Energy-Efficient, On-Demand Activation of Biosensor Arrays for Long-Term Continuous Health Monitoring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Well Fabrication
2.2. Membrane Fabrication and Transfer
2.3. Filament Design and Construction
2.4. Pulse Current Circuit
2.5. Assembly
2.6. Test and Measurement
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- King, C.; Sarrafzadeh, M. A Survey of Smartwatches in Remote Health Monitoring. J. Healthc. Inform. Res. 2018, 2, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, V.; Kaushik, A.; Furukawa, H.; Khosla, A. Review–Towards 5th Generation AI and IoT Driven Sustainable Intelligent Sensors Based on 2D MXenes and Borophene. ECS Sens. Plus 2022, 1, 1. [Google Scholar] [CrossRef]
- Kaushik, A.; Khan, R.; Solanki, P.; Gandhi, S.; Gohel, H.; Mishra, Y.K. From Nanosystems to a Biosensing Prototype for an Efficient Diagnostic: A Special Issue in Honor of Professor Bansi D. Malhotra. Biosensors 2021, 11, 359. [Google Scholar] [CrossRef] [PubMed]
- Kujawska, M.; Bhardwaj, S.K.; Mishra, Y.K.; Kaushik, A. Using Graphene-Based Biosensors to Detect Dopamine for Efficient Parkinson’s Disease Diagnostics. Biosensors 2021, 11, 433. [Google Scholar] [CrossRef]
- Wang, J. Electrochemical biosensors: Towards point-of-care cancer diagnostics. Biosens. Bioelectron. 2006, 21, 1887–1892. [Google Scholar] [CrossRef]
- Wilson, G.S.; Gifford, R. Biosensors for real-time in vivo measurements. Biosens. Bioelectron. 2005, 20, 2388–2403. [Google Scholar] [CrossRef]
- D’Orazio, P. Biosensors in clinical chemistry. Cinica Chim. Acta 2003, 334, 41–69. [Google Scholar] [CrossRef]
- Helton, K.L.; Ratner, B.D.; Wisniewski, N.A. Biomechanics of the sensor-tissue interface-Effects of motion, pressure, and design on sensor performance and the foreign body response-Part 1: Theoretical framework. J. Diabetes Sci. Technol. 2011, 5, 632–646. [Google Scholar] [CrossRef]
- Groenendaal, W.; Schmidt, K.A.; von Basum, G.; van Riel, N.A.W.; Hilbers, P.A.J. Modeling Glucose and Water Dynamics in Human Skin. Diabetes Technol. Ther. 2008, 10, 283. [Google Scholar] [CrossRef]
- Ribert, F.; Stemme, G.; Roxhed, N. Real-time intradermal continuous monitoring using a minimally invasive microneedle-based system. Biomed. Microdev. 2018, 20, 101. [Google Scholar] [CrossRef] [Green Version]
- Steil, G.M.; Rebrin, K.; Hariri, F.; Jinagonda, S.; Tadros, S.; Darwin, C.; Saad, M.F. Interstitial fluid glucose dynamics during insulininduced hypoglycaemia. Diabetologia 2005, 48, 1833–1840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiss, R.G.; Chacko, V.; Glickson, J.D.; Gerstenblith, G. Comparative 13C and 31P NMR assessment of altered metabolism during graded reductions in coronary flow in intact rat hearts. Proc. Natl. Acad. Sci. USA 1989, 86, 6426–6430. [Google Scholar] [CrossRef] [Green Version]
- Sweet, I.; Li, G.; Najafi, H.; Matschinsky, F.M. Effect of a glucokinase inhibitor on energy production and insulin release in pancreatic islets. Am. J. Physiol.-Endocrinol. Metab. 1996, 271, E606–E625. [Google Scholar] [CrossRef] [PubMed]
- Guillam, M.T.; Dupraz, P.; Thorens, B. Glucose uptake, utilization, and signaling in GLUT2-null islets. Diabetes 2000, 49, 1485–1491. [Google Scholar] [CrossRef] [Green Version]
- Moley, K.H.; Chi, M.M.Y.; Mueckler, M.M. Maternal hyperglycemia alters glucose transport and utilization in mouse preimplantation embryos. Am. J. Physiol.-Endocrinol. Metab. 1998, 275, 38. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Zhao, X.L.; Li, Z.H.; Qian, S.H.; Flewitt, A.J. Current and emerging technology for continuous glucose monitoring. Sens. Actuators B. 2017, 17, 182. [Google Scholar]
- Usman Ali, S.M.; Kashif, M.; Ibupoto, Z.H.; Fakhar-e-Alam, M.; Hashim, U.; Willander, M. Functionalised zinc oxide nanotube arrays as electrochemical sensors for the selective determination of glucose. Micro Nano Lett. 2011, 6, 609–613. [Google Scholar]
- Usman Ali, S.M.; Nur, O.; Willander, M.; Danielsson, B. A fast and sensitive potentiometric glucose microsensor based on glucose oxidase coated ZnO nanowires grown on a thin silver wire. Sens. Actuators B. 2010, 145, 869–874. [Google Scholar] [CrossRef]
- Solanki, P.R.; Kaushik, A.; Agrawal, V.V.; Malhotra, B.D. Nanostructured metal oxide-based biosensors. NPG Asia Mater. 2011, 3, 17–24. [Google Scholar] [CrossRef]
- Ahmad, M.; Pan, C.F.; Gan, L.; Nawaz, Z.; Zhu, J. Highly sensitive amperometric cholesterol biosensor based on Pt-incorporated fullerene-like ZnO nanospheres. J. Phys. Chem. C 2010, 114, 243–250. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, X.; Ai, S.; Sun, Z.; Wan, Q.; Zhu, Z.; Xian, Y.; Jin, L.; Yamamoto, K. Immobilization of uricase on ZnO nanorods for a reagent less uric acid biosensor. Anal. Chim. Acta 2004, 519, 155–160. [Google Scholar] [CrossRef]
- Wang, Y.T.; Yu, L.; Zhu, Z.Q.; Zhang, J.; Zhu, J.Z. Novel uric acid sensor based on enzyme electrode modified by ZnO nanoparticles and multiwall carbon nanotubes. Anal. Lett. 2009, 42, 775–789. [Google Scholar] [CrossRef]
- Ibupoto, Z.H.; Usman Ali Shah, S.H.; Khun, K.; Willander, M. Electrochemical L-Lactic Acid Sensor Based on Immobilized ZnO Nanorods with Lactate Oxidase. Sensors 2012, 12, 2456–2466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lei, Y.; Luo, N.; Yan, X.Q.; Zhao, Y.G.; Zhang, C.; Zhang, Y. A highly sensitive electrochemical biosensor based on zinc oxide nanotetrapods for L-lactic acid detection. Nanoscale 2012, 4, 3438–3443. [Google Scholar] [CrossRef] [PubMed]
- Usman Ali, S.M.; Asif, M.H.; Fulati, A.; Nur, O.; Willander, M.; Brännmark, C.; Strålfors, P.; Englund, U.H.; Elinder, F.; Danielsson, B. Intracellular K+ determination with a potentiometric microelectrode based on ZnO nanowires. IEEE Trans. Nanotechnol. 2011, 10, 913–919. [Google Scholar]
- Asif, M.H.; Nur, O.; Willander, M.; Strålfors, P.; Brännmark, C.; Elinder, F.; Englund, U.H.; Lu, J.; Hultman, L. Growth and structure of ZnO nanorods on a sub-micrometer glass pipette and their application as intracellular potentiometric selective ion sensor. Materials 2010, 3, 4657–4667. [Google Scholar] [CrossRef] [Green Version]
- Asif, M.H.; Nur, O.; Willander, M.; Danielsson, B. Selective calcium ion detection with functionalized ZnO nanorods-extended gate MOSFET. Biosens. Bioelectron. 2009, 24, 3379–3382. [Google Scholar] [CrossRef]
- Asif, M.H.; Fulati, A.; Nur, O.; Willander, M.; Brännmark, C.; Strålfors, P.; Börjesson, S.I.; Elinder, F. Functionalized zinc oxide nanorod with ionophore-membrane coating as an intracellular Ca2+ selective sensor. Appl. Phys. Lett. 2009, 95, 023703. [Google Scholar] [CrossRef]
- Ward, W.K. A review of the foreign-body response to subcutaneously-implanted devices: The role of macrophages and cytokines in fouling and fibrosis. J. Diabetes Sci. Technol. 2008, 2, 768–777. [Google Scholar] [CrossRef] [Green Version]
- Vassileva, E. The challenge of nonfouling surfaces: Polymers could be the answer. J. Polym. Sci. App. 2017, 1, 1–2. [Google Scholar]
- Kropff, J.; Choudhary, P.; Neupane, S.; Barnard, K.; Bain, S.C.; Kapitza, C.; Forstm, T.; Link, M.; Dehennis, A.; DeVries, J.H. Accuracy and longevity of an implantable continuous glucose sensor in the PRECISE study: A 180-day, prospective, multicenter, pivotal trial. Diabetes Care 2017, 40, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodbard, D. Continuous Glucose Monitoring: A review of Recent Studies Demonstrating Improved Glycemic Outcomes. Diabetes Technol. Ther. 2017, 19, S3. [Google Scholar] [CrossRef] [PubMed]
- Ng, S.M.; Moore, H.S.; Clemente, M.F.; Pintus, D.; Soni, A. Continuous Glucose Monitoring in Children with Type 1 Diabetes Improves Well-Being, Alleviates Worry and Fear of Hypoglycemia. Diabetes Technol. Ther. 2019, 21, 3. [Google Scholar] [CrossRef] [PubMed]
- Soni, A.; Wright, N.; Agwu, J.C.; Timmis, A.; Drew, J.; Kershaw, M.; Moudiotis, C.; Regan, F.; Williams, E.C.; Wan, J.; et al. A practical approach to continuous glucose monitoring (rtCGM) and FreeStyle Libre systems (isCGM) in children and young people with Type 1 diabetes. Diabetes Res. Clin. Pract. 2022, 184, 109196. [Google Scholar] [CrossRef]
- Didyuk, O.; Econom, N.; Guardia, A.; Livingston, K.; Klueh, U. Continuous Glucose Monitoring Devices: Past, Present, and Future Focus on the History and Evolution of Technological Innovation. J. Diabetes Sci. Technol. 2020, 15, 676–683. [Google Scholar] [CrossRef]
- Horstmann, B.M. On-Demand Electrically Induced Decomposition of Thin-Film Nitrocellulose Membranes for Wearable or Implantable Biosensor Systems. Master’s Thesis, Virginia Commonwealth University, Richmond, VA, USA, May 2020. [Google Scholar]
- Horstmann, B.M.; Yokoyama, K.; Ozgur, U.; Avrutin, V. Electrically induced decomposition of thin-film nitrocellulose membranes for on-demand biosensor activation. In Proceedings of the IEEE SoutheastCon, Raleigh, NC, USA, 12 March 2020. [Google Scholar]
- Shanmugadas, S.; Lundquist, J.D.; Topsakal, E.; Ozgur, U.; Avrutin, V. On-Demand current pulse activation of rf monopole antenna biosensor arrays with nitrocellulose membranes. In Proceedings of the National Radio Science Meeting, Boulder, CO, USA, 4 January 2022. [Google Scholar]
- Kurien, B.T.; Scofield, R.H. Protein Blotting: A Review. J. Immunol. Methods 2003, 274, 1. [Google Scholar] [CrossRef]
- Wei, R.; Haung, S.; Wang, Z.; Yuen, R.; Wang, J. Evaluation of the critical safety temperature of nitrocellulose in different forms, Journal of Loss Prevention in the Process Industries. J. Loss Prev. Process Ind. 2018, 56, 289–299. [Google Scholar]
- Palchesko, R.N.; Zhang, L.; Sun, Y.; Feinberg, A.W. Development of Polydimethylsiloxane Substrates with Tunable Elastic Modulus to Study Cell Mechanobiology in Muscle and Nerve. PLoS ONE 2012, 7, e51499. [Google Scholar] [CrossRef] [Green Version]
- Saunders, C.; Taylor, L. A review of the synthesis, chemistry and analysis of nitrocellulose. J. Energetic Mater. 1990, 8, 149–203. [Google Scholar] [CrossRef]
- Gotz, M.; Khriji, S.; Cheour, R.; Arief, W.; Kanoun, O. Benchmarking-Based Investigation on Energy Efficiency of Low-Power Microntrollers. IEEE Trans. Instrum. Meas. 2020, 69, 7505–7512. [Google Scholar] [CrossRef]
- Assael, M.J.; Kalyva, A.E.; Monogenidou, S.A.; Friend, D.G.; Perkins, R.A.; Huber, M.L.; May, E.F. Reference Values and Reference Correlations for the Thermal Conductivity and Viscosity of Fluids. J. Phys. Chem. Ref. Data 2018, 47, 021501. [Google Scholar] [CrossRef]
- Marques, M.R.C.; Loebenberg, R.; Almukainzi, M. Simulated Biological Fluids with Possible Application in Dissolution Testing. Dissolution Technol. 2011, 18, 15–28. [Google Scholar] [CrossRef]
- Li, T.; Huang, Z.Y.; Xi, Z.C.; Lacour, S.P.; Wagner, S.; Suo, Z. Delocalizing strain in a thin metal film on a polymer substrate. Mech. Mater. 2005, 37, 261–273. [Google Scholar] [CrossRef]
- Motterlini, R.; Foresti, R. Biological signaling by carbon monoxide and carbon monoxide-releasing molecules. Am. J. Physiol. Cell Physiol. 2017, 312, C303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thielking, H.; Schmidt, M. Ullmann’s Encyclopedia of Industrial Chemistry, 7th ed.; Cellulose Esters; John Wiley & Sons: New York, NY, USA, 2008. [Google Scholar]
- Cieślak, K.; Gańczyk-Specjalska, K.; Drożdżewska-Szymańska, K.; Uszyński, M. Effect of stabilizers and nitrogen content on thermal properties of nitrocellulose granules. J. Therm. Anal. Calorim. 2021, 143, 3459–3470. [Google Scholar] [CrossRef] [Green Version]
Graphene Loading (mg/mL) | Number of Drops | Voltage (V) | Resistance (Ω) | Pulse Duration (ms) | Well Ruptured (Yes/No) | Pulse Energy (mJ) |
---|---|---|---|---|---|---|
5 | 3 | 9.14 | 112 | 1000 | Yes | 746 |
2.5 | 3 | 17.99 | 1093 | 1000 | Yes | 296 |
5 | 3 | 8.98 | 108 | 150 | Yes | 112 |
5 | 4 | 9.01 | 102 | 100 | Yes | 80 |
5 * | 3 | 9.01 | 112 | 100 | Yes | 72 |
5 | 3 | 9.04 | 102 | 85 | Yes | 68 |
5 | 3 | 8.95 | 113 | 75 | No | 53 |
5 | 3 | 9.00 | 105 | 50 | No | 39 |
2.5 | 2 | 18.00 | 17,800 | 1000 | No | 18.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lundquist, J.; Horstmann, B.; Pestov, D.; Ozgur, U.; Avrutin, V.; Topsakal, E. Energy-Efficient, On-Demand Activation of Biosensor Arrays for Long-Term Continuous Health Monitoring. Biosensors 2022, 12, 358. https://doi.org/10.3390/bios12050358
Lundquist J, Horstmann B, Pestov D, Ozgur U, Avrutin V, Topsakal E. Energy-Efficient, On-Demand Activation of Biosensor Arrays for Long-Term Continuous Health Monitoring. Biosensors. 2022; 12(5):358. https://doi.org/10.3390/bios12050358
Chicago/Turabian StyleLundquist, Jonathan, Benjamin Horstmann, Dmitry Pestov, Umit Ozgur, Vitaliy Avrutin, and Erdem Topsakal. 2022. "Energy-Efficient, On-Demand Activation of Biosensor Arrays for Long-Term Continuous Health Monitoring" Biosensors 12, no. 5: 358. https://doi.org/10.3390/bios12050358
APA StyleLundquist, J., Horstmann, B., Pestov, D., Ozgur, U., Avrutin, V., & Topsakal, E. (2022). Energy-Efficient, On-Demand Activation of Biosensor Arrays for Long-Term Continuous Health Monitoring. Biosensors, 12(5), 358. https://doi.org/10.3390/bios12050358