A Portable Biosensor Based on Au Nanoflower Interface Combined with Electrochemical Immunochromatography for POC Detection of Prostate-Specific Antigen
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Construction of PSA Detection Capture Interface
2.2.1. Electrodeposition of Au NFs on the SPCE
2.2.2. Au NFs/SPCE Layer Characterization
2.2.3. Optimization the Concentration of PSA mAb Capture Antibody
2.2.4. Preparation of the SPCE/Au NFs/PSA mAb Capture Layer and EIC Detection Chip
2.2.5. Electrochemical Analysis of the PSA with EIC Detection Chip
2.2.6. Clinical Sample Test with EIC Biosensor Chip
3. Results and Discussion
3.1. Design of the Smartphone-Based EIC Biosensor for PSA Detection
3.2. Structural Characterization of the SPCE/Au NFs and Its Performance
3.3. Optimization of Experimental Conditions
3.4. Evaluation Performance of EIC Biosensing Chip of PSA Based on the Au NFs Interface
3.5. The Performance of EIC Biosensing Chip of Clinical Relevance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2020, 70, 313–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becker, C.; Lilja, H. Individual prostate-specific antigen (PSA) forms as prostate tumor markers. Clin. Chim. Acta 1997, 257, 117–132. [Google Scholar] [CrossRef]
- Ahmed, H.; Azzazy, H. Power-free chip enzyme immunoassay for detection of prostate specific antigen (PSA) in serum. Biosens. Bioelectron. 2013, 49, 478–484. [Google Scholar] [CrossRef] [PubMed]
- Cheow, L.F.; Ko, S.H.; Kim, S.J.; Kang, K.H.; Han, J. Increasing the Sensitivity of Enzyme-Linked Immunosorbent Assay Using Multiplexed Electrokinetic Concentrator. Anal. Chem. 2010, 82, 3383–3388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, H.; Kang, H.; Ko, E.; Jun, B.-H.; Lee, H.-Y.; Lee, Y.-S.; Jeong, D.H. PSA Detection with Femtomolar Sensitivity and a Broad Dynamic Range Using SERS Nanoprobes and an Area-Scanning Method. ACS Sens. 2016, 1, 645–649. [Google Scholar] [CrossRef]
- Cheng, Z.; Choi, N.; Wang, R.; Lee, S.; Moon, K.C.; Yoon, S.-Y.; Chen, L.; Choo, J. Simultaneous Detection of Dual Prostate Specific Antigens Using Surface-Enhanced Raman Scattering-Based Immunoassay for Accurate Diagnosis of Prostate Cancer. ACS Nano 2017, 11, 4926–4933. [Google Scholar] [CrossRef]
- Gao, R.; Lv, Z.; Mao, Y.; Yu, L.; Bi, X.; Xu, S.; Cui, J.; Wu, Y.-C. SERS-Based Pump-Free Microfluidic Chip for Highly Sensitive Immunoassay of Prostate-Specific Antigen Biomarkers. ACS Sens. 2019, 4, 938–943. [Google Scholar] [CrossRef]
- Chong, J.; Chong, H.; Lee, J.H. A chemiluminescent dual-aptasensor capable of simultaneously quantifying prostate specific antigen and vascular endothelial growth factor. Anal. Biochem. 2019, 564–565, 102–107. [Google Scholar] [CrossRef]
- Du, Y.; Liu, H.; Chen, Y.; Tian, Y.; Zhang, X.; Gu, C.; Jiang, T.; Zhou, J. Recyclable label-free SERS-based immunoassay of PSA in human serum mediated by enhanced photocatalysis arising from Ag nanoparticles and external magnetic field. Appl. Surf. Sci. 2020, 528, 146953. [Google Scholar] [CrossRef]
- Ellis, W.J.; Vessella, R.L.; Noteboom, J.L.; Lange, P.H.; Wolfert, R.L.; Rittenhouse, H.G. Early detection of recurrent prostate cancer with an ultrasensitive chemiluminescent prostate-specific antigen assay. Urology 1997, 50, 573–579. [Google Scholar] [CrossRef]
- Gen, S.; Bao-Jun, T.; Xu, W.; Li-Xia, Z.; Jin-Ming, L. Microplate Chemiluminescent Enzyme Immunoassay for the Quantitative Analysis of Free Prostate-Specific Antigen in Human Serum. Chin. J. Anal. Chem. 2007, 35, 1541–1547. [Google Scholar] [CrossRef]
- Shi, H.-W.; Zhao, W.; Liu, Z.; Liu, X.-C.; Wu, M.-S.; Xu, J.-J.; Chen, H.-Y. Joint enhancement strategy applied in ECL biosensor based on closed bipolar electrodes for the detection of PSA. Talanta 2016, 154, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.-S.; Chen, R.-N.; Xiao, Y.; Lv, Z.-X. Novel “signal-on” electrochemiluminescence biosensor for the detection of PSA based on resonance energy transfer. Talanta 2016, 161, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.Q.; Yang, Y.C.; Liu, M.H.; Chan, Y.H. FRET-Created Traffic Light Immunoassay Based on Polymer Dots for PSA Detection. Anal. Chem. 2019, 92, 1493–1501. [Google Scholar] [CrossRef]
- You, P.Y.; Li, F.C.; Liu, M.H.; Chan, Y.H. Colorimetric and Fluorescent Dual-Mode Immunoassay Based on Plasmon-Enhanced Fluorescence of Polymer Dots for Detection of PSA in Whole Blood. ACS Appl. Mater. Interfaces 2019, 11, 9841–9849. [Google Scholar] [CrossRef]
- Zhang, B.; Gao, W.; Piao, J.; Xiao, Y.; Wang, B.; Peng, W.; Gong, X.; Wang, Z.; Yang, H.; Chang, J. Effective Bioactivity Retention of Low-Concentration Antibodies on HFBI-Modified Fluorescence ICTS for Sensitive and Rapid Detection of PSA. ACS Appl. Mater. Interfaces 2018, 10, 14549–14558. [Google Scholar] [CrossRef]
- Feng, D.; Su, J.; Xu, Y.; He, G.; Wang, C.; Wang, X.; Pan, T.; Ding, X.; Mi, X. DNA tetrahedron-mediated immune-sandwich assay for rapid and sensitive detection of PSA through a microfluidic electrochemical detection system. Microsyst. Nanoeng. 2021, 7, 33. [Google Scholar] [CrossRef]
- Li, J.; Li, Z.; Dou, Y.; Su, J.; Shi, J.; Zhou, Y.; Wang, L.; Song, S.; Fan, C. A nano-integrated microfluidic biochip for enzyme-based point-of-care detection of creatinine. Chem. Commun. 2021, 57, 4726–4729. [Google Scholar] [CrossRef]
- Yakoh, A.; Pimpitak, U.; Rengpipat, S.; Hirankarn, N.; Chailapakul, O.; Chaiyo, S. Paper-based electrochemical biosensor for diagnosing COVID-19: Detection of SARS-CoV-2 antibodies and antigen. Biosens. Bioelectron. 2021, 176, 112912. [Google Scholar] [CrossRef]
- Chen, S.; Su, J.; Zhao, Z.; Shao, Y.; Dou, Y.; Li, F.; Deng, W.; Shi, J.; Li, Q.; Zuo, X.; et al. DNA Framework-Supported Electrochemical Analysis of DNA Methylation for Prostate Cancers. Nano Lett. 2020, 20, 7028–7035. [Google Scholar] [CrossRef]
- Gao, J.; Guo, Z.; Su, F.; Gao, L.; Pang, X.; Cao, W.; Du, B.; Wei, Q. Ultrasensitive electrochemical immunoassay for CEA through host-guest interaction of beta-cyclodextrin functionalized graphene and Cu@Ag core-shell nanoparticles with adamantine-modified antibody. Biosens. Bioelectron. 2015, 63, 465–471. [Google Scholar] [CrossRef]
- Kim, K.; Kim, M.J.; Kim, D.W.; Kim, S.Y.; Park, S.; Park, C.B. Clinically accurate diagnosis of Alzheimer’s disease via multiplexed sensing of core biomarkers in human plasma. Nat. Commun. 2020, 11, 119. [Google Scholar] [CrossRef]
- Mao, X.; Liu, M.; Yan, L.; Deng, M.; Li, F.; Li, M.; Wang, F.; Li, J.; Wang, L.; Tian, Y.; et al. Programming Biomimetically Confined Aptamers with DNA Frameworks. ACS Nano 2020, 14, 8776–8783. [Google Scholar] [CrossRef] [PubMed]
- Song, P.; Shen, J.; Ye, D.; Dong, B.; Wang, F.; Pei, H.; Wang, J.; Shi, J.; Wang, L.; Xue, W.; et al. Programming bulk enzyme heterojunctions for biosensor development with tetrahedral DNA framework. Nat. Commun. 2020, 11, 838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, Y.; Li, L.; Li, J.; Lin, M.; Liu, G.; Liang, W.; Xu, L.; Li, Y.; Zuo, X.; Ren, S.; et al. DNA Framework-Mediated Electrochemical Biosensing Platform for Amplification-Free MicroRNA Analysis. Anal. Chem. 2020, 92, 4498–4503. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Li, Y.; Gong, H.; Yu, Z.; Zhang, J.; Wei, Q.; Tang, D. Au Nanoparticle-Decorated ZnO Microflower-Based Immunoassay for Photoelectrochemical Detection of Human Prostate-Specific Antigen. ACS Appl. Nano Mater. 2021, 4, 10943–10951. [Google Scholar] [CrossRef]
- Zhu, C.Z.; Guo, S.J.; Fang, Y.X.; Dong, S.J. Reducing Sugar: New Functional Molecules for the Green Synthesis of Graphene Nanosheets. Acs Nano 2010, 4, 2429–2437. [Google Scholar] [CrossRef]
- Lam, B.; Das, J.; Holmes, R.D.; Live, L.; Sage, A.; Sargent, E.H.; Kelley, S.O. Solution-based circuits enable rapid and multiplexed pathogen detection. Nat. Commun. 2013, 4, 2001. [Google Scholar] [CrossRef] [Green Version]
- Su, S.; Wu, Y.; Zhu, D.; Chao, J.; Liu, X.; Wan, Y.; Su, Y.; Zuo, X.; Fan, C.; Wang, L. On-Electrode Synthesis of Shape-Controlled Hierarchical Flower-Like Gold Nanostructures for Efficient Interfacial DNA Assembly and Sensitive Electrochemical Sensing of MicroRNA. Small 2016, 12, 3794–3801. [Google Scholar] [CrossRef]
- Wang, L.; Xie, S.; Wang, Z.; Liu, F.; Yang, Y.; Tang, C.; Wu, X.; Liu, P.; Li, Y.; Saiyin, H.; et al. Functionalized helical fibre bundles of carbon nanotubes as electrochemical sensors for long-term in vivo monitoring of multiple disease biomarkers. Nat. Biomed. Eng. 2019, 4, 159–171. [Google Scholar] [CrossRef]
- Xue, Z.; Fu, X.; Rao, H.; Zhou, X.; Liu, X.; Lu, X. A new electron transfer mediator actuated non-enzymatic nitrite sensor based on the voltammetry synthetic composites of 1-(2-pyridylazo)-2-naphthol nanostructures coated electrochemical reduced graphene oxide nanosheets. Electrochim. Acta 2018, 260, 623–629. [Google Scholar] [CrossRef]
- Zhu, C.; Dong, S. Energetic Graphene-Based Electrochemical Analytical Devices in Nucleic Acid, Protein and Cancer Diagnostics and Detection. Electroanalysis 2013, 26, 14–29. [Google Scholar] [CrossRef]
- Huang, C.; Wen, T.; Shi, F.J.; Zeng, X.Y.; Jiao, Y.J. Rapid Detection of IgM Antibodies against the SARS-CoV-2 Virus via Colloidal Gold Nanoparticle-Based Lateral-Flow Assay. ACS Omega 2020, 5, 12550–12556. [Google Scholar] [CrossRef] [PubMed]
- Kevadiya, B.D.; Machhi, J.; Herskovitz, J.; Oleynikov, M.D.; Blomberg, W.R.; Bajwa, N.; Soni, D.; Das, S.; Hasan, M.; Patel, M.; et al. Diagnostics for SARS-CoV-2 infections. Nat. Mater. 2021, 20, 593–605. [Google Scholar] [CrossRef]
- Yu, S.; Nimse, S.B.; Kim, J.; Song, K.S.; Kim, T. Development of a Lateral Flow Strip Membrane Assay for Rapid and Sensitive Detection of the SARS-CoV-2. Anal. Chem. 2020, 92, 14139–14144. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dou, Y.; Li, Z.; Su, J.; Song, S. A Portable Biosensor Based on Au Nanoflower Interface Combined with Electrochemical Immunochromatography for POC Detection of Prostate-Specific Antigen. Biosensors 2022, 12, 259. https://doi.org/10.3390/bios12050259
Dou Y, Li Z, Su J, Song S. A Portable Biosensor Based on Au Nanoflower Interface Combined with Electrochemical Immunochromatography for POC Detection of Prostate-Specific Antigen. Biosensors. 2022; 12(5):259. https://doi.org/10.3390/bios12050259
Chicago/Turabian StyleDou, Yanzhi, Zhenhua Li, Jing Su, and Shiping Song. 2022. "A Portable Biosensor Based on Au Nanoflower Interface Combined with Electrochemical Immunochromatography for POC Detection of Prostate-Specific Antigen" Biosensors 12, no. 5: 259. https://doi.org/10.3390/bios12050259
APA StyleDou, Y., Li, Z., Su, J., & Song, S. (2022). A Portable Biosensor Based on Au Nanoflower Interface Combined with Electrochemical Immunochromatography for POC Detection of Prostate-Specific Antigen. Biosensors, 12(5), 259. https://doi.org/10.3390/bios12050259