. Electrochemistry 2012, 80, 353–357. [Google Scholar] [CrossRef] [Green Version]
- Piro, B.; Reisberg, S. Recent Advances in Electrochemical Immunosensors. Sensors 2017, 17, 794. [Google Scholar] [CrossRef]
- Kaur, J.; Jiang, C.; Liu, G. Different strategies for detection of HbA1c emphasizing on biosensors and point-of-care analyzers. Biosens. Bioelectron. 2019, 123, 85–100. [Google Scholar] [CrossRef]
- Chien, H.-C.; Chou, T.-C. Glassy Carbon Paste Electrodes for the Determination of Fructosyl Valine. Electroanalysis 2010, 22, 688–693. [Google Scholar] [CrossRef]
Type | Electrode/Interface Material | Detection Range/Limit | Mechanisms of Detection | Sample | References |
---|---|---|---|---|---|
Amperomeric sensors | Dend-FPBA electrode/poly(amidoamine) G4 dendrimer, GOx | 2.5–15%/NA | GOx catalyzes the oxidation of ferrocenemethanol | HbA1c reagent | [34] |
Au/Si electrode/Cys-FPBA2, GOx | 4.5–15%/NA | GOx catalyzes the oxidation of ferrocenemethanol | Human whole blood | [35] | |
GCE/ERGO, PBA-PQQ | 9.4–65.8 µg/mL/1.25 µg/mL | HbA1c hinders the oxidation current of PQQ | Human whole blood | [40] | |
SPE/3-aminophenylboronic acid, chitosan, tetraethyl, orthosilicate | 20–2200 µg/mL/NA | HbA1c is oxidized | Human whole blood | [32] | |
Gold SPCE/mercaptophenyl boronic acid, anti-HbA1c (Fc labeled) | 5–16%/NA | MPBA-HbA1c captures anti-HbA1c (Fc labeled), Fc is oxidized | HbA1c reagent | [39] | |
MIP nanocube-modified CP@Al foil/APBA, polyrhodamine b | 0.2–230 ng/mL/0.09 ng/mL | MIP catalyzes the oxidation of HbA1c | HbA1c reagent | [43] | |
16-channel SPCE/AuNFs, 4-MPBA | 2–20%/5–1000 µg/mL/0.65%, NA | H2O2 catalyzes the oxidation of HbA1c | Human serum | [42] | |
Array SPCE/AuNPs, thiol-modified aptamer | 6.67–10.47%/NA | HbA1c hinders the oxidation current of [Fe(CN)6]4−/3− | Human whole blood | [52] | |
GS/RGO-AuNPs, aptamer, MU | 1 nM–13.83 µM/ 1 nM | HbA1c hinders the oxidation current of [Fe(CN)6]4−/3− | Human whole blood | [53] | |
Au electrode/3-mercaptopropionic acid, anti-HbA1c | 7.5–20 µg/mL/100–250 µg/mL/7.5 µg/mL, NA | HbA1c hinders the oxidation current of [Fe(CN)6]4−/3− | 0.1 mM PBS/human serum | [57] | |
MIP nanocube-modified CP@Al foil/human-made enzyme | 0.5–100 mM/ 0.09 µM | Artificial enzyme catalyzes the oxidation of HbA1c | Human whole blood | [59] | |
Potentioetric sensors | Probe electrode/thioalcohol, AuNPs, anti-HbA1c | 4–24 µg/mL/NA | Potential difference in sensing chip | HbA1c reagent | [63] |
Au electrode/mixed SAMs, EDC&NHS, anti-HbA1c | 1.67–72.14 ng/mL/NA | Potential difference in sensing chip | Simulated blood sample | [64] | |
Impedimetric sensors | Interdigital electrode/thiophene-3-boronic acid | 10–100 µg/mL/ 1 µg/mL | HbA1c affects impedance changes | HbA1c reagent | [76] |
Dual SPCE and magnetic paper/haptoglobin, APBA | 2.3–14%/0.21% | HbA1c affects impedance changes | Human whole blood | [77] |
Type | Electrode Type/Interface Material | Detection Range (FV) | Detection Limit | Potential | Sample | References |
---|---|---|---|---|---|---|
FAO | ITO electrode/AuNP-PTA-TiO2 nanocomposites | 0.5–2000 µM | 0.5 µM | ~0.06 V | Human whole blood | [92] |
FTO glass electrode/nitrogen-doped graphene, AuNPs | 0.3–2000 µM | 0.2 µM | 0.2 V | Human whole blood | [93] | |
Au electrode/PtNPs-RGO-NWCNT | 0.05–1000 µM | 0.1 µM | ~0.1 V | Human whole blood | [94] | |
Au electrode/AuNPs-PtNPs, poly-indole-5-carboxylic acid | 0.1–1000 µM | 0.1 µM | 0.2 V | Human whole blood | [95] | |
Au electrode/ZnONPs-polypyrrole | 100–3000 µM | 50 µM | 0.27 V | Human whole blood | [96] | |
Au electrode/amino, core-shell magnetic bionanoparticles | 0–2000 µM | 100 µM | 0.05 V | Human serum | [99] | |
ITO electrode/ZnO, N-5-azido-2-nitro-benzoyloxysuccinimide | 0.1–2000 µM | 0.1 µM | 0.2 V | Human whole blood | [101] | |
SPE/- | 0–8000 µM | - | - | FV reagent | [102] | |
SPE/tris(hydroxymethyl)aminomethane, Prussian blue | 100–2000 µM | 100 µM | - | HbA1c reagent | [103] | |
FPOX | FTO glass electrode/AuNPs, GO, CHIT | 100–2000 µM(FVH) | 0.3 µM | 0.3 V | Human whole blood | [104] |
FIA/spectrophotometer, FPOX-CET detector | 2.66–11.84% (HbA1c) | - | - | Human whole blood | [107] | |
FIA, Au electrode/PES-modified engineered FPOX | 20–500 µM (FV) 20–500 µM (FVH) | 1.3 µM/2.0 µM | 0 V | HbA1c reagent | [106] | |
MIC | Carbon paste electrode/polyvinylimidazole (PVI) | 20–700 µM | 20 µM | - | FV reagent | [81] |
GCE/molecularly imprinted catalyst | 200–800 µM | - | - | FV reagent | [111] | |
Au electrode/1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide | 50–600 µM | - | - | FV reagent | [113] |
Type | Advantages | Disadvantages | References |
---|---|---|---|
Boric acid amperometric sensor | Easy to be chemically modified Short response time Wide detection range Simple fabrication process | Poor specificity Needs pretreatment of blood samples | [32,34,35,36,37,38,39,40,41,42,43,44,45] |
Ferrocene amperometric sensor | Good specificity Good selectivity Wide detection range High sensitivity | Iron ion is easy to oxidize and has poor stability HbA1c should be labeled | [23,47,48,49] |
Aptamer amperometric sensor | Good specificity Easy to chemically modify Good stability | Complex manufacturing process Needs screen for aptamers High price | [50,51,52,53,54] |
Antibody amperometric sensor | Good stability Good specificity Easy to purchase Good stability | Poor sensitivity Long manufacturing time High price Susceptible to temperature, pH | [55,56,57] |
Potentiometric sensor | High sensitivity Good stability Short response time | Antibody labeling Susceptible to temperature, pH Complex manufacturing process | [60,63,66] |
Impedimetric sensor | Good repeatability Wide detection range | Redox is required to accelerate electron transfer Poor repeatability | [73,74,75,76,77] |
FAO type | Wide detection range Easy to chemically modify Short response time Low detection limit | Specificity to be improved High detection limit Non-continuous measurement | [92,93,94,96,97,98,99,100,101,102,103] |
FPOX type | Multi-sample continuous automatic analysis Good specificity | Complex manufacturing process Need mutagenesis or modification Poor oxidation activity | [104,105,106,107] |
MIC type | Reusable Customizable High sensitivity | Complex manufacturing process Susceptible to impurities Non-continuous measurement Oxidation activity needs to be improved | [81,82,108,109,110,111,112,113] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhan, Z.; Li, Y.; Zhao, Y.; Zhang, H.; Wang, Z.; Fu, B.; Li, W.J. A Review of Electrochemical Sensors for the Detection of Glycated Hemoglobin. Biosensors 2022, 12, 221. https://doi.org/10.3390/bios12040221
Zhan Z, Li Y, Zhao Y, Zhang H, Wang Z, Fu B, Li WJ. A Review of Electrochemical Sensors for the Detection of Glycated Hemoglobin. Biosensors. 2022; 12(4):221. https://doi.org/10.3390/bios12040221
Chicago/Turabian StyleZhan, Zhikun, Yang Li, Yuliang Zhao, Hongyu Zhang, Zhen Wang, Boya Fu, and Wen Jung Li. 2022. "A Review of Electrochemical Sensors for the Detection of Glycated Hemoglobin" Biosensors 12, no. 4: 221. https://doi.org/10.3390/bios12040221
APA StyleZhan, Z., Li, Y., Zhao, Y., Zhang, H., Wang, Z., Fu, B., & Li, W. J. (2022). A Review of Electrochemical Sensors for the Detection of Glycated Hemoglobin. Biosensors, 12(4), 221. https://doi.org/10.3390/bios12040221