Graphene-Based Biosensors for Molecular Chronic Inflammatory Disease Biomarker Detection
Abstract
:1. Introduction
2. Inflammatory Disease Biomarkers
3. Graphene and Graphene-Derivative Materials, Classification, and Properties
3.1. Graphene
3.2. Graphene Oxide (GO)
3.3. Reduced Graphene Oxide (rGO)
3.4. Graphene and GDMs Modifications
4. Biosensors Techniques Based on GDMs, Fabrication, and Applications in ID
4.1. Electrochemical Biosensors
4.1.1. (A) Amperometric
4.1.2. (B) Potentiometric
4.1.3. (C) Conductimetric
4.1.4. (D) Electrochemiluminescence
4.2. Design and Fabrication of Electrochemical Biosensors Based on GDMs
Applications of Electrochemical Biosensors in Detection of ID Biomarkers
4.3. Optical Detection Biosensors
Biomarker | Sensing Platform Design | Surface Modification | Detection Method | LOD | Detection Range | Type of Sample | Ref. |
---|---|---|---|---|---|---|---|
IL-6 | ErGO-AuPdNPs and AgNPs | anti-IL6 | DPV | 0.059 pg/mL | 0.1–100,000 pg/mL | PBS buffer and serum proteins | [135] |
GFET-based BioMEMS platform | PTDA aptamers | Impedance | 8 pM | 100 pM–100 nM | PBS buffer | [139] | |
Ab2-GO-NB/Au-ph-GO-PPC | anti-IL-6-NB label | SWV | 1 pg/mL | 1–300 pg/mL | mouse cells and live mice | [132] | |
AuNP-graphene-silica/ITO | HRP-Ab2-AuNP-PDA@CNT label | Impedance | 0.3 pg/mL | 1–40 pg/mL | PBS buffer and clinical serum | [140] | |
electrolyte-gated GFET | Aptamer | GFET | 0.139 pM | 0.0015–100 nM | PBS buffer | [141] | |
GNRs-modified HSPCE | anti-IL-6/PS @ PDA/Ag NPs | SWV | 0.1 pg/mL | 1 × 10–1 × 10 ng/mL | PBS buffer and clinical serum | [144] | |
crumpled graphene FET | Antibody anti-IL-6 | FET | 1 aM | PBS buffer solution | [143] | ||
AuNPs/S-GQD/QCM chip and h-ZnS-CdS NC | anti-IL-6 | CV and EIS | 3.33 fg/mL | 0.01–12.0 pg/mL | Buffer solution and spiked plasma | [128] | |
ECVDGO-liquid-gated FET | anti-IL-6 | FET | 1.53 pg/mL | 1.53–300 pg/mL | PBS buffer | [142] | |
Il-6 and IL-17 | GC/graphene-AuNps-Ab1 | AuNP-anti-IL-6 and Ps-anti-IL-17 | SWV | IL-6: 0.5 pg/mL; IL-17:1 pg/mL | IL-6: 1 pg/mL–1 ng/mL; IL-17: 2 pg/mL–1 ng/mL | PBS solution and clinical serum | [145] |
TNF- | Au-RGO-ph-AuNP-ph-PPC | anti-TNF- | Amperometry | 0.1 pg/mL | 0.1–150 pg/mL | PBS buffer and live BV-2 cells | [133] |
AuNP-rGO/ITO microelectrode | anti-TNF- | EIS | 0.43 pg/mL | 1–1000 pg/mL | PBS buffer | [190] | |
AuNP-RGO/MDEAs | anti-TNF- | EIS | 0.78 pg/mL | 1–1000 pg/mL | Buffer and spiked human serum | [127] | |
Ag@Pt-rGO nanocomposite | TNF- aptamer | DPV, SWV | 2.07 pg/mL | 2.07–60 pg/mL | PBS buffer and spiked human serum | [149] | |
TNF-, IL-6, and IL-1 | Ab-GO-loaded NB, MB, Fc | anti-IL-6, anti-IL-1, and anti-TNF- | SWV | TNF-: 5 pg/mL; IL-6: 5 pg/mL IL-1: 5 pg/mL | TNF- : 5–200 pg/mL; IL-6: 5–150 pg/mL; IL-1: 5–200 pg/mL | PBS buffer and spiked whole mouse serum | [146] |
TNF- and IFN- | Au-GO/SA | biotin-IFN- aptamer-MB; biotin-TNF- aptamer-Fc | CV, SWV and chronoamperometry | 5 pg/mL for each cytokine | IFN-: 2–300 pg/mL; TNF-: 5–200 pg/mL | Tris buffer and spiked serum and artificial sweat | [148] |
IL-6, TNF- and IFN- | monolayer graphene/Cu electrode | label-free | EIS | 175 kDa total cytokine mass | Clinical patient serum | [147] | |
IFN- | GC-ph-GO | Aptamer(Ru), label | CV and SWV | 1.3 pg/mL | 1.3–210 pg/mL | Tris buffer, peripheral blood cells and mice interstitial fluids | [131] |
IFN- and IL-10 | AJP graphene IDE | anti-IFN- and anti-IL-10 | EIS | IFN-: 25 pg/mL and IL-10: 46 pg/mL | IFN-: 0.1–5 ng/mL; IL-10: 0.1–2 ng/mL | PBS buffer and bovine implant serum | [134] |
IL-8 | FeO@GO@MIP nanoparticles | MIP NPs | CV and DPV | 0.04 pM | 0.1 to 10 pM | phosphate buffer and human saliva | [150] |
anti-IL8/AuNPs-rGO/ITO | anti-IL-8 | DPV | 72.73 pg/mL | 500 fg/mL to 4 ng/mL | PBS buffer and spiked human saliva | [151] | |
anti-IL8/ZnO-rGO/ITO | anti-IL-8 | DPV | 51.53 pg/mL | 100 fg/mL–5 ng/mL | PBS buffer and spiked human saliva | [152] | |
IL-4 | rGO/chitosan/GCE | anti-IL-4 | EIS | 80 pg/mL | 0.1 to 50 ng/mL | Phosphate buffer | [191] |
IL-13 | MWCNTs/GQDs nanocomposite | BCAb and hybrid MWCNTs/GQDs-HRP-DAb | CV and EIS | 0.8 ng/mL | 2.7 to 100 ng/mL | PBS buffer, cells lysates and tissues extracts | [153] |
IL-15 | GO/SPCE electrode | anti-IL-15 | DPV | 3.51 ng/mL | 5–100 ng/mL | PBS buffer | [154] |
IL-22 | PDDA-G/AuNPs/ITO | anti-IL-22 | DPV | 0.5 pg/mL | 5 to 5000 pg/mL | PBS buffer | [155] |
cTnI | APTES/nMoSe-rGO/ITO | anti-cTnI | CV | 1 fg/mL | 1 fg/mL–100 ng/mL | PBS buffer | [156] |
PrGO/GC | anti-cTnI | EIS | 0.07 ng/mL | 0.1–10 ng/mL | PBS buffer and clinical samples | [158] | |
AgNP/MoSO/rGO | Aptamer anti-cTnI | EIS and DPV | 0.27 pg/mL | 0.3 pg/mL to 0.2 ng/mL | Tris-HCl buffer | [159] | |
LSG-ZnFeO aptasensor | Aptamer anti-cTnI | CV and SWV | 0.001 ng/mL | 0.001 ng/mL to 200 ng/mL | Buffer and spiked in human serum samples | [157] | |
GQDs/AuNPs/SPGE | anti-cTnI | SWV, CV and EIS | 0.1 pg/mL buffer; 0.5 pg/mL serum | 1–1000 pg/mL buffer; 10–1000 pg/mL serum | Sodium acetate buffer and spiked human serum | [160] | |
N-doped porous-rGO | Tro4 aptamer | DPV | 1 pg/mL | 0.001–100 ng/mL | PBS buffer and spiked human serum and saliva | [162] | |
Microfluidic APTES-MnO-RGO/ITO | anti-cTnI | EIS | 8 pg/mL | 0.008–20 ng/mL | PBS, spiked and clinical serum samples | [161] | |
GOPRu–Au hybrid | anti-cTnI | ECL-RET | 3.94 fg/mL | 10 fg/mL–10 ng/mL | PBS and spiked human serum | [166] | |
SPE-rGO/PEI | anti-cTnI | DPV | 1 pg/mL | 1 pg/mL–10 ng/mL | PBS buffer and clinical serum samples | [164] | |
Au NCs-GQDs-Ab2 | anti-cTnI | ECL | 354.2 fg/mL | 500 fg/mL–20 ng/mL | PBS and spiked human serum | [167] | |
Apt-CES-GO/SPE | anti-cTnI | Amperometry | 0.6 pg/mL | 1.0 pg/mL to 1.0 g/mL | Sodium phosphate buffer | [165] | |
CuNWs/MoS/rGO | aptamer AcTnI | DPV | 0.1 pg/mL | 0.5 pg/mL–100 pg/mL | PBS buffer and spiked human serum | [163] | |
ABEI@GQDs | anti-cTnI | ECL | 0.35 fg/mL | 1.0 fg/mL to 5.0 pg/mL | Buffer and clinical serum samples | [168] | |
BNP | BN-GO | BNP Ab (50E1) | FET | 10 aM | 10 aM M | Buffer solution | [169] |
PtNPs-rGO | anti-BNP | FET | 100 fM | 100 fM nM | PBS buffer and whole human blood | [170] | |
CRP | rGOx-GA-BSA/Au | anti-CRP | CV | 0.492 g/mL | 0.63–3.76 g/mL | Buffer, serum and diluted whole blood | [173] |
Ir NPs/GO-DN | anti-CRP | Chronoampe- rometry | 3.3 pg/mL | 0.01–100 ng/mL | PBS buffer and spiked in human serum | [172] | |
SPCE/GQDs/anti-CRP | anti-CRP | Amperometry, DPV | 0.036 ng/mL | 0.5–10 ng/mL | PBS and spiked in Ringer lactate solution | [174] | |
PyNHS/rGO/SPCE | anti-CRP | EIS | 10 ng/mL | 10 g/mL–10 ng/mL | PBS buffer | [171] | |
PSA | GO/AuNPs composite | anti-total PSA and anti-free PSA | SWV and CV | total PSA: 0.2 ng/mL; free PSA: 0.07 ng/mL | PBS buffer | [175] | |
MDA | PARG-GQDs-GC | PARG | CV | 0.329 nM | 0.06–0.2 M | PBS buffer and EBC | [176] |
8-OHdG | ZnO NRs and ZnO NRs:rGO | anti-8-OHdG | CV | 100 fg/mL | 0.001–5.00 ng/mL | PBS buffer and spiked human urine | [177] |
ZnO NRs and ZnO NRs:rGO | anti-8-OHdG | CV | 100 fg/mL | 0.001–5.00 ng/mL | PBS buffer and spiked human urine | [177] | |
C SNPs@GOS/GCE label-free | - | CV | 8.75 nM | 0.02–1465 M | Blood serum and urine | [178] | |
GO–COOH/MWCNT–COOH/PEI/AuNP/GCE label-free | - | CV and DPV | 7.06 nM | 0.14–1.41 M | Buffer and human urine | [179] | |
D -rGO/SPCE label-free | - | Amperometry | 1.02 nM | 0.05–135.3 M | Human urine and blood serum | [186] | |
MWCNT-rGO/GCE label-free | - | SWV | 35 nM | 3–75 M | Buffer and human urine sample | [187] | |
P-Arg/ErGO-AuNPs/GCE electrode label-free | - | DPV | 1.0 nM | 1–100 nM | Human urine sample | [182] | |
ZnO-NFs/GOS/SPCE label-free | - | EIS | 8.67nM | 0.05–536.5 M | Buffer and human urine sample | [188] | |
ZnO/rGO/GCE/SPCE label-free | - | DPV | 1.25 nM | 5–5000 nM | Phosphate buffer and clinical human urine | [183] | |
Cyfra-21-1 | ncCe–rGO/ITO | anti-Cyfra-21-1 | DPV | 0.625 pg/mL | 0.625 pg/mL–0.01 ng/mL | PBS buffer and spiked human saliva | [192] |
4.3.1. (A) Surface Plasmon Resonance Biosensors (SPR)
4.3.2. (B) Surface-Enhanced Raman Scattering (SERS) and Graphene-Enhanced Raman Scattering (GERS)
4.3.3. (C) Fluorescence Resonance Energy Transfer (FRET)
4.3.4. (D) Chemiluminescence Resonance Energy Transfer (CRET)
4.4. Design and Fabrication of Optical Biosensors Based on GDMs
Applications of Optical Biosensors in ID biomarkers
4.5. Wearable-Remote-Portable Biosensors
Applications of Portable-Remote-Wearable Biosensors in ID Biomarkers
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Slavich, G.M. Understanding inflammation, its regulation, and relevance for health: A top scientific and public priority. Brain Behav. Immun. 2015, 45, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W.; et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 2019, 25, 1822–1832. [Google Scholar] [CrossRef] [PubMed]
- Karin, M.; Clevers, H. Reparative inflammation takes charge of tissue regeneration. Nature 2016, 529, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Mosser, D.M.; Hamidzadeh, K.; Goncalves, R. Macrophages and the maintenance of homeostasis. Cell. Mol. Immunol. 2021, 18, 579–587. [Google Scholar] [CrossRef]
- Lawrence, T.; Gilroy, D.W. Chronic inflammation: A failure of resolution? Int. J. Exp. Pathol. 2007, 88, 85–94. [Google Scholar] [CrossRef]
- Pahwa, R.; Goyal, A.; Bansal, P.; Jialal, I. Chronic Inflammation; StatPearls Publishing: Treasure Island, Fl, USA, 2018. [Google Scholar]
- Raghupathi, W.; Raghupathi, V. An empirical study of chronic diseases in the United States: A visual analytics approach to public health. Int. J. Environ. Res. Public Health 2018, 15, 431. [Google Scholar] [CrossRef] [Green Version]
- Ilyin, S.E.; Belkowski, S.M.; Plata-Salamán, C.R. Biomarker discovery and validation: Technologies and integrative approaches. Trends Biotechnol. 2004, 22, 411–416. [Google Scholar] [CrossRef]
- Simon, D.; Tascilar, K.; Krönke, G.; Kleyer, A.; Zaiss, M.M.; Heppt, F.; Meder, C.; Atreya, R.; Klenske, E.; Dietrich, P.; et al. Patients with immune-mediated inflammatory diseases receiving cytokine inhibitors have low prevalence of SARS-CoV-2 seroconversion. Nat. Commun. 2020, 11, 3774. [Google Scholar] [CrossRef]
- Han, S.; Zhang, T.; Li, T.; Kong, L.; Lv, Y.; He, L. A sensitive HPLC-ECD method for detecting serotonin released by RBL-2H3 cells stimulated by potential allergens. Anal. Methods 2015, 7, 8918–8924. [Google Scholar] [CrossRef]
- Shakeeb, N.; Varkey, P.; Ajit, A. Human Saliva as a Diagnostic Specimen for Early Detection of Inflammatory Biomarkers by Real-Time RT-PCR. Inflammation 2021, 44, 1713–1723. [Google Scholar] [CrossRef]
- Höglund, J.; Rafati, N.; Rask-Andersen, M.; Enroth, S.; Karlsson, T.; Ek, W.E.; Johansson, Å. Improved power and precision with whole genome sequencing data in genome-wide association studies of inflammatory biomarkers. Sci. Rep. 2019, 9, 16844. [Google Scholar]
- MacRitchie, N.; Frleta-Gilchrist, M.; Sugiyama, A.; Lawton, T.; McInnes, I.B.; Maffia, P. Molecular imaging of inflammation-Current and emerging technologies for diagnosis and treatment. Pharmacol. Ther. 2020, 211, 107550. [Google Scholar] [CrossRef] [PubMed]
- Barra, M.; Danino, T.; Garrido, D. Engineered probiotics for detection and treatment of inflammatory intestinal diseases. Front. Bioeng. Biotechnol. 2020, 8, 265. [Google Scholar] [CrossRef] [PubMed]
- Alharthi, S.D.; Bijukumar, D.; Prasad, S.; Khan, A.M.; Mathew, M.T. Evolution in Biosensors for Cancers Biomarkers Detection: A Review. J. Bio-Tribo-Corros. 2021, 7, 42. [Google Scholar] [CrossRef]
- Senf, B.; Yeo, W.H.; Kim, J.H. Recent advances in portable biosensors for biomarker detection in body fluids. Biosensors 2020, 10, 127. [Google Scholar] [CrossRef]
- Solhi, E.; Hasanzadeh, M. Critical role of biosensing on the efficient monitoring of cancer proteins/biomarkers using label-free aptamer based bioassay. Biomed. Pharmacother. 2020, 132, 110849. [Google Scholar] [CrossRef]
- Juang, R.S.; Wang, K.S.; Cheng, Y.W.; Fu, C.C.; Chen, W.T.; Liu, C.M.; Chien, C.C.; Jeng, R.J.; Chen, C.C.; Liu, T.Y. Floating SERS substrates of silver nanoparticles-graphene based nanosheets for rapid detection of biomolecules and clinical uremic toxins. Colloids Surfaces A Physicochem. Eng. Asp. 2019, 576, 36–42. [Google Scholar] [CrossRef]
- Syedmoradi, L.; Ahmadi, A.; Norton, M.L.; Omidfar, K. A review on nanomaterial-based field effect transistor technology for biomarker detection. Microchim. Acta 2019, 186, 739. [Google Scholar] [CrossRef]
- Wongkaew, N.; Simsek, M.; Griesche, C.; Baeumner, A.J. Functional nanomaterials and nanostructures enhancing electrochemical biosensors and lab-on-a-chip performances: Recent progress, applications, and future perspective. Chem. Rev. 2018, 119, 120–194. [Google Scholar] [CrossRef]
- Huang, H.; Su, S.; Wu, N.; Wan, H.; Wan, S.; Bi, H.; Sun, L. Graphene-based sensors for human health monitoring. Front. Chem. 2019, 7, 399. [Google Scholar] [CrossRef] [Green Version]
- Ghanbari, K.; Bonyadi, S. An electrochemical sensor based on Pt nanoparticles decorated over-oxidized polypyrrole/reduced graphene oxide nanocomposite for simultaneous determination of two neurotransmitters dopamine and 5-Hydroxy tryptamine in the presence of ascorbic acid. Int. J. Polym. Anal. Charact. 2020, 25, 105–125. [Google Scholar] [CrossRef]
- Wang, W.; Mai, Z.; Chen, Y.; Wang, J.; Li, L.; Su, Q.; Li, X.; Hong, X. A label-free fiber optic SPR biosensor for specific detection of C-reactive protein. Sci. Rep. 2017, 7, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Pollock, A.J.; Zaver, S.A.; Woodward, J.J. A STING-based biosensor affords broad cyclic dinucleotide detection within single living eukaryotic cells. Nat. Commun. 2020, 11, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Gong, Q.; Wang, Y.; Yang, H. A sensitive impedimetric DNA biosensor for the determination of the HIV gene based on graphene-Nafion composite film. Biosens. Bioelectron. 2017, 89, 565–569. [Google Scholar] [CrossRef]
- Taylor, J.J.; Jaedicke, K.M.; van de Merwe, R.C.; Bissett, S.M.; Landsdowne, N.; Whall, K.M.; Pickering, K.; Thornton, V.; Lawson, V.; Yatsuda, H.; et al. A prototype antibody-based biosensor for measurement of salivary MMP-8 in periodontitis using surface acoustic wave technology. Sci. Rep. 2019, 9, 11034. [Google Scholar] [CrossRef] [Green Version]
- Ryoo, S.R.; Yim, Y.; Kim, Y.K.; Park, I.S.; Na, H.K.; Lee, J.; Jang, H.; Won, C.; Hong, S.; Kim, S.Y.; et al. High-throughput chemical screening to discover new modulators of microRNA expression in living cells by using graphene-based biosensor. Sci. Rep. 2018, 8, 11413. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Deng, X.; Xia, L. Non-enzymatic sensor for determination of glucose based on PtNi nanoparticles decorated graphene. Sci. Rep. 2020, 10, 16788. [Google Scholar] [CrossRef]
- Xu, L.; Wen, Y.; Pandit, S.; Mokkapati, V.R.; Mijakovic, I.; Li, Y.; Ding, M.; Ren, S.; Li, W.; Liu, G. Graphene-based biosensors for the detection of prostate cancer protein biomarkers: A review. BMC Chem. 2019, 13, 112. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Huang, P.; Bhirde, A.; Jin, A.; Ma, Y.; Niu, G.; Neamati, N.; Chen, X. A nanoscale graphene oxide–peptide biosensor for real-time specific biomarker detection on the cell surface. Chem. Commun. 2012, 48, 9768–9770. [Google Scholar] [CrossRef]
- Hirayama, D.; Iida, T.; Nakase, H. The phagocytic function of macrophage-enforcing innate immunity and tissue homeostasis. Int. J. Mol. Sci. 2018, 19, 92. [Google Scholar] [CrossRef] [Green Version]
- Nguyen-Lefebvre, A.T.; Horuzsko, A. Kupffer cell metabolism and function. J. Enzymol. Metab. 2015, 1, 101. [Google Scholar] [PubMed]
- Martin-Gayo, E.; Yu, X.G. Role of dendritic cells in natural immune control of HIV-1 infection. Front. Immunol. 2019, 10, 1306. [Google Scholar] [CrossRef] [PubMed]
- Verboon-Maciolek, M.A.; Thijsen, S.F.; Hemels, M.A.; Menses, M.; van Loon, A.M.; Krediet, T.G.; Gerards, L.J.; Fleer, A.; Voorbij, H.A.; Rijkers, G.T. Inflammatory mediators for the diagnosis and treatment of sepsis in early infancy. Pediatr. Res. 2006, 59, 457–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdulkhaleq, L.; Assi, M.; Abdullah, R.; Zamri-Saad, M.; Taufiq-Yap, Y.; Hezmee, M. The crucial roles of inflammatory mediators in inflammation: A review. Vet. World 2018, 11, 627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaba, C.; Kushner, I. Acute-phase proteins and other systemic responses to inflammation. N. Engl. J. Med. 1999, 340, 448–454. [Google Scholar] [CrossRef] [PubMed]
- Aronson, J.K.; Ferner, R.E. Biomarkers—A general review. Curr. Protoc. Pharmacol. 2017, 76, 9–23. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.M.; An, J. Cytokines, inflammation and pain. Int. Anesthesiol. Clin. 2007, 45, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amarante-Mendes, G.P.; Adjemian, S.; Branco, L.M.; Zanetti, L.C.; Weinlich, R.; Bortoluci, K.R. Pattern recognition receptors and the host cell death molecular machinery. Front. Immunol. 2018, 9, 2379. [Google Scholar] [CrossRef] [Green Version]
- Mason, D.R.; Beck, P.L.; Muruve, D.A. Nucleotide-binding oligomerization domain-like receptors and inflammasomes in the pathogenesis of non-microbial inflammation and diseases. J. Innate Immun. 2012, 4, 16–30. [Google Scholar] [CrossRef]
- Pimentel, G.D.; Vega, M.C.D.; Laviano, A. High neutrophil to lymphocyte ratio as a prognostic marker in COVID-19 patients. Clin. Nutr. ESPEN 2020, 40, 101–102. [Google Scholar] [CrossRef]
- Kim, Y.K.; Shin, J.S.; Nahm, M.H. NOD-like receptors in infection, immunity, and diseases. Yonsei Med. J. 2016, 57, 5–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilmanski, J.M.; Petnicki-Ocwieja, T.; Kobayashi, K.S. NLR proteins: Integral members of innate immunity and mediators of inflammatory diseases. J. Leukoc. Biol. 2008, 83, 13–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swanson, K.V.; Deng, M.; Ting, J.P.Y. The NLRP3 inflammasome: Molecular activation and regulation to therapeutics. Nat. Rev. Immunol. 2019, 19, 477–489. [Google Scholar] [CrossRef] [PubMed]
- Duncan, J.A.; Canna, S.W. The NLRC 4 inflammasome. Immunol. Rev. 2018, 281, 115–123. [Google Scholar] [CrossRef]
- Straub, R.H.; Schradin, C. Chronic inflammatory systemic diseases: An evolutionary trade-off between acutely beneficial but chronically harmful programs. Evol. Med. Public Health 2016, 2016, 37–51. [Google Scholar] [CrossRef] [Green Version]
- Zheng, D.; Liwinski, T.; Elinav, E. Inflammasome activation and regulation: Toward a better understanding of complex mechanisms. Cell Discov. 2020, 6, 36. [Google Scholar] [CrossRef]
- Arend, W.P.; Palmer, G.; Gabay, C. IL-1, IL-18, and IL-33 families of cytokines. Immunol. Rev. 2008, 223, 20–38. [Google Scholar] [CrossRef]
- Fields, J.K.; Günther, S.; Sundberg, E.J. Structural basis of IL-1 family cytokine signaling. Front. Immunol. 2019, 10, 1412. [Google Scholar] [CrossRef] [Green Version]
- Bertheloot, D.; Latz, E. HMGB1, IL-1α, IL-33 and S100 proteins: Dual-function alarmins. Cell. Mol. Immunol. 2017, 14, 43–64. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.; Lee, Y.; Kim, E.; Kwak, A.; Ryoo, S.; Bae, S.; Azam, T.; Kim, S.; Dinarello, C.A. The interleukin-1α precursor is biologically active and is likely a key alarmin in the IL-1 family of cytokines. Front. Immunol. 2013, 4, 391. [Google Scholar] [CrossRef] [Green Version]
- Wallach, D.; Kang, T.B.; Dillon, C.P.; Green, D.R. Programmed necrosis in inflammation: Toward identification of the effector molecules. Science 2016, 352, aaf2154. [Google Scholar] [CrossRef] [PubMed]
- Papp, S.; Moderzynski, K.; Rauch, J.; Heine, L.; Kuehl, S.; Richardt, U.; Mueller, H.; Fleischer, B.; Osterloh, A. Liver necrosis and lethal systemic inflammation in a murine model of Rickettsia typhi infection: Role of neutrophils, macrophages and NK cells. PLoS Neglected Trop. Dis. 2016, 10, e0004935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2018, 9, 7204–7218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshimoto, T.; Yoshimoto, T. Cytokine Frontiers: Regulation of Immune Responses in Health and Disease; Springer: Tokio, Japan, 2013. [Google Scholar]
- Hwang, J.; Jin, J.; Jeon, S.; Moon, S.H.; Park, M.Y.; Yum, D.Y.; Kim, J.H.; Kang, J.E.; Park, M.H.; Kim, E.J.; et al. SOD1 suppresses pro-inflammatory immune responses by protecting against oxidative stress in colitis. Redox Biol. 2020, 37, 101760. [Google Scholar] [CrossRef]
- Kuwano, T.; Nakao, S.; Yamamoto, H.; Tsuneyoshi, M.; Yamamoto, T.; Kuwano, M.; Ono, M. Cyclooxygenase 2 is a key enzyme for inflammatory cytokine-induced angiogenesis. FASEB J. 2004, 18, 300–310. [Google Scholar] [CrossRef]
- Cristani, M.; Speciale, A.; Saija, A.; Gangemi, S.; Lucia Minciullo, P.; Cimino, F. Circulating advanced oxidation protein products as oxidative stress biomarkers and progression mediators in pathological conditions related to inflammation and immune dysregulation. Curr. Med. Chem. 2016, 23, 3862–3882. [Google Scholar] [CrossRef]
- Chamitava, L.; Cazzoletti, L.; Ferrari, M.; Garcia-Larsen, V.; Jalil, A.; Degan, P.; Fois, A.G.; Zinellu, E.; Fois, S.S.; Fratta Pasini, A.M.; et al. Biomarkers of oxidative stress and inflammation in chronic airway diseases. Int. J. Mol. Sci. 2020, 21, 4339. [Google Scholar] [CrossRef]
- Saha, S.; Harrison, S.H.; Chen, J.Y. Dissecting the human plasma proteome and inflammatory response biomarkers. Proteomics 2009, 9, 470–484. [Google Scholar] [CrossRef]
- Bansal, R.; Gupta, A. Protein biomarkers in uveitis. Front. Immunol. 2020, 11, 3109. [Google Scholar] [CrossRef]
- Cheng, R.; Wu, Z.; Li, M.; Shao, M.; Hu, T. Interleukin-1β is a potential therapeutic target for periodontitis: A narrative review. Int. J. Oral Sci. 2020, 12, 2. [Google Scholar] [CrossRef] [Green Version]
- Forouzandeh, M.; Besen, J.; Keane, R.W.; de Rivero Vaccari, J.P. The inflammasome signaling proteins ASC and IL-18 as biomarkers of psoriasis. Front. Pharmacol. 2020, 11, 1238. [Google Scholar] [CrossRef] [PubMed]
- Bishnoi, R.J.; Palmer, R.F.; Royall, D.R. Serum interleukin (IL)-15 as a biomarker of Alzheimer’s disease. PLoS ONE 2015, 10, e0117282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wojdasiewicz, P.; Poniatowski, Ł.A.; Szukiewicz, D. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediat. Inflamm. 2014, 2014, 561459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Motomura, Y.; Morita, H.; Moro, K.; Nakae, S.; Artis, D.; Endo, T.A.; Kuroki, Y.; Ohara, O.; Koyasu, S.; Kubo, M. Basophil-derived interleukin-4 controls the function of natural helper cells, a member of ILC2s, in lung inflammation. Immunity 2014, 40, 758–771. [Google Scholar] [CrossRef] [Green Version]
- Eijkelkamp, N.; Steen-Louws, C.; Hartgring, S.A.; Willemen, H.L.; Prado, J.; Lafeber, F.P.; Heijnen, C.J.; Hack, C.; van Roon, J.A.; Kavelaars, A. IL4-10 fusion protein is a novel drug to treat persistent inflammatory pain. J. Neurosci. 2016, 36, 7353–7363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoving, J.C. Targeting IL-13 as a host-directed therapy against ulcerative colitis. Front. Cell. Infect. Microbiol. 2018, 8, 395. [Google Scholar] [CrossRef] [PubMed]
- Fuschiotti, P.; Larregina, A.T.; Ho, J.; Feghali-Bostwick, C.; Medsger, T.A., Jr. Interleukin-13–producing CD8+ T cells mediate dermal fibrosis in patients with systemic sclerosis. Arthritis Rheum. 2013, 65, 236–246. [Google Scholar] [CrossRef]
- Micera, A.; Quaranta, L.; Esposito, G.; Floriani, I.; Pocobelli, A.; Saccà, S.C.; Riva, I.; Manni, G.; Oddone, F. Differential protein expression profiles in glaucomatous trabecular meshwork: An evaluation study on a small primary open angle glaucoma population. Adv. Ther. 2016, 33, 252–267. [Google Scholar] [CrossRef] [Green Version]
- Pedrini, S.; Gupta, V.B.; Hone, E.; Doecke, J.; O’Bryant, S.; James, I.; Bush, A.I.; Rowe, C.C.; Villemagne, V.L.; Ames, D.; et al. A blood-based biomarker panel indicates IL-10 and IL-12/23p40 are jointly associated as predictors of β-amyloid load in an AD cohort. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef]
- Kashani, A.; Schwartz, D.A. The Expanding Role of Anti–IL-12 and/or Anti–IL-23 Antibodies in the Treatment of Inflammatory Bowel Disease. Gastroenterol. Hepatol. 2019, 15, 255. [Google Scholar]
- Huang, C.S.; Chen, S.J.; Chung, R.L.; Tang, R.B. Serum interleukin-5 measurements for monitoring acute asthma in children. J. Asthma 2005, 42, 297–300. [Google Scholar] [CrossRef] [PubMed]
- Takatsu, K. Interleukin-5 and IL-5 receptor in health and diseases. Proc. Jpn. Acad. Ser. B 2011, 87, 463–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mair, J. Cardiac troponin I and troponin T: Are enzymes still relevant as cardiac markers? Clin. Chim. Acta 1997, 257, 99–115. [Google Scholar] [CrossRef]
- Ostermann, M.; Ayis, S.; Tuddenham, E.; Lo, J.; Lei, K.; Smith, J.; Sanderson, B.; Moran, C.; Collinson, P.; Peacock, J.; et al. Cardiac troponin release is associated with biomarkers of inflammation and ventricular dilatation during critical illness. Shock (Augusta, Ga.) 2017, 47, 702. [Google Scholar] [CrossRef]
- Zakynthinos, E.; Pappa, N. Inflammatory biomarkers in coronary artery disease. J. Cardiol. 2009, 53, 317–333. [Google Scholar] [CrossRef] [Green Version]
- Schnabel, R.; Lubos, E.; Rupprecht, H.J.; Espinola-Klein, C.; Bickel, C.; Lackner, K.J.; Cambien, F.; Tiret, L.; Münzel, T.; Blankenberg, S. B-type natriuretic peptide and the risk of cardiovascular events and death in patients with stable angina: Results from the Athero Gene study. J. Am. Coll. Cardiol. 2006, 47, 552–558. [Google Scholar] [CrossRef] [Green Version]
- Dissanayake, K.; Jayasinghe, C.; Wanigasekara, P.; Sominanda, A. Potential applicability of cytokines as biomarkers of disease activity in rheumatoid arthritis: Enzyme-linked immunosorbent spot assay-based evaluation of TNF-α, IL-1β, IL-10 and IL-17A. PLoS ONE 2021, 16, e0246111. [Google Scholar] [CrossRef]
- Ramon-Luing, L.A.; Ocaña-Guzman, R.; Téllez-Navarrete, N.A.; Preciado-García, M.; Romero-Rodríguez, D.P.; Espinosa, E.; Reyes-Terán, G.; Chavez-Galan, L. High Levels of TNF-α and TIM-3 as a Biomarker of Immune Reconstitution Inflammatory Syndrome in People with HIV Infection. Life 2021, 11, 527. [Google Scholar] [CrossRef]
- Levin, A.D.; Wildenberg, M.E.; van den Brink, G.R. Mechanism of action of anti-TNF therapy in inflammatory bowel disease. J. Crohn’s Colitis 2016, 10, 989–997. [Google Scholar] [CrossRef] [Green Version]
- Galimberti, D.; Fenoglio, C.; Lovati, C.; Venturelli, E.; Guidi, I.; Corrà, B.; Scalabrini, D.; Clerici, F.; Mariani, C.; Bresolin, N.; et al. Serum MCP-1 levels are increased in mild cognitive impairment and mild Alzheimer’s disease. Neurobiol. Aging 2006, 27, 1763–1768. [Google Scholar] [CrossRef]
- Gupta, M.; Chaturvedi, R.; Jain, A. Role of monocyte chemoattractant protein-1 (MCP-1) as an immune-diagnostic biomarker in the pathogenesis of chronic periodontal disease. Cytokine 2013, 61, 892–897. [Google Scholar] [CrossRef] [PubMed]
- Seyhan, A.A.; Gregory, B.; Cribbs, A.P.; Bhalara, S.; Li, Y.; Loreth, C.; Zhang, Y.; Guo, Y.; Lin, L.L.; Feldmann, M.; et al. Novel biomarkers of a peripheral blood interferon signature associated with drug-naïve early arthritis patients distinguish persistent from self-limiting disease course. Sci. Rep. 2020, 10, 8830. [Google Scholar] [CrossRef] [PubMed]
- Batten, I.; Robinson, M.W.; White, A.; Walsh, C.; Fazekas, B.; Wyse, J.; Buettner, A.; D’Arcy, S.; Greenan, E.; Murphy, C.C.; et al. Investigation of type I interferon responses in ANCA-associated vasculitis. Sci. Rep. 2021, 11, 8272. [Google Scholar]
- Bagyinszky, E.; Youn, Y.C.; An, S.S.A.; Kim, S. Characterization of inflammatory biomarkers and candidates for diagnosis of Alzheimer’s disease. BioChip J. 2014, 8, 155–162. [Google Scholar] [CrossRef]
- Langer, V.; Vivi, E.; Regensburger, D.; Winkler, T.H.; Waldner, M.J.; Rath, T.; Schmid, B.; Skottke, L.; Lee, S.; Jeon, N.L.; et al. IFN-γ drives inflammatory bowel disease pathogenesis through VE-cadherin–directed vascular barrier disruption. J. Clin. Investig. 2019, 129, 4691–4707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, C.; Lam, C.; Wu, A.; Ip, W.; Lee, N.; Chan, I.; Lit, L.; Hui, D.; Chan, M.; Chung, S.; et al. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clin. Exp. Immunol. 2004, 136, 95–103. [Google Scholar] [CrossRef] [Green Version]
- Oozawa, S.; Sano, S.; Nishibori, M. Usefulness of high mobility group box 1 protein as a plasma biomarker in patient with peripheral artery disease. Acta Med. Okayama 2014, 68, 157–162. [Google Scholar]
- Chen, R.; Huang, Y.; Quan, J.; Liu, J.; Wang, H.; Billiar, T.R.; Lotze, M.T.; Zeh, H.J.; Kang, R.; Tang, D. HMGB1 as a potential biomarker and therapeutic target for severe COVID-19. Heliyon 2020, 6, e05672. [Google Scholar] [CrossRef]
- Patel, M.C.; Shirey, K.A.; Boukhvalova, M.S.; Vogel, S.N.; Blanco, J.C. Serum high-mobility-group box 1 as a biomarker and a therapeutic target during respiratory virus infections. MBio 2018, 9, e00246-18. [Google Scholar] [CrossRef] [Green Version]
- Meca, A.D.; Turcu-Stiolica, A.; Stanciulescu, E.C.; Andrei, A.M.; Nitu, F.M.; Banita, I.M.; Matei, M.; Pisoschi, C.G. Variations of Serum Oxidative Stress Biomarkers under First-Line Antituberculosis Treatment: A Pilot Study. J. Pers. Med. 2021, 11, 112. [Google Scholar] [CrossRef]
- De Farias, C.C.; Maes, M.; Bonifácio, K.L.; Bortolasci, C.C.; de Souza Nogueira, A.; Brinholi, F.F.; Matsumoto, A.K.; do Nascimento, M.A.; de Melo, L.B.; Nixdorf, S.L.; et al. Highly specific changes in antioxidant levels and lipid peroxidation in Parkinson’s disease and its progression: Disease and staging biomarkers and new drug targets. Neurosci. Lett. 2016, 617, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Yubero-Serrano, E.M.; Delgado-Lista, J.; Pena-Orihuela, P.; Perez-Martinez, P.; Fuentes, F.; Marin, C.; Tunez, I.; Tinahones, F.J.; Perez-Jimenez, F.; Roche, H.M.; et al. Oxidative stress is associated with the number of components of metabolic syndrome: LIPGENE study. Exp. Mol. Med. 2013, 45, e28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeeva, J.S.; Sunitha, J.; Ananthalakshmi, R.; Rajkumari, S.; Ramesh, M.; Krishnan, R. Enzymatic antioxidants and its role in oral diseases. J. Pharm. Bioallied Sci. 2015, 7, S331. [Google Scholar] [PubMed]
- Miller, E.; Morel, A.; Saso, L.; Saluk, J. Isoprostanes and neuroprostanes as biomarkers of oxidative stress in neurodegenerative diseases. Oxid. Med. Cell. Longev. 2014, 2014, 572491. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, A.; Desai, N.G.; Sharma, S.B.; Aslam, M.; Sinha, U.K.; Madhu, S.V. Association of oxidative stress and inflammatory markers with chronic stress in patients with newly diagnosed type 2 diabetes. Diabetes/Metab. Res. Rev. 2019, 35, e3147. [Google Scholar] [CrossRef] [PubMed]
- Asakura, H.; Kitahora, T. Antioxidants and polyphenols in inflammatory bowel disease: Ulcerative colitis and Crohn disease. In Polyphenols: Prevention and Treatment of Human Disease; Academic Press: Cambridge, MA, USA, 2018; pp. 279–292. [Google Scholar] [CrossRef]
- Gupta, S.; Gambhir, J.K.; Kalra, O.; Gautam, A.; Shukla, K.; Mehndiratta, M.; Agarwal, S.; Shukla, R. Association of biomarkers of inflammation and oxidative stress with the risk of chronic kidney disease in Type 2 diabetes mellitus in North Indian population. J. Diabetes Complicat. 2013, 27, 548–552. [Google Scholar] [CrossRef]
- Skoie, I.; Dalen, I.; Omdal, R.; Jonsson, G. Malondialdehyde and advanced oxidation protein products are not increased in psoriasis: A controlled study. Arch. Dermatol. Res. 2019, 311, 299–308. [Google Scholar] [CrossRef]
- Liu, X.; Deng, K.; Chen, S.; Zhang, Y.; Yao, J.; Weng, X.; Zhang, Y.; Gao, T.; Feng, G. 8-Hydroxy-2′-deoxyguanosine as a biomarker of oxidative stress in acute exacerbation of chronic obstructive pulmonary disease. Turk. J. Med Sci. 2019, 49, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Guo, C.; Li, X.; Wang, R.; Yu, J.; Ye, M.; Mao, L.; Zhang, S.; Zheng, S. Association between oxidative DNA damage and risk of colorectal cancer: Sensitive determination of urinary 8-hydroxy-2′-deoxyguanosine by UPLC-MS/MS analysis. Sci. Rep. 2016, 6, 32581. [Google Scholar] [CrossRef]
- Hage, F. C-reactive protein and hypertension. J. Hum. Hypertens. 2014, 28, 410–415. [Google Scholar] [CrossRef]
- Liu, A.; Bui, T.; Van Nguyen, H.; Ong, B.; Shen, Q.; Kamalasena, D. Serum C-reactive protein as a biomarker for early detection of bacterial infection in the older patient. Age Ageing 2010, 39, 559–565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khalili, M.; Bonnefoy, A.; Genest, D.S.; Quadri, J.; Rioux, J.P.; Troyanov, S. Clinical Use of Complement, Inflammation, and Fibrosis Biomarkers in Autoimmune Glomerulonephritis. Kidney Int. Rep. 2020, 5, 1690–1699. [Google Scholar] [CrossRef] [PubMed]
- Jalal, D.; Sanford, B.; Renner, B.; Ten Eyck, P.; Laskowski, J.; Cooper, J.; Sun, M.; Zakharia, Y.; Spitz, D.; Dokun, A.; et al. Detection of pro angiogenic and inflammatory biomarkers in patients with CKD. Sci. Rep. 2021, 11, 8786. [Google Scholar] [CrossRef]
- Feijóo, M.; Túnez, I.; Ruiz, A.; Tasset, I.; Muñoz, E.; Collantes, E. Oxidative stress biomarkers as indicator of chronic inflammatory joint diseases stage. Reumatol. Clín. (Engl. Ed.) 2010, 6, 91–94. [Google Scholar] [CrossRef]
- Geim, A.K. Graphene: Status and prospects. Science 2009, 324, 1530–1534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, V.; Joung, D.; Zhai, L.; Das, S.; Khondaker, S.I.; Seal, S. Graphene based materials: Past, present and future. Prog. Mater. Sci. 2011, 56, 1178–1271. [Google Scholar] [CrossRef]
- Dreyer, D.R.; Todd, A.D.; Bielawski, C.W. Harnessing the chemistry of graphene oxide. Chem. Soc. Rev. 2014, 43, 5288–5301. [Google Scholar] [CrossRef]
- Georgakilas, V.; Tiwari, J.N.; Kemp, K.C.; Perman, J.A.; Bourlinos, A.B.; Kim, K.S.; Zboril, R. Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem. Rev. 2016, 116, 5464–5519. [Google Scholar] [CrossRef] [Green Version]
- Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M. Improved synthesis of graphene oxide. ACS Nano 2010, 4, 4806–4814. [Google Scholar] [CrossRef]
- Shahriary, L.; Athawale, A.A. Graphene oxide synthesized by using modified hummers approach. Int. J. Renew. Energy Environ. Eng. 2014, 2, 58–63. [Google Scholar]
- Eigler, S.; Hirsch, A. Chemistry with graphene and graphene oxide—Challenges for synthetic chemists. Angew. Chem. Int. Ed. 2014, 53, 7720–7738. [Google Scholar] [CrossRef] [Green Version]
- Dreyer, D.R.; Park, S.; Bielawski, C.W.; Ruoff, R.S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010, 39, 228–240. [Google Scholar] [CrossRef] [PubMed]
- Nanda, S.S.; Papaefthymiou, G.C.; Yi, D.K. Functionalization of graphene oxide and its biomedical applications. Crit. Rev. Solid State Mater. Sci. 2015, 40, 291–315. [Google Scholar] [CrossRef]
- Banerjee, A.N. Graphene and its derivatives as biomedical materials: Future prospects and challenges. Interface Focus 2018, 8, 20170056. [Google Scholar] [CrossRef] [PubMed]
- Hoyle, C.; Rivers-Auty, J.; Lemarchand, E.; Vranic, S.; Wang, E.; Buggio, M.; Rothwell, N.J.; Allan, S.M.; Kostarelos, K.; Brough, D. Small, thin graphene oxide is anti-inflammatory activating nuclear factor erythroid 2-related factor 2 via metabolic reprogramming. ACS Nano 2018, 12, 11949–11962. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.W.; Park, H.J.; Van Kaer, L.; Hong, S.; Hong, S. Graphene oxide polarizes iNKT cells for production of TGFβ and attenuates inflammation in an iNKT cell-mediated sepsis model. Sci. Rep. 2018, 8, 10081. [Google Scholar] [CrossRef]
- Tahriri, M.; Del Monico, M.; Moghanian, A.; Yaraki, M.T.; Torres, R.; Yadegari, A.; Tayebi, L. Graphene and its derivatives: Opportunities and challenges in dentistry. Mater. Sci. Eng. C 2019, 102, 171–185. [Google Scholar] [CrossRef]
- Gilje, S.; Han, S.; Wang, M.; Wang, K.L.; Kaner, R.B. A chemical route to graphene for device applications. Nano Lett. 2007, 7, 3394–3398. [Google Scholar] [CrossRef]
- Ferreira, F.V.; Cividanes, L.D.S.; Brito, F.S.; Menezes, B.R.C.d.; Franceschi, W.; Simonetti, E.A.N.; Thim, G.P. Functionalizing Graphene and Carbon Nanotubes: A Review; Springer: Cham, Germany, 2016. [Google Scholar] [CrossRef]
- Boukhvalov, D.; Katsnelson, M. Chemical functionalization of graphene. J. Phys. Condens. Matter 2009, 21, 344205. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, S.; Kaloni, T. Electronic properties of boron-and nitrogen-doped graphene: A first principles study. J. Nanoparticle Res. 2012, 14, 1059. [Google Scholar] [CrossRef] [Green Version]
- Mittal, G.; Dhand, V.; Rhee, K.Y.; Park, S.J.; Lee, W.R. A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J. Ind. Eng. Chem. 2015, 21, 11–25. [Google Scholar] [CrossRef]
- Marques, P.; Gonçalves, G.; Cruz, S.; Almeida, N.; Singh, M.; Grácio, J.; Sousa, A. Functionalized graphene nanocomposites. Adv. Nanocomposite Technol. 2011, 11, 247–272. [Google Scholar]
- Yagati, A.K.; Lee, M.H.; Min, J. Electrochemical immunosensor for highly sensitive and quantitative detection of tumor necrosis factor-α in human serum. Bioelectrochemistry 2018, 122, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Atar, N.; Yola, M.L. A novel QCM immunosensor development based on gold nanoparticles functionalized sulfur-doped graphene quantum dot and h-ZnS-CdS NC for Interleukin-6 detection. Anal. Chim. Acta 2021, 1148, 338202. [Google Scholar] [CrossRef]
- Wang, Z.; Hao, Z.; Yu, S.; Huang, C.; Pan, Y.; Zhao, X. A wearable and deformable graphene-based affinity nanosensor for monitoring of cytokines in biofluids. Nanomaterials 2020, 10, 1503. [Google Scholar] [CrossRef]
- Khonsari, Y.N.; Sun, S. Recent trends in electrochemiluminescence aptasensors and their applications. Chem. Commun. 2017, 53, 9042–9054. [Google Scholar] [CrossRef]
- Cao, C.; Jin, R.; Wei, H.; Yang, W.; Goldys, E.M.; Hutchinson, M.R.; Liu, S.; Chen, X.; Yang, G.; Liu, G. Graphene oxide based recyclable in vivo device for amperometric monitoring of interferon-γ in inflammatory mice. ACS Appl. Mater. Interfaces 2018, 10, 33078–33087. [Google Scholar] [CrossRef]
- Qi, M.; Huang, J.; Wei, H.; Cao, C.; Feng, S.; Guo, Q.; Goldys, E.M.; Li, R.; Liu, G. Graphene oxide thin film with dual function integrated into a nanosandwich device for in vivo monitoring of interleukin-6. ACS Appl. Mater. Interfaces 2017, 9, 41659–41668. [Google Scholar] [CrossRef]
- Qi, M.; Zhang, Y.; Cao, C.; Zhang, M.; Liu, S.; Liu, G. Decoration of RGO nanosheets with aryldiazonium salt and gold nanoparticles towards a label-free amperometric immunosensor for detecting cytokine TNF-α in live cells. Anal. Chem. 2016, 88, 9614–9621. [Google Scholar] [CrossRef]
- Parate, K.; Rangnekar, S.V.; Jing, D.; Mendivelso-Perez, D.L.; Ding, S.; Secor, E.B.; Smith, E.A.; Hostetter, J.M.; Hersam, M.C.; Claussen, J.C. Aerosol-jet-printed graphene immunosensor for label-free cytokine monitoring in serum. ACS Appl. Mater. Interfaces 2020, 12, 8592–8603. [Google Scholar] [CrossRef]
- Lou, Y.; He, T.; Jiang, F.; Shi, J.J.; Zhu, J.J. A competitive electrochemical immunosensor for the detection of human interleukin-6 based on the electrically heated carbon electrode and silver nanoparticles functionalized labels. Talanta 2014, 122, 135–139. [Google Scholar] [CrossRef] [PubMed]
- Tite, T.; Chiticaru, E.A.; Burns, J.S.; Ioniţă, M. Impact of nano-morphology, lattice defects and conductivity on the performance of graphene based electrochemical biosensors. J. Nanobiotechnol. 2019, 17, 101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taniselass, S.; Arshad, M.M.; Gopinath, S.C. Graphene-based electrochemical biosensors for monitoring noncommunicable disease biomarkers. Biosens. Bioelectron. 2019, 130, 276–292. [Google Scholar] [CrossRef] [PubMed]
- Hammond, J.L.; Formisano, N.; Estrela, P.; Carrara, S.; Tkac, J. Electrochemical biosensors and nanobiosensors. Essays Biochem. 2016, 60, 69–80. [Google Scholar]
- Khan, N.I.; Song, E. Detection of an IL-6 Biomarker Using a GFET Platform Developed with a Facile Organic Solvent-Free Aptamer Immobilization Approach. Sensors 2021, 21, 1335. [Google Scholar] [CrossRef]
- Wang, G.; He, X.; Chen, L.; Zhu, Y.; Zhang, X. Ultrasensitive IL-6 electrochemical immunosensor based on Au nanoparticles-graphene-silica biointerface. Colloids Surfaces B Biointerfaces 2014, 116, 714–719. [Google Scholar] [CrossRef]
- Hao, Z.; Pan, Y.; Huang, C.; Wang, Z.; Zhao, X. Sensitive detection of lung cancer biomarkers using an aptameric graphene-based nanosensor with enhanced stability. Biomed. Microdevices 2019, 21, 65. [Google Scholar] [CrossRef]
- Huang, J.; Chen, H.; Niu, W.; Fam, D.W.; Palaniappan, A.; Larisika, M.; Faulkner, S.H.; Nowak, C.; Nimmo, M.A.; Liedberg, B.; et al. Highly manufacturable graphene oxide biosensor for sensitive Interleukin-6 detection. RSC Adv. 2015, 5, 39245–39251. [Google Scholar] [CrossRef]
- Hwang, M.T.; Park, I.; Heiranian, M.; Taqieddin, A.; You, S.; Faramarzi, V.; Pak, A.A.; van der Zande, A.M.; Aluru, N.R.; Bashir, R. Ultrasensitive Detection of Dopamine, IL-6 and SARS-CoV-2 Proteins on Crumpled Graphene FET Biosensor. Adv. Mater. Technol. 2021, 6, 2100712. [Google Scholar] [CrossRef]
- Shi, J.J.; He, T.T.; Jiang, F.; Abdel-Halim, E.; Zhu, J.J. Ultrasensitive multi-analyte electrochemical immunoassay based on GNR-modified heated screen-printed carbon electrodes and PS@ PDA-metal labels for rapid detection of MMP-9 and IL-6. Biosens. Bioelectron. 2014, 55, 51–56. [Google Scholar] [CrossRef]
- Li, T.; Shu, B.; Jiang, B.; Ding, L.; Qi, H.; Yang, M.; Qu, F. Ultrasensitive multiplexed protein biomarker detection based on electrochemical tag incorporated polystyrene spheres as label. Sens. Actuators B Chem. 2013, 186, 768–773. [Google Scholar] [CrossRef]
- Wei, H.; Ni, S.; Cao, C.; Yang, G.; Liu, G. Graphene oxide signal reporter based multifunctional immunosensing platform for amperometric profiling of multiple cytokines in serum. ACS Sens. 2018, 3, 1553–1561. [Google Scholar] [CrossRef] [PubMed]
- Khayamian, M.A.; Parizi, M.S.; Ghaderinia, M.; Abadijoo, H.; Vanaei, S.; Simaee, H.; Abdolhosseini, S.; Shalileh, S.; Faramarzpour, M.; Naeini, V.F.; et al. A label-free graphene-based impedimetric biosensor for real-time tracing of the cytokine storm in blood serum; suitable for screening COVID-19 patients. RSC Adv. 2021, 11, 34503–34515. [Google Scholar] [CrossRef]
- Shen, Z.; Ni, S.; Yang, W.; Sun, W.; Yang, G.; Liu, G. Redox probes tagged electrochemical aptasensing device for simultaneous detection of multiple cytokines in real time. Sens. Actuators Chem. 2021, 336, 129747. [Google Scholar] [CrossRef]
- Mazloum-Ardakani, M.; Hosseinzadeh, L.; Taleat, Z. Synthesis and electrocatalytic effect of Ag@ Pt core–shell nanoparticles supported on reduced graphene oxide for sensitive and simple label-free electrochemical aptasensor. Biosens. Bioelectron. 2015, 74, 30–36. [Google Scholar] [CrossRef]
- Tang, P.; Zhang, H.; Huo, J.; Lin, X. An electrochemical sensor based on iron (II, III)@ graphene oxide@ molecularly imprinted polymer nanoparticles for interleukin-8 detection in saliva. Anal. Methods 2015, 7, 7784–7791. [Google Scholar] [CrossRef]
- Verma, S.; Singh, A.; Shukla, A.; Kaswan, J.; Arora, K.; Ramirez-Vick, J.; Singh, P.; Singh, S.P. Anti-IL8/AuNPs-rGO/ITO as an immunosensing platform for noninvasive electrochemical detection of oral cancer. ACS Appl. Mater. Interfaces 2017, 9, 27462–27474. [Google Scholar] [CrossRef]
- Verma, S.; Singh, S.P. Non-invasive oral cancer detection from saliva using zinc oxide–reduced graphene oxide nanocomposite based bioelectrode. MRS Commun. 2019, 9, 1227–1234. [Google Scholar] [CrossRef]
- Serafín, V.; Valverde, A.; Martínez-García, G.; Martínez-Periñán, E.; Comba, F.; Garranzo-Asensio, M.; Barderas, R.; Yáñez-Sedeño, P.; Campuzano, S.; Pingarrón, J. Graphene quantum dots-functionalized multi-walled carbon nanotubes as nanocarriers in electrochemical immunosensing. Determination of IL-13 receptor α2 in colorectal cells and tumor tissues with different metastatic potential. Sens. Actuators B Chem. 2019, 284, 711–722. [Google Scholar] [CrossRef]
- Norfun, P.; Suree, N.; Kungwan, N.; Punyodom, W.; Jakmunee, J.; Ounnunkad, K. Electrochemical detection of human interleukin-15 using a graphene oxide-modified screen-printed carbon electrode. Anal. Lett. 2017, 50, 1112–1125. [Google Scholar] [CrossRef]
- Yan, Y.; Shi, S.; Yu, J.; Zhang, M.; Zhang, Y.; Huang, H.; Li, J.; Jiang, Z. A Disposable Electrochemical Immunosensor Based on PDDA-functionalized Graphene/Gold Nanoparticles Composites for Detection of Inflammatory Cytokine Interleukin-22. Int. J. Electrochem. Sci. 2015, 10, 6475–6486. [Google Scholar]
- Chauhan, D.; Nirbhaya, V.; Srivastava, C.M.; Chandra, R.; Kumar, S. Nanostructured transition metal chalcogenide embedded on reduced graphene oxide based highly efficient biosensor for cardiovascular disease detection. Microchem. J. 2020, 155, 104697. [Google Scholar] [CrossRef]
- Rauf, S.; Mani, V.; Lahcen, A.A.; Yuvaraja, S.; Beduk, T.; Salama, K.N. Binary transition metal oxide modified laser-scribed graphene electrochemical aptasensor for the accurate and sensitive screening of acute myocardial infarction. Electrochim. Acta 2021, 386, 138489. [Google Scholar] [CrossRef]
- Kazemi, S.H.; Ghodsi, E.; Abdollahi, S.; Nadri, S. Porous graphene oxide nanostructure as an excellent scaffold for label-free electrochemical biosensor: Detection of cardiac troponin I. Mater. Sci. Eng. C 2016, 69, 447–452. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, S.; Zhang, L.; Zhang, Y.; Zhang, H.; Zhang, C.; Xuan, X.; Wang, M.; Zhang, J.; Yuan, Y. A novel graphene-based nanomaterial modified electrochemical sensor for the detection of cardiac troponin I. Front. Chem. 2021, 9, 680593. [Google Scholar] [CrossRef]
- Mansuriya, B.D.; Altintas, Z. Enzyme-Free Electrochemical Nano-Immunosensor Based on Graphene Quantum Dots and Gold Nanoparticles for Cardiac Biomarker Determination. Nanomaterials 2021, 11, 578. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Ali, M.A.; Rai, P.; Sharma, A.; Malhotra, B.; John, R. Microporous nanocomposite enabled microfluidic biochip for cardiac biomarker detection. ACS Appl. Mater. Interfaces 2017, 9, 33576–33588. [Google Scholar] [CrossRef]
- Chekin, F.; Vasilescu, A.; Jijie, R.; Singh, S.K.; Kurungot, S.; Iancu, M.; Badea, G.; Boukherroub, R.; Szunerits, S. Sensitive electrochemical detection of cardiac troponin I in serum and saliva by nitrogen-doped porous reduced graphene oxide electrode. Sens. Actuators B Chem. 2018, 262, 180–187. [Google Scholar] [CrossRef]
- Han, Y.; Su, X.; Fan, L.; Liu, Z.; Guo, Y. Electrochemical Aptasensor for Sensitive Detection of Cardiac Troponin I Based on CuNWs/MoS2/rGO Nanocomposite. Microchem. J. 2021, 169, 106598. [Google Scholar] [CrossRef]
- Grabowska, I.; Sharma, N.; Vasilescu, A.; Iancu, M.; Badea, G.; Boukherroub, R.; Ogale, S.; Szunerits, S. Electrochemical aptamer-based biosensors for the detection of cardiac biomarkers. ACS Omega 2018, 3, 12010–12018. [Google Scholar] [CrossRef] [Green Version]
- Villalonga, A.; Estabiel, I.; Pérez-Calabuig, A.M.; Mayol, B.; Parrado, C.; Villalonga, R. Amperometric aptasensor with sandwich-type architecture for troponin I based on carboxyethylsilanetriol-modified graphene oxide coated electrodes. Biosens. Bioelectron. 2021, 183, 113203. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Zhu, L.; Yan, M.; Zhu, Q.; Lu, Q.; Huang, J.; Cui, H.; Yang, X. Dual-wavelength ratiometric electrochemiluminescence immunosensor for cardiac troponin I detection. Anal. Chem. 2018, 91, 1524–1531. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Liu, S.; Li, Y.; Tang, F.; Zhao, Z.; Liu, Q.; Li, Y.; Wei, Q. Electrochemiluminescence resonance energy transfer system fabricated by quantum state complexes for cardiac troponin I detection. Sens. Actuators B Chem. 2021, 336, 129733. [Google Scholar] [CrossRef]
- Guo, M.; Shu, J.; Du, D.; Haghighatbin, M.A.; Yang, D.; Bian, Z.; Cui, H. A label-free three potential ratiometric electrochemiluminescence immunosensor for cardiac troponin I based on N-(4-aminobutyl)-N-ethylisoluminol functionalized graphene quantum dots. Sens. Actuators B Chem. 2021, 334, 129628. [Google Scholar] [CrossRef]
- Novodchuk, I.; Kayaharman, M.; Ausri, I.; Karimi, R.; Tang, X.; Goldthorpe, I.; Abdel-Rahman, E.; Sanderson, J.; Bajcsy, M.; Yavuz, M. An ultrasensitive heart-failure BNP biosensor using B/N co-doped graphene oxide gel FET. Biosens. Bioelectron. 2021, 180, 113114. [Google Scholar] [CrossRef]
- Lei, Y.M.; Xiao, M.M.; Li, Y.T.; Xu, L.; Zhang, H.; Zhang, Z.Y.; Zhang, G.J. Detection of heart failure-related biomarker in whole blood with graphene field effect transistor biosensor. Biosens. Bioelectron. 2017, 91, 1–7. [Google Scholar] [CrossRef]
- Singal, S.; Kotnala, R.K. Single frequency impedance analysis on reduced graphene oxide screen-printed electrode for biomolecular detection. Appl. Biochem. Biotechnol. 2017, 183, 672–683. [Google Scholar]
- Ma, Y.; Yang, J.; Yang, T.; Deng, Y.; Gu, M.; Wang, M.; Hu, R.; Yang, Y. Electrochemical detection of C-reactive protein using functionalized iridium nanoparticles/graphene oxide as a tag. RSC Adv. 2020, 10, 9723–9729. [Google Scholar] [CrossRef] [Green Version]
- Zupančič, U.; Jolly, P.; Estrela, P.; Moschou, D.; Ingber, D.E. Graphene Enabled Low-Noise Surface Chemistry for Multiplexed Sepsis Biomarker Detection in Whole Blood. Adv. Funct. Mater. 2021, 31, 2010638. [Google Scholar] [CrossRef]
- Lakshmanakumar, M.; Nesakumar, N.; Sethuraman, S.; Krishnan, U.M.; Rayappan, J.B.B. Fabrication of GQD-Electrodeposited Screen-Printed Carbon Electrodes for the Detection of the CRP Biomarker. ACS Omega 2021, 6, 32528–32536. [Google Scholar] [CrossRef]
- Akbari jonous, Z.; Shayeh, J.S.; Yazdian, F.; Yadegari, A.; Hashemi, M.; Omidi, M. An electrochemical biosensor for prostate cancer biomarker detection using graphene oxide–gold nanostructures. Eng. Life Sci. 2019, 19, 206–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasanzadeh, M.; Mokhtari, F.; Shadjou, N.; Eftekhari, A.; Mokhtarzadeh, A.; Jouyban-Gharamaleki, V.; Mahboob, S. Poly arginine-graphene quantum dots as a biocompatible and non-toxic nanocomposite: Layer-by-layer electrochemical preparation, characterization and non-invasive malondialdehyde sensory application in exhaled breath condensate. Mater. Sci. Eng. C 2017, 75, 247–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faria, A.M.; Peixoto, E.B.; Adamo, C.B.; Flacker, A.; Longo, E.; Mazon, T. Controlling parameters and characteristics of electrochemical biosensors for enhanced detection of 8-hydroxy-2′-deoxyguanosine. Sci. Rep. 2019, 9, 7411. [Google Scholar] [CrossRef]
- Chen, T.W.; Rajaji, U.; Chen, S.M.; Wang, J.Y.; Alothman, Z.A.; Ali, M.A.; Wabaidur, S.M.; Al-Hemaid, F.; Lee, S.Y.; Chang, W.H. Sonochemical preparation of carbon nanosheets supporting cuprous oxide architecture for high-performance and non-enzymatic electrochemical sensor in biological samples. Ultrason. Sonochem. 2020, 66, 105072. [Google Scholar] [CrossRef] [PubMed]
- Yi, Z.; Qiao, J.; Wang, Y.; Gao, K.; Zhao, R.; Meng, X. Electrochemical sensor platform for 8-hydroxy-2′-deoxyguanosine detection based on carboxyl-functionalized carbon-allotropic nanomaterials wrapped gold nanoparticles modified electrode. Int. J. Electrochem. Sci. 2019, 14, 9098–9111. [Google Scholar] [CrossRef]
- Nontawong, N.; Amatatongchai, M.; Jarujamrus, P.; Nacapricha, D.; Lieberzeit, P.A. Novel dual-sensor for creatinine and 8-hydroxy-2′-deoxyguanosine using carbon-paste electrode modified with molecularly imprinted polymers and multiple-pulse amperometry. Sens. Actuators B Chem. 2021, 334, 129636. [Google Scholar] [CrossRef]
- Dhulkefl, A.J.; Atacan, K.; Bas, S.Z.; Ozmen, M. An Ag–TiO2–reduced graphene oxide hybrid film for electrochemical detection of 8-hydroxy-2′-deoxyguanosine as an oxidative DNA damage biomarker. Anal. Methods 2020, 12, 499–506. [Google Scholar] [CrossRef]
- Khan, M.; Liu, X.; Tang, Y.; Liu, X. Ultra-sensitive electrochemical detection of oxidative stress biomarker 8-hydroxy-2′-deoxyguanosine with poly (L-arginine)/graphene wrapped Au nanoparticles modified electrode. Biosens. Bioelectron. 2018, 117, 508–514. [Google Scholar] [CrossRef]
- Hao, J.; Wu, K.; Wan, C.; Tang, Y. Reduced graphene oxide-ZnO nanocomposite based electrochemical sensor for sensitive and selective monitoring of 8-hydroxy-2′-deoxyguanosine. Talanta 2018, 185, 550–556. [Google Scholar] [CrossRef]
- Trachioti, M.G.; Hrbac, J.; Prodromidis, M.I. Determination of 8-hydroxy-2′-deoxyguanosine in urine with “linear” mode sparked graphite screen-printed electrodes. Electrochim. Acta 2021, 399, 139371. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhang, Q.; Sun, Y.; Liu, Y.; Lu, H.; Fan, X.; Wang, H.; Zhang, Y.; Wang, H. Design synthesis of a controllable flower-like Pt-graphene oxide architecture through electrostatic self-assembly for DNA damage biomarker 8-hydroxy-2′-deoxyguanosine biosensing research. Analyst 2018, 143, 3619–3627. [Google Scholar] [CrossRef] [PubMed]
- Manavalan, S.; Rajaji, U.; Chen, S.M.; Selvin, S.S.P.; Govindasamy, M.; Chen, T.W.; Ali, M.A.; Al-Hemaid, F.M.; Elshikh, M. Determination of 8-hydroxy-2′-deoxyguanosine oxidative stress biomarker using dysprosium oxide nanoparticles@ reduced graphene oxide. Inorg. Chem. Front. 2018, 5, 2885–2892. [Google Scholar] [CrossRef]
- Goyal, R.N. Determination of 8-Hydroxydeoxyguanosine: A potential biomarker of oxidative stress, using carbon-allotropic nanomaterials modified glassy carbon sensor. Talanta 2016, 161, 735–742. [Google Scholar]
- Govindasamy, M.; Wang, S.F.; Subramanian, B.; Ramalingam, R.J.; Al-Lohedan, H.; Sathiyan, A. A novel electrochemical sensor for determination of DNA damage biomarker (8-hydroxy-2′-deoxyguanosine) in urine using sonochemically derived graphene oxide sheets covered zinc oxide flower modified electrode. Ultrason. Sonochem. 2019, 58, 104622. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wang, J. Optical biosensors: An exhaustive and comprehensive review. Analyst 2020, 145, 1605–1628. [Google Scholar] [CrossRef]
- Yagati, A.K.; Lee, G.Y.; Ha, S.; Chang, K.A.; Pyun, J.C.; Cho, S. Impedimetric tumor necrosis factor-α sensor based on a reduced graphene oxide nanoparticle-modified electrode array. J. Nanosci. Nanotechnol. 2016, 16, 11921–11927. [Google Scholar] [CrossRef]
- Chen, X.; Qin, P.; Li, J.; Yang, Z.; Wen, Z.; Jian, Z.; Zhao, J.; Hu, X.; Xiao, X. Impedance immunosensor for bovine interleukin-4 using an electrode modified with reduced graphene oxide and chitosan. Microchim. Acta 2015, 182, 369–376. [Google Scholar] [CrossRef]
- Pachauri, N.; Dave, K.; Dinda, A.; Solanki, P.R. Cubic CeO2 implanted reduced graphene oxide-based highly sensitive biosensor for non-invasive oral cancer biomarker detection. J. Mater. Chem. B 2018, 6, 3000–3012. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, B.T. Surface plasmon resonance biosensor based on graphene oxide/silver coated polymer cladding silica fiber. Sens. Actuators B Chem. 2018, 275, 332–338. [Google Scholar] [CrossRef]
- Lee, J.S.; Joung, H.A.; Kim, M.G.; Park, C.B. Graphene-based chemiluminescence resonance energy transfer for homogeneous immunoassay. ACS Nano 2012, 6, 2978–2983. [Google Scholar] [CrossRef]
- De la O-Cuevas, E.; Badillo-Ramírez, I.; Islas, S.R.; Araujo-Andrade, C.; Saniger, J.M. Sensitive Raman detection of human recombinant interleukin-6 mediated by DCDR/GERS hybrid platforms. RSC Adv. 2019, 9, 12269–12275. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.G.; Shon, Y.; Lee, J.; Byun, Y.; Choi, B.S.; Kim, Y.B.; Oh, Y.K. Double stranded aptamer-anchored reduced graphene oxide as target-specific nano detector. Biomaterials 2014, 35, 2999–3004. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Lu, X.; Yang, Y.; Zhai, Y.; Zhang, J.; Li, L. A novel fluorescent aptasensor for the highly sensitive and selective detection of cardiac troponin I based on a graphene oxide platform. Anal. Bioanal. Chem. 2018, 410, 4285–4291. [Google Scholar] [CrossRef]
- Tu, A.; Shang, J.; Wang, Y.; Li, D.; Liu, L.; Gan, Z.; Yin, Y.; Zhang, P. Detection of B-type natriuretic peptide by establishing a low-cost and replicable fluorescence resonance energy transfer platform. Microchim. Acta 2020, 187, 331. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Lu, M.; Li, J.; Tan, Z.; Dai, H.; Hu, X. Nitrogen-doped graphene-chitosan matrix based efficient chemiluminescent immunosensor for detection of chicken interleukin-4. Biosens. Bioelectron. 2017, 89, 558–564. [Google Scholar] [CrossRef]
- Lim, S.Y.; Ahn, J.; Lee, J.S.; Kim, M.G.; Park, C.B. Graphene-oxide-based immunosensing through fluorescence quenching by peroxidase-catalyzed polymerization. Small 2012, 8, 1994–1999. [Google Scholar] [CrossRef]
- Wijaya, E.; Lenaerts, C.; Maricot, S.; Hastanin, J.; Habraken, S.; Vilcot, J.P.; Boukherroub, R.; Szunerits, S. Surface plasmon resonance-based biosensors: From the development of different SPR structures to novel surface functionalization strategies. Curr. Opin. Solid State Mater. Sci. 2011, 15, 208–224. [Google Scholar] [CrossRef]
- Sohrabi, H.; kholafazad Kordasht, H.; Pashazadeh-Panahi, P.; Nezhad-Mokhtari, P.; Hashemzaei, M.; Majidi, M.R.; Mosafer, J.; Oroojalian, F.; Mokhtarzadeh, A.; de la Guardia, M. Recent advances of electrochemical and optical biosensors for detection of C-reactive protein as a major inflammatory biomarker. Microchem. J. 2020, 158, 105287. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Park, J.; Kang, S.; Kim, M. Surface plasmon resonance: A versatile technique for biosensor applications. Sensors 2015, 15, 10481–10510. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Chu, H.S.; Koh, W.S.; Li, E.P. Highly sensitive graphene biosensors based on surface plasmon resonance. Opt. Express 2010, 18, 14395–14400. [Google Scholar] [CrossRef]
- Pérez-Jiménez, A.I.; Lyu, D.; Lu, Z.; Liu, G.; Ren, B. Surface-enhanced Raman spectroscopy: Benefits, trade-offs and future developments. Chem. Sci. 2020, 11, 4563–4577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zong, C.; Xu, M.; Xu, L.J.; Wei, T.; Ma, X.; Zheng, X.S.; Hu, R.; Ren, B. Surface-enhanced Raman spectroscopy for bioanalysis: Reliability and challenges. Chem. Rev. 2018, 118, 4946–4980. [Google Scholar] [CrossRef] [PubMed]
- Begliarbekov, M.; Sul, O.; Santanello, J.; Ai, N.; Zhang, X.; Yang, E.H.; Strauf, S. Localized states and resultant band bending in graphene antidot superlattices. Nano Lett. 2011, 11, 1254–1258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sapsford, K.E.; Sun, S.; Francis, J.; Sharma, S.; Kostov, Y.; Rasooly, A. A fluorescence detection platform using spatial electroluminescent excitation for measuring botulinum neurotoxin A activity. Biosens. Bioelectron. 2008, 24, 618–625. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.; Feng, B.; Xu, J.; Qing, T.; Zhang, P.; Qing, Z. Graphene biosensors for bacterial and viral pathogens. Biosens. Bioelectron. 2020, 166, 112471. [Google Scholar] [CrossRef]
- Damborskỳ, P.; Švitel, J.; Katrlík, J. Optical biosensors. Essays Biochem. 2016, 60, 91–100. [Google Scholar]
- Badillo-Ramírez, I.; Landeros-Rivera, B.; de la O-Cuevas, E.; Vargas, R.; Garza, J.; Saniger, J.M. Interaction of 5-S-cysteinyl-dopamine with graphene oxide: An experimental and theoretical study for the detection of a Parkinson’s disease biomarker. New J. Chem. 2019, 43, 15861–15870. [Google Scholar] [CrossRef]
- Wu, Y.M.; Cen, Y.; Huang, L.J.; Yu, R.Q.; Chu, X. Upconversion fluorescence resonance energy transfer biosensor for sensitive detection of human immunodeficiency virus antibodies in human serum. Chem. Commun. 2014, 50, 4759–4762. [Google Scholar] [CrossRef]
- Soleymani, L.; Li, F. Mechanistic challenges and advantages of biosensor miniaturization into the nanoscale. ACS Sens. 2017, 2, 458–467. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, Q. Biosensors and bioelectronics on smartphone for portable biochemical detection. Biosens. Bioelectron. 2016, 75, 273–284. [Google Scholar] [CrossRef]
- Janegitz, B.C.; Silva, T.A.; Wong, A.; Ribovski, L.; Vicentini, F.C.; Sotomayor, M.d.P.T.; Fatibello-Filho, O. The application of graphene for in vitro and in vivo electrochemical biosensing. Biosens. Bioelectron. 2017, 89, 224–233. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Campbell, A.S.; de Ávila, B.E.F.; Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 2019, 37, 389–406. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Badea, M.; Tiwari, S.; Marty, J.L. Wearable Biosensors: An Alternative and Practical Approach in Healthcare and Disease Monitoring. Molecules 2021, 26, 748. [Google Scholar] [CrossRef] [PubMed]
- Vu, C.A.; Chen, W.Y. Field-effect transistor biosensors for biomedical applications: Recent advances and future prospects. Sensors 2019, 19, 4214. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Hao, Z.; Yu, S.; De Moraes, C.G.; Suh, L.H.; Zhao, X.; Lin, Q. An ultraflexible and stretchable aptameric graphene nanosensor for biomarker detection and monitoring. Adv. Funct. Mater. 2019, 29, 1905202. [Google Scholar] [CrossRef] [PubMed]
- Farid, S.; Meshik, X.; Choi, M.; Mukherjee, S.; Lan, Y.; Parikh, D.; Poduri, S.; Baterdene, U.; Huang, C.E.; Wang, Y.Y.; et al. Detection of Interferon gamma using graphene and aptamer based FET-like electrochemical biosensor. Biosens. Bioelectron. 2015, 71, 294–299. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Hao, Z.; Wang, X.; Huang, C.; Lin, Q.; Zhao, X.; Pan, Y. A flexible and regenerative aptameric graphene–Nafion biosensor for cytokine storm biomarker monitoring in undiluted biofluids toward wearable applications. Adv. Funct. Mater. 2021, 31, 2005958. [Google Scholar] [CrossRef]
- Hao, Z.; Pan, Y.; Shao, W.; Lin, Q.; Zhao, X. Graphene-based fully integrated portable nanosensing system for on-line detection of cytokine biomarkers in saliva. Biosens. Bioelectron. 2019, 134, 16–23. [Google Scholar] [CrossRef]
- Afsahi, S.J.; Locascio, L.E.; Pan, D.; Gao, Y.; Walker, A.E.; Barron, F.E.; Goldsmith, B.R.; Lerner, M.B. Towards Novel Graphene-Enabled Diagnostic Assays with Improved Signal-to-Noise Ratio. MRS Adv. 2017, 2, 3733–3739. [Google Scholar] [CrossRef]
- Goldsmith, B.R.; Locascio, L.; Gao, Y.; Lerner, M.; Walker, A.; Lerner, J.; Kyaw, J.; Shue, A.; Afsahi, S.; Pan, D.; et al. Digital biosensing by foundry-fabricated graphene sensors. Sci. Rep. 2019, 9, 434. [Google Scholar] [CrossRef] [Green Version]
- Hao, Z.; Wang, Z.; Li, Y.; Zhu, Y.; Wang, X.; De Moraes, C.G.; Pan, Y.; Zhao, X.; Lin, Q. Measurement of cytokine biomarkers using an aptamer-based affinity graphene nanosensor on a flexible substrate toward wearable applications. Nanoscale 2018, 10, 21681–21688. [Google Scholar] [CrossRef] [PubMed]
- Hao, Z.; Luo, Y.; Huang, C.; Wang, Z.; Song, G.; Pan, Y.; Zhao, X.; Liu, S. An Intelligent Graphene-Based Biosensing Device for Cytokine Storm Syndrome Biomarkers Detection in Human Biofluids. Small 2021, 17, 2101508. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Zhu, J.; Dai, H.; Li, J.; Shen, J.; Jiao, X.; Hu, X.; Ju, H. Graphene oxide based ultrasensitive flow-through chemiluminescent immunoassay for sub-picogram level detection of chicken interferon-γ. Biosens. Bioelectron. 2014, 51, 356–361. [Google Scholar] [CrossRef] [PubMed]
- Torrente-Rodríguez, R.M.; Lukas, H.; Tu, J.; Min, J.; Yang, Y.; Xu, C.; Rossiter, H.B.; Gao, W. SARS-CoV-2 RapidPlex: A graphene-based multiplexed telemedicine platform for rapid and low-cost COVID-19 diagnosis and monitoring. Matter 2020, 3, 1981–1998. [Google Scholar] [CrossRef]
- Vashist, S.K.; Schneider, E.M.; Zengerle, R.; von Stetten, F.; Luong, J.H. Graphene-based rapid and highly-sensitive immunoassay for C-reactive protein using a smartphone-based colorimetric reader. Biosens. Bioelectron. 2015, 66, 169–176. [Google Scholar] [CrossRef]
Molecular Biomarker | Disease | Ref. |
---|---|---|
Pro-inflammatory cytokines, interleukins (IL): IL-1 , IL-6, IL-8, IL-15, IL-17, IL-18 | Periodontitis, psoriasis, COVID-19, rheumatoid arthritis, oral cancer, Alzheimer’s disease, osteoarthritis. | [41,62,63,64,65] |
Anti-inflammatory cytokines: IL-4, IL-10, IL-13 | Asthma, inflammatory pain, ulcerative colitis, systemic sclerosis. | [66,67,68,69] |
Others cytokines: IL-3; IL-5, IL-12 | Primary open angle glaucoma, inflammatory bowel disease, asthma | [70,71,72,73,74] |
serum cardiac troponin I (cTnI) | Cardiac troponin T, coronary artery disease | [75,76,77] |
B-type natriuretic peptide (BNP) | Coronary artery disease | [78] |
Pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-) | Rheumatoid arthritis, immune reconstitution inflammatory syndrome, inflammatory bowel disease | [79,80,81] |
Monocyte chemoattractant protein-1 (MCP-1) | Alzhemier’s disease, periodontal disease | [82,83] |
Interferons (IFNs) | Rheumatoid arthritis, associated vasculitis, Alzheimer’s disease, inflammatory bowel disease, severe acute respiratory syndrome | [84,85,86,87,88] |
High-mobility group box 1 (HMGB1) | Atherosclerosis, COVID-19, influenza | [89,90,91] |
Enzymatic anti-oxidants superoxide dismutase (SOD), glutathione peroxidase (GPx), NADPH oxidase2 (NOX2), inducible nitric oxide synthase (iNOS), cyclooxigenase, (COX-2) | Tuberculosis, Parkinson, metabolic syndrome, lupus erithematosus, periodontitis, neurodegenerative disease, colitis, virus-associated human malignant neoplasm | [92,93,94,95,96,97,98] |
Malondialdehyde (MDA) | Diabetes mellitus, psoriasis | [99,100] |
8-Hydroxy-2′-deoxyguanosine (8-OHdG) | Chronic obstructive pulmonary disease, colorectal cancer | [101,102] |
C-reactive protein (CRP) | Cardiovascular disease, COVID-19, bacterial infection | [103,104] |
Transforming growth factors (TGFs) | Glomerulonephritis, angiogenesis | [105,106] |
High-mobility group box 1 (HMGB1) | COVID-19, oral inflammation | [90,104] |
Reactive oxygen species (ROS) | Chronic inflammatory joint | [107] |
Biomarker | Sensing Platform Design | Surface Modification | Detection Method | LOD | Detection Range | Type of Sample | Ref. |
---|---|---|---|---|---|---|---|
IgG | Ag-GO bilayer film | Goat anti-human IgG | SPR | 0.04 g/mL | 5–30 g/mL | PBS buffer | [193] |
CRP | graphene-based CRET platform | anti-CRP | CL | 0.93 ng/mL | 1–1000 ng/mL | PBS buffer and human serum | [194] |
IL-6 | rGO/Si | label-free | GERS | 1 pg/mL | 10 g/mL–1 pg/mL | PBS buffer | [195] |
IFN- | DAGO | dsDA-Aptamer, label | Fluorescence | 0.1 ng/mL | 100 pg/mL–10 g/mL | Buffer and spiked human serum | [196] |
cTnI | FMAA-GO | anti-cTnI aptamer | Fluorescence | 0.07 ng/mL | 0.10–6.0 ng/mL | Tris–HCl buffer and spiked human serum | [197] |
BNP | GO nanosheet | FAM-aptamer | FRET | 45 fg/mL | 0.074–0.56 pg/mL | Buffer, spiked blood and clinical blood | [198] |
IL-4 (chicken) | (NG)-chitosan nanocomposite | mAb ChIL-4 | flow-through CL | 0.02 ng/mL | 0.05–70 ng/mL | PBS buffer and spiked in chicken serum | [199] |
IL-5 | GO sheets on amine-modified glass surface | DAB/anti-IL-5 and HRP-anti-IL-5 | Fluorescence Quenching | 5 pg/mL in PBS; 10 pg/mL in human serum | 0.005–0.5 ng/mL | Phosphate buffer and spiked human serum | [200] |
Biomarker | Sensing Platform Design | Surface Modification | Detection Method | LOD | Detection Range | Type of Sample | Ref. |
---|---|---|---|---|---|---|---|
Il-6 | miniaturized GFET nanosensing system | IL-6-specific-aptamer | Aptameric GFET | 10.5 pM (testing solution), 12.2 pM (saliva) | 10–100 nM | PBS buffer, gargle solution and human saliva | [222] |
Foundry-Fabricated Graphene Sensors | anti IL-6 | graphene-enabled FEB | <2 pg/mL | 2–1000 pg/mL | PBS buffer solution | [224] | |
Graphene chip integrated in AGILE R100 | Anti-IL-6 | FEB with AGILE R100 reader | 0.1 pM | 0.01–10 pM | PBS buffer | [223] | |
TNF- | flexible graphene aptameric nanosensor | aptameric DNA | GFET nanosensor | 26 pM | 50 pM–500 nM | PBS buffer | [225] |
ultraflexible GFET nanosensor device | DNA aptamer | FET | 5 pM | 50–100 pM | PBS buffer | [219] | |
TNF- and IFN- | Wearable and deformable GFET | Aptamers | GFET | TNF-: 2.75 pM; IFN-: 2.89 pM | - | PBS buffer and spiked artificial tears | [129] |
IFN- (single) | Liquid gate FET-like transistors | IFN- aptamer | FET | 83 pM | 0 nM–100 M | PBS buffer | [220] |
IFN- and ChIFN- | flexible and regenerative aptameric GNFET | IFN- aptamer | FET | 740 fM | 0.015–250 nM | PBS buffer and spiked in human sweat | [221] |
flow-through CL immunoassay | Anti-ChIFN-y | CL coupled to flow-through | 0.36 pg/mL | 0.001–0.1 ng/mL | PBS buffer, supernatant and infected serum samples | [227] | |
CRP | Graphene immunoassay with smartphone-based reader | anti-human CRP | Smartphone-based colorimetric reader | 0.07 ng/mL | 0.03–81 ng/mL | clinical and diluted human whole blood | [229] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badillo-Ramírez, I.; Carreón, Y.J.P.; Rodríguez-Almazán, C.; Medina-Durán, C.M.; Islas, S.R.; Saniger, J.M. Graphene-Based Biosensors for Molecular Chronic Inflammatory Disease Biomarker Detection. Biosensors 2022, 12, 244. https://doi.org/10.3390/bios12040244
Badillo-Ramírez I, Carreón YJP, Rodríguez-Almazán C, Medina-Durán CM, Islas SR, Saniger JM. Graphene-Based Biosensors for Molecular Chronic Inflammatory Disease Biomarker Detection. Biosensors. 2022; 12(4):244. https://doi.org/10.3390/bios12040244
Chicago/Turabian StyleBadillo-Ramírez, Isidro, Yojana J. P. Carreón, Claudia Rodríguez-Almazán, Claudia M. Medina-Durán, Selene R. Islas, and José M. Saniger. 2022. "Graphene-Based Biosensors for Molecular Chronic Inflammatory Disease Biomarker Detection" Biosensors 12, no. 4: 244. https://doi.org/10.3390/bios12040244
APA StyleBadillo-Ramírez, I., Carreón, Y. J. P., Rodríguez-Almazán, C., Medina-Durán, C. M., Islas, S. R., & Saniger, J. M. (2022). Graphene-Based Biosensors for Molecular Chronic Inflammatory Disease Biomarker Detection. Biosensors, 12(4), 244. https://doi.org/10.3390/bios12040244