Elimination Reaction-Based Benzimidazole Probe for Cysteine Detection and Its Application in Serum Sample Analysis
Abstract
:1. Introduction
2. Material and Methods
2.1. Reagents and Instruments
2.2. Synthesis of 2-(p-Tolyl)-1H-benzo[d]imidazole (3)
2.3. Synthesis 1-(2-(p-Tolyl)-1H-benzo[d]imidazol-1-yl)prop-2-en-1-one (A-B)
2.4. Determination of Selectivity and Sensitivity of A-B
2.5. Effect of pH on Cys Detection and Quantum Yield Compound 3
2.6. Determination of Limit of Detection (LOD)
2.7. Determination of Cysteine in Serum Sample
3. Results and Discussion
3.1. Synthesis and Characterization of Compound 3 and Probe A-B
3.2. A-B Is Highly Selective for Cys
3.3. Interference Study for the Detection of Cys by A-B
3.4. Effect of pH on Cys Detection
3.5. Quantum Yield Measurement of Compound 3
3.6. Calibration Curve and Determination of LOD
3.7. Detection of Cys by A-B in Serum Sample
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Poole, L.B. The basics of thiols and cysteines in redox biology and chemistry. Free Radic. Biol. Med. 2015, 80, 148–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fomenko, D.E.; Xing, W.; Adair, B.M.; Thomas, D.J.; Gladyshev, V.N. High-throughput identification of catalytic redox-active cysteine residues. Science 2007, 315, 387–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnér, E.S.J. Selenoproteins—What unique properties can arise with selenocysteine in place of cysteine? Exp. Cell Res. 2010, 316, 1296–1303. [Google Scholar] [CrossRef] [PubMed]
- König, J.; Muthuramalingam, M.; Dietz, K.-J. Mechanisms and dynamics in the thiol/disulfide redox regulatory network: Transmitters, sensors and targets. Curr. Opin. Plant Biol. 2012, 15, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Ko, E.Y.; Nile, S.H.; Jung, Y.S.; Keum, Y.S. Antioxidant and antiplatelet potential of different methanol fractions and flavonols extracted from onion (Allium cepa L.). 3 Biotech 2018, 8, 155. [Google Scholar] [CrossRef]
- Nile, A.; Nile, S.H.; Shin, J.; Park, G.; Oh, J.W. Quercetin-3-Glucoside Extracted from Apple Pomace Induces Cell Cycle Arrest and Apoptosis by Increasing Intracellular ROS Levels. Int. J. Mol. Sci. 2021, 22, 749. [Google Scholar] [CrossRef]
- Deneke, S.M. Thiol-based antioxidants. In Current Topics in Cellular Regulation; Stadtman, E.R., Chock, P.B., Eds.; Academic Press: Cambridge, MA, USA, 2001; Volume 36, pp. 151–180. [Google Scholar]
- Ulrich, K.; Jakob, U. The role of thiols in antioxidant systems. Free Radic. Biol. Med. 2019, 140, 14–27. [Google Scholar] [CrossRef]
- Miura, Y.; Honda, S.; Masuda, A.; Masuda, T. Antioxidant activities of cysteine derivatives against lipid oxidation in anhydrous media. Biosci. Biotechnol. Biochem. 2014, 78, 1452–1455. [Google Scholar] [CrossRef]
- Jones, C.L.; Stevens, B.M.; D’Alessandro, A.; Culp-Hill, R.; Reisz, J.A.; Pei, S.; Gustafson, A.; Khan, N.; DeGregori, J.; Pollyea, D.A.; et al. Cysteine depletion targets leukemia stem cells through inhibition of electron transport complex II. Blood 2019, 134, 389–394. [Google Scholar] [CrossRef]
- Johanna, A.; Tabita, M.; Francisco, A.; Franco, T.; Cristian, V.; Felipe, S.; Marco, A.; Daniel, C.; Claudio, C.-V. N-Acetyl Cysteine Attenuates the Sarcopenia and Muscle Apoptosis Induced by Chronic Liver Disease. Curr. Mol. Med. 2020, 20, 60–71. [Google Scholar] [CrossRef]
- Jacob, N.; Bruckert, E.; Giral, P.; Foglietti, M.J.; Turpin, G. Cysteine is a cardiovascular risk factor in hyperlipidemic patients. Atherosclerosis 1999, 146, 53–59. [Google Scholar] [CrossRef]
- Kaur, N.; Chopra, S.; Singh, G.; Raj, P.; Bhasin, A.; Sahoo, S.K.; Kuwar, A.; Singh, N. Chemosensors for biogenic amines and biothiols. J. Mater. Chem. B 2018, 6, 4872–4902. [Google Scholar] [CrossRef]
- Guan, Y.; Qu, S.; Li, B.; Zhang, L.; Ma, H.; Zhang, L. Ratiometric fluorescent nanosensors for selective detecting cysteine with upconversion luminescence. Biosens. Bioelectron. 2016, 77, 124–130. [Google Scholar] [CrossRef]
- Yamane, S.; Nomura, R.; Yanagihara, M.; Nakamura, H.; Fujino, H.; Matsumoto, K.; Horie, S.; Murayama, T. L-cysteine/d,L-homocysteine-regulated ileum motility via system L and B°,+ transporter: Modification by inhibitors of hydrogen sulfide synthesis and dietary treatments. Eur. J. Pharmacol. 2015, 764, 471–479. [Google Scholar] [CrossRef]
- Olson, O.C.; Joyce, J.A. Cysteine cathepsin proteases: Regulators of cancer progression and therapeutic response. Nat. Rev. Cancer 2015, 15, 712–729. [Google Scholar] [CrossRef]
- Liu, J.; Liu, M.; Zhang, H.; Wei, X.; Wang, J.; Xian, M.; Guo, W. Exploring cysteine regulation in cancer cell survival with a highly specific “Lock and Key” fluorescent probe for cysteine. Chem. Sci. 2019, 10, 10065–10071. [Google Scholar] [CrossRef] [Green Version]
- Daher, B.; Vučetić, M.; Pouysségur, J. Cysteine Depletion, a Key Action to Challenge Cancer Cells to Ferroptotic Cell Death. Front. Oncol. 2020, 10, 723. [Google Scholar] [CrossRef]
- Dröge, W. Oxidative stress and ageing: Is ageing a cysteine deficiency syndrome? Philos. Trans. R. Soc. B Biol. Sci. 2005, 360, 2355–2372. [Google Scholar] [CrossRef]
- Rehman, T.; Shabbir, M.A.; Inam-Ur-Raheem, M.; Manzoor, M.F.; Ahmad, N.; Liu, Z.-W.; Ahmad, M.H.; Siddeeg, A.; Abid, M.; Aadil, R.M. Cysteine and homocysteine as biomarker of various diseases. Food Sci. Nutr. 2020, 8, 4696–4707. [Google Scholar] [CrossRef]
- Dong, B.; Lu, Y.; Zhang, N.; Song, W.; Lin, W. Ratiometric Imaging of Cysteine Level Changes in Endoplasmic Reticulum during H2O2-Induced Redox Imbalance. Anal. Chem. 2019, 91, 5513–5516. [Google Scholar] [CrossRef] [Green Version]
- Singh, G.; Bains, D.; Singh, H.; Kaur, N.; Singh, N. Polydentate Aromatic Nanoparticles Complexed with Cu2+ for the Detection of Cysteamine Using a Smartphone as a Portable Diagnostic Tool. ACS Appl. Nano Mater. 2019, 2, 5841–5849. [Google Scholar] [CrossRef]
- Wang, J.; Li, B.; Zhao, W.; Zhang, X.; Luo, X.; Corkins, M.E.; Cole, S.L.; Wang, C.; Xiao, Y.; Bi, X.; et al. Two-Photon Near Infrared Fluorescent Turn-On Probe Toward Cysteine and Its Imaging Applications. ACS Sens. 2016, 1, 882–887. [Google Scholar] [CrossRef]
- Guan, Y.-S.; Niu, L.-Y.; Chen, Y.-Z.; Wu, L.-Z.; Tung, C.-H.; Yang, Q.-Z. A near-infrared fluorescent sensor for selective detection of cysteine and its application in live cell imaging. RSC Adv. 2014, 4, 8360–8364. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, J.; Xiang, H.; Ying, L.; Wu, C.; Zhou, H.; Liu, H. A new near-infrared ratiometric fluorescent probe based on quinoline-fused rhodamine dye for sensitive detection of cysteine and homocysteine in mitochondria. Dyes Pigments 2020, 183, 108710. [Google Scholar] [CrossRef]
- Sun, X.; Gao, A.; Zhang, H. Sensing mechanism of a ratiometric near-infrared fluorescent chemosensor for cysteine hydropersulfide: Intramolecular charge transfer. Sci. Rep. 2020, 10, 711. [Google Scholar] [CrossRef] [Green Version]
- Odyniec, M.L.; Park, S.-J.; Gardiner, J.E.; Webb, E.C.; Sedgwick, A.C.; Yoon, J.; Bull, S.D.; Kim, H.M.; James, T.D. A fluorescent ESIPT-based benzimidazole platform for the ratiometric two-photon imaging of ONOO−in vitro and ex vivo. Chem. Sci. 2020, 11, 7329–7334. [Google Scholar] [CrossRef]
- Kaur, H.; Singh, N.; Kaur, N.; Jang, D.O. Nano-aggregate-Fe3+ complex based on benzimidazole-modified calix[4]arene for amplified fluorescence detection of ADP in aqueous media. Sens. Actuators B Chem. 2019, 284, 193–201. [Google Scholar] [CrossRef]
- Majumdar, A.; Mondal, S.; Daniliuc, C.G.; Sahu, D.; Ganguly, B.; Ghosh, S.; Ghosh, U.; Ghosh, K. α-Amino Acid Derived Benzimidazole-Linked Rhodamines: A Case of Substitution Effect at the Amino Acid Site toward Spiro Ring Opening for Selective Sensing of Al3+ Ions. Inorg. Chem. 2017, 56, 8889–8899. [Google Scholar] [CrossRef]
- Suman, G.R.; Bubbly, S.G.; Gudennavar, S.B.; Gayathri, V. Benzimidazole and benzothiazole conjugated Schiff base as fluorescent sensors for Al3+ and Zn2+. J. Photochem. Photobiol. A Chem. 2019, 382, 111947. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, Y.; Meng, X.; Zhao, D.; Zhang, D.; Wang, L.; Liu, C. A Simple Zn2+ Complex-Based Composite System for Efficient Gene Delivery. PLoS ONE 2016, 11, e0158766. [Google Scholar] [CrossRef]
- Maji, A.; Pal, S.; Lohar, S.; Mukhopadhyay, S.K.; Chattopadhyay, P. A new turn-on benzimidazole-based greenish-yellow fluorescent sensor for Zn2+ ions at biological pH applicable in cell imaging. New J. Chem. 2017, 41, 7583–7590. [Google Scholar] [CrossRef]
- Lee, J.-S.; Song, I.-H.; Warkad, S.D.; Yeom, G.S.; Nimse, S.B. An abiotic fluorescent probe for the detection and quantification of carcinoembryonic antigen. Bioorgan. Chem. 2022, 119, 105490. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, J.; Yu, Y.; Han, Q.; Cheng, T.; Shen, J.; Wang, B.; Jiang, Y. A novel near-infrared fluorescent probe for highly selective detection of cysteine and its application in living cells. Talanta 2018, 185, 477–482. [Google Scholar] [CrossRef]
- Zeng, R.-F.; Lan, J.-S.; Li, X.-D.; Liang, H.-F.; Liao, Y.; Lu, Y.-J.; Zhang, T.; Ding, Y. A Fluorescent Coumarin-Based Probe for the Fast Detection of Cysteine with Live Cell Application. Molecules 2017, 22, 1618. [Google Scholar] [CrossRef] [Green Version]
- Tang, L.; Xu, D.; Tian, M.; Yan, X. A mitochondria-targetable far-red emissive fluorescence probe for highly selective detection of cysteine with a large Stokes shift. J. Lumin. 2019, 208, 502–508. [Google Scholar] [CrossRef]
- Yang, S.; Zeng, Q.; Guo, Q.; Chen, S.; Liu, H.; Liu, M.; McMahon, M.T.; Zhou, X. Detection and differentiation of Cys, Hcy and GSH mixtures by 19F NMR probe. Talanta 2018, 184, 513–519. [Google Scholar] [CrossRef]
- Long, Y.; Liu, J.; Tian, D.; Dai, F.; Zhang, S.; Zhou, B. Cooperation of ESIPT and ICT Processes in the Designed 2-(2′-Hydroxyphenyl)benzothiazole Derivative: A Near-Infrared Two-Photon Fluorescent Probe with a Large Stokes Shift for the Detection of Cysteine and Its Application in Biological Environments. Anal. Chem. 2020, 92, 14236–14243. [Google Scholar] [CrossRef]
- Li, J.; Zhang, C.-F.; Yang, S.-H.; Yang, W.-C.; Yang, G.-F. A Coumarin-Based Fluorescent Probe for Selective and Sensitive Detection of Thiophenols and Its Application. Anal. Chem. 2014, 86, 3037–3042. [Google Scholar] [CrossRef]
- Yang, X.; Guo, Y.; Strongin, R.M. Conjugate Addition/Cyclization Sequence Enables Selective and Simultaneous Fluorescence Detection of Cysteine and Homocysteine. Angew. Chem. Int. Ed. 2011, 50, 10690–10693. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.-W.; Wang, M.-Y.; Yin, D.; Zhang, X. Facile preparation of naphthol AS-based fluorescent probe for highly selective detection of cysteine in aqueous solution and its imaging application in living cells. Sens. Actuators B Chem. 2017, 248, 332–337. [Google Scholar] [CrossRef]
- Long, G.L.; Winefordner, J.D. Limit of Detection A Closer Look at the IUPAC Definition. Anal. Chem. 1983, 55, 712A–724A. [Google Scholar] [CrossRef]
- Baig, M.F.; Shaik, S.P.; Nayak, V.L.; Alarifi, A.; Kamal, A. Iodine-catalyzed Csp3-H functionalization of methylhetarenes: One-pot synthesis and cytotoxic evaluation of heteroarenyl-benzimidazoles and benzothiazole. Bioorgan. Med. Chem. Lett. 2017, 27, 4039–4043. [Google Scholar] [CrossRef]
- Yaragorla, S.; Vijaya Babu, P. Oxidative Csp3-H functionalization of 2-methylazaarenes: A practical synthesis of 2-azaarenyl-benzimidazoles and benzothiazoles. Tetrahedron Lett. 2017, 58, 1879–1882. [Google Scholar] [CrossRef]
- Raghuvanshi, S.R.; Yadav, V.P.; Singh, V.K. Superoxide Ion Promoted Synthesis of 2-Arylbenzimidazoles from Schiff Bases. Lett. Org. Chem. 2016, 13, 67–70. [Google Scholar] [CrossRef]
- Lee, J.-S.; Song, I.-H.; Warkad, S.D.; Yeom, G.S.; Shinde, P.B.; Song, K.-S.; Nimse, S.B. Synthesis and evaluation of 2-aryl-1H-benzo[d]imidazole derivatives as potential microtubule targeting agents. Drug Dev. Res. 2022. [Google Scholar] [CrossRef]
- Ravi, O.; Shaikh, A.; Upare, A.; Singarapu, K.K.; Bathula, S.R. Benzimidazoles from Aryl Alkyl Ketones and 2-Amino Anilines by an Iodine Catalyzed Oxidative C(CO)–C(alkyl) Bond Cleavage. J. Org. Chem. 2017, 82, 4422–4428. [Google Scholar] [CrossRef]
- Dai, Y.; Zheng, Y.; Xue, T.; He, F.; Ji, H.; Qi, Z. A novel fluorescent probe for rapidly detection cysteine in cystinuria urine, living cancer/normal cells and BALB/c nude mice. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 225, 117490. [Google Scholar] [CrossRef]
- Blicharska, B.; Witek, M.; Fornal, M.; MacKay, A.L. Estimation of free copper ion concentrations in blood serum using T1 relaxation rates. J. Magn. Reson. 2008, 194, 41–45. [Google Scholar] [CrossRef]
- Wang, N.; Chen, M.; Gao, J.; Ji, X.; He, J.; Zhang, J.; Zhao, W. A series of BODIPY-based probes for the detection of cysteine and homocysteine in living cells. Talanta 2019, 195, 281–289. [Google Scholar] [CrossRef]
- Ueland, P.M. Homocysteine species as components of plasma redox thiol status. Clin. Chem. 1995, 41, 340–342. [Google Scholar] [CrossRef] [Green Version]
- Murphy, G.; Fan, J.H.; Mark, S.D.; Dawsey, S.M.; Selhub, J.; Wang, J.; Taylor, P.R.; Qiao, Y.L.; Abnet, C.C. Prospective study of serum cysteine levels and oesophageal and gastric cancers in China. Gut 2011, 60, 618–623. [Google Scholar] [CrossRef]
- Rusakowicz, R.; Testa, A.C. 2-Aminopyridine as a standard for low-wavelength spectrofluorimetry. J. Phys. Chem. 1968, 72, 2680–2681. [Google Scholar] [CrossRef]
- Yin, G.; Niu, T.; Yu, T.; Gan, Y.; Sun, X.; Yin, P.; Chen, H.; Zhang, Y.; Li, H.; Yao, S. Simultaneous Visualization of Endogenous Homocysteine, Cysteine, Glutathione, and their Transformation through Different Fluorescence Channels. Angew. Chem. Int. Ed. 2019, 58, 4557–4561. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, B.; Ye, Y.; Chen, W.; Song, X. A ratiometric fluorescent probe for simultaneous detection of Cys/Hcy and GSH. Org. Biomol. Chem. 2019, 17, 9631–9635. [Google Scholar] [CrossRef]
- Tao, Y.; Ji, X.; Zhang, J.; Jin, Y.; Wang, N.; Si, Y.; Zhao, W. Detecting Cysteine in Bioimaging with a Near-Infrared Probe Based on a Novel Fluorescence Quenching Mechanism. ChemBioChem 2020, 21, 3131–3136. [Google Scholar] [CrossRef]
- Xiong, K.; Huo, F.; Chao, J.; Zhang, Y.; Yin, C. Colorimetric and NIR Fluorescence Probe with Multiple Binding Sites for Distinguishing Detection of Cys/Hcy and GSH in Vivo. Anal. Chem. 2019, 91, 1472–1478. [Google Scholar] [CrossRef]
- Jung, J.M.; Kim, C.; Harrison, R.G. A dual sensor selective for Hg2+ and cysteine detection. Sens. Actuators B Chem. 2018, 255, 2756–2763. [Google Scholar] [CrossRef]
- Yin, H.-F.; Gao, M.-J.; Jiang, W.-J.; Gan, Y.-H.; Li, C.; Kang, Y.-F.; Meng, Y.-L.; Xin, Z.-H. A simple probe with visible color change for selective detection of cysteine. Spectrosc. Lett. 2020, 53, 664–670. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, J.; Liu, J.; Ning, L.; Zhu, X.; Yu, B.; Liu, X.; Yao, X.; Zhang, H. Near-Infrared and Naked-Eye Fluorescence Probe for Direct and Highly Selective Detection of Cysteine and Its Application in Living Cells. Anal. Chem. 2015, 87, 4856–4863. [Google Scholar] [CrossRef]
- Zhao, C.; Li, X.; Wang, F. Target-Triggered NIR Emission with a Large Stokes Shift for the Detection and Imaging of Cysteine in Living Cells. Chem.-Asian J. 2014, 9, 1777–1781. [Google Scholar] [CrossRef]
- Xue, S.; Ding, S.; Zhai, Q.; Zhang, H.; Feng, G. A readily available colorimetric and near-infrared fluorescent turn-on probe for rapid and selective detection of cysteine in living cells. Biosens. Bioelectron. 2015, 68, 316–321. [Google Scholar] [CrossRef]
Analysis Method | [Cys] (μM) | |||
---|---|---|---|---|
Spiked | Found | Recovery (%) | RSD (%) (n = 3) | |
Fluorescence spectroscopy | 2 | 2.20 | 110.1 | 0.10 |
4 | 3.80 | 94.5 | 0.19 | |
6 | 5.96 | 99.3 | 0.11 | |
UV−vis spectroscopy | 2 | 2.30 | 114.4 | 0.06 |
4 | 4.24 | 106.1 | 0.10 | |
6 | 6.31 | 105.2 | 0.21 |
Probe | LOD (nM) | Solvent System | Method | Ref. |
---|---|---|---|---|
0.2 | DMSO: PBS buffer (40:60) | Fluorescence | [54] | |
12 | DMF: PBS buffer (30:70) | Fluorescence | [55] | |
118 | CH3CN | Fluorescence | [56] | |
228 | PBS | Fluorescence | [57] | |
100 | Bis-tris buffer | UV−visible | [58] | |
170 | PBS buffer:CH3CN (80:20) | Fluorescence | [59] | |
160 | HEPES buffer | Fluorescence | [60] | |
233 | PBS buffer:CH3CN (50:50) | Fluorescence | [61] | |
180 | PBS buffer: DMSO (60:40) | Fluorescence | [62] | |
43 | HEPES buffer | Fluorescence | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, I.-h.; Yeom, G.S.; Kuwar, A.; Nimse, S.B. Elimination Reaction-Based Benzimidazole Probe for Cysteine Detection and Its Application in Serum Sample Analysis. Biosensors 2022, 12, 224. https://doi.org/10.3390/bios12040224
Song I-h, Yeom GS, Kuwar A, Nimse SB. Elimination Reaction-Based Benzimidazole Probe for Cysteine Detection and Its Application in Serum Sample Analysis. Biosensors. 2022; 12(4):224. https://doi.org/10.3390/bios12040224
Chicago/Turabian StyleSong, In-ho, Gyu Seong Yeom, Anil Kuwar, and Satish Balasaheb Nimse. 2022. "Elimination Reaction-Based Benzimidazole Probe for Cysteine Detection and Its Application in Serum Sample Analysis" Biosensors 12, no. 4: 224. https://doi.org/10.3390/bios12040224
APA StyleSong, I. -h., Yeom, G. S., Kuwar, A., & Nimse, S. B. (2022). Elimination Reaction-Based Benzimidazole Probe for Cysteine Detection and Its Application in Serum Sample Analysis. Biosensors, 12(4), 224. https://doi.org/10.3390/bios12040224