Cano, J.; Fácila, L.; Gracia-Baena, J.M.; Zangróniz, R.; Alcaraz, R.; Rieta, J.J.
The Relevance of Calibration in Machine Learning-Based Hypertension Risk Assessment Combining Photoplethysmography and Electrocardiography. Biosensors 2022, 12, 289.
https://doi.org/10.3390/bios12050289
AMA Style
Cano J, Fácila L, Gracia-Baena JM, Zangróniz R, Alcaraz R, Rieta JJ.
The Relevance of Calibration in Machine Learning-Based Hypertension Risk Assessment Combining Photoplethysmography and Electrocardiography. Biosensors. 2022; 12(5):289.
https://doi.org/10.3390/bios12050289
Chicago/Turabian Style
Cano, Jesús, Lorenzo Fácila, Juan M. Gracia-Baena, Roberto Zangróniz, Raúl Alcaraz, and José J. Rieta.
2022. "The Relevance of Calibration in Machine Learning-Based Hypertension Risk Assessment Combining Photoplethysmography and Electrocardiography" Biosensors 12, no. 5: 289.
https://doi.org/10.3390/bios12050289
APA Style
Cano, J., Fácila, L., Gracia-Baena, J. M., Zangróniz, R., Alcaraz, R., & Rieta, J. J.
(2022). The Relevance of Calibration in Machine Learning-Based Hypertension Risk Assessment Combining Photoplethysmography and Electrocardiography. Biosensors, 12(5), 289.
https://doi.org/10.3390/bios12050289