Luminescent Composite Carbon/SiO2 Structures: Synthesis and Applications
Abstract
:1. Introduction
2. Carbon Nanostructures: Features, Structure, and Properties
3. Silica Matrix: Synthetic Methods and Properties
4. Formation of Composite Carbon/SiO2
- I.
- Obtainment of a polydisperse product;
- II.
- The dependence of their optical properties and stability on the chemical environment;
- III.
- PL dependence on properties of the microenvironment and the quenching of luminescence in the lyophilized samples;
- IV.
- Nonuniform distribution of surface functional groups;
- V.
- Weak PL intensity.
4.1. Inclusion of CNSs into the Silica Matrix
4.2. Grafting of CNSs onto the Silica Surface
4.3. Formation of Bifunctional Structures
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
AEAPTMS | N-(β-aminoethyl)-γ-aminopropylmethyldimethoxysilane |
APTES | 3-aminopropyltriethoxysilane |
AuNC | gold nanocluster |
CA | citric acid |
CIE | Commission Internationale de L’Eclairage |
CNS | carbon nanostructure |
CRI | color rendering index |
DMF | dimethylformamide |
EDA | ethylenediamine |
GOPTMS | 3-glycidyloxypropyltrimethoxysilane |
HRTEM | high-resolution transmission electron microscopy |
HT | hydrothermal |
LED | light-emitting diode |
PL | photoluminescence |
QD | quantum dot |
QY | quantum yield |
SFTSV | thrombocytopenia syndrome virus |
SWNT | single-wall carbon nanotube |
TEM | transmission electron microscopy |
TEOS | tetraethyl orthosilicate |
UV | ultraviolet |
References
- Sun, X.; Lei, Y. Fluorescent Carbon Dots and Their Sensing Applications. TrAC-Trends Anal. Chem. 2017, 89, 163–180. [Google Scholar] [CrossRef]
- Xiao, L.; Sun, H. Novel Properties and Applications of Carbon Nanodots. Nanoscale Horiz. 2018, 3, 565–597. [Google Scholar] [CrossRef] [PubMed]
- Goryacheva, I.Y.; Sapelkin, A.V.; Sukhorukov, G.B. Carbon Nanodots: Mechanisms of Photoluminescence and Principles of Application. TrAC-Trends Anal. Chem. 2017, 90, 27–37. [Google Scholar] [CrossRef]
- Sciortino, A.; Cannizzo, A.; Messina, F. Carbon Nanodots: A Review—From the Current Understanding of the Fundamental Photophysics to the Full Control of the Optical Response. C 2018, 4, 67. [Google Scholar] [CrossRef] [Green Version]
- Himmelstoß, S.F.; Hirsch, T. A Critical Comparison of Lanthanide Based Upconversion Nanoparticles to Fluorescent Proteins, Semiconductor Quantum Dots, and Carbon Dots for Use in Optical Sensing and Imaging. Methods Appl. Fluoresc. 2019, 7, 022002. [Google Scholar] [CrossRef]
- Li, F.; Yang, D.; Xu, H. Non-Metal-Heteroatom-Doped Carbon Dots: Synthesis and Properties. Chem.-A Eur. J. 2019, 25, 1165–1176. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Xu, P.; Zhang, X.; Long, W. The Synthetic Strategies, Photoluminescence Mechanisms and Promising Applications of Carbon Dots: Current State and Future Perspective. Carbon 2022, 186, 91–127. [Google Scholar] [CrossRef]
- Margraf, J.T.; Strauss, V.; Guldi, D.M.; Clark, T. The electronic structure of amorphous carbon nanodots. J. Phys. Chem. B 2015, 119, 7258–7265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, P.; Zhu, Z.; Chen, M.; Zhou, X.; Chen, W. Microwave-Assisted Synthesis of Polyamine-Functionalized Carbon Dots from Xylan and Their Use for the Detection of Tannic Acid. Spectrochim. Acta-Part A: Mol. Biomol. Spectrosc. 2019, 213, 301–308. [Google Scholar] [CrossRef]
- Guo, L.; Ge, J.; Liu, W.; Niu, G.; Jia, Q.; Wang, H.; Wang, P. Tunable Multicolor Carbon Dots Prepared from Well-Defined Polythiophene Derivatives and Their Emission Mechanism. Nanoscale 2016, 8, 729–734. [Google Scholar] [CrossRef]
- Jorns, M.; Pappas, D. A Review of Fluorescent Carbon Dots, Their Synthesis, Physical and Chemical Characteristics, and Applications. Nanomaterials 2021, 11, 1448. [Google Scholar] [CrossRef] [PubMed]
- Kokorina, A.A.; Sapelkin, A.V.; Sukhorukov, G.B.; Goryacheva, I.Y. Luminescent Carbon Nanoparticles Separation and Purification. Adv. Colloid Interface Sci. 2019, 274, 102043. [Google Scholar] [CrossRef]
- Mazrad, Z.A.I.; Lee, K.; Chae, A.; In, I.; Lee, H.; Park, S.Y. Progress in Internal/External Stimuli Responsive Fluorescent Carbon Nanoparticles for Theranostic and Sensing Applications. J. Mater. Chem. B 2018, 6, 1149–1178. [Google Scholar] [CrossRef]
- Wang, X.; Feng, Y.; Dong, P.; Huang, J. A Mini Review on Carbon Quantum Dots: Preparation, Properties, and Electrocatalytic Application. Front. Chem. 2019, 7, 671. [Google Scholar] [CrossRef] [PubMed]
- Chahal, S.; Yousefi, N.; Tufenkji, N. Green Synthesis of High Quantum Yield Carbon Dots from Phenylalanine and Citric Acid: Role of Stoichiometry and Nitrogen Doping. ACS Sustain. Chem. Eng. 2020, 8, 5566–5575. [Google Scholar] [CrossRef]
- Long, C.; Jiang, Z.; Shangguan, J.; Qing, T.; Zhang, P.; Feng, B. Applications of Carbon Dots in Environmental Pollution Control: A Review. Chem. Eng. J. 2021, 406, 126848. [Google Scholar] [CrossRef]
- Song, X.; Guo, Q.; Cai, Z.; Qiu, J.; Dong, G. Synthesis of Multi-Color Fluorescent Carbon Quantum Dots and Solid State CQDs@SiO2 Nanophosphors for Light-Emitting Devices. Ceram. Int. 2019, 45, 17387–17394. [Google Scholar] [CrossRef]
- Xu, L.D.; Zhang, Q.; Ding, S.N.; Xu, J.J.; Chen, H.Y. Ultrasensitive Detection of Severe Fever with Thrombocytopenia Syndrome Virus Based on Immunofluorescent Carbon Dots/SiO2 Nanosphere-Based Lateral Flow Assay. ACS Omega 2019, 4, 21431–21438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.B.; Ma, Y.J.; Song, D.; Liu, Y.; Luo, Y.; Lin, S.; Liu, C.Y. New Luminescent Nanoparticles Based on Carbon Dots/SiO2 for the Detection of Latent Fingermarks. Anal. Methods 2017, 9, 4770–4775. [Google Scholar] [CrossRef]
- An, J.; Chen, R.; Chen, M.; Hu, Y.; Lyu, Y.; Liu, Y. An Ultrasensitive Turn-On Ratiometric Fluorescent Probes for Detection of Ag+ Based On Carbon Dots/SiO2 and Gold Nanoclusters. Sens. Actuators B Chem. 2021, 329, 129097. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, K.; Liu, Q.; Liu, Y.; Xie, M. Visual and Fluorescent Detection of Mercury Ions by Using a Dually Emissive Ratiometric Nanohybrid Containing Carbon Dots and CdTe Quantum Dots. Microchim. Acta 2017, 184, 1199–1206. [Google Scholar] [CrossRef]
- Cai, T.; Zhang, H.; Rahman, A.F.M.M.; Shi, Y.P.; Qiu, H. Silica Grafted with Silanized Carbon Dots as a Nano-on-Micro Packing Material with Enhanced Hydrophilic Selectivity. Microchim. Acta 2017, 184, 2629–2636. [Google Scholar] [CrossRef]
- Thongsai, N.; Supchocksoonthorn, P.; Dwyer, J.H.; Wei, W.; Sun, J.; Gopalan, P.; Paoprasert, P. High-Capacity Adsorbent/Sensor from Nylon 6 Derived Carbon Dots on SiO2 Substrate via One-Step Surface Grafting. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2020, 262, 114692. [Google Scholar] [CrossRef]
- Li, Q.; Zhou, M.; Yang, Q.; Wu, Q.; Shi, J.; Gong, A.; Yang, M. Efficient Room-Temperature Phosphorescence from Nitrogen-Doped Carbon Dots in Composite Matrices. Chem. Mater. 2016, 28, 8221–8227. [Google Scholar] [CrossRef]
- Chen, B.; Feng, J. White-Light-Emitting Polymer Composite Film Based on Carbon Dots and Lanthanide Complexes. J. Phys. Chem. C 2015, 119, 7865–7872. [Google Scholar] [CrossRef]
- Tian, Z.; Li, D.; Ushakova, E.V.; Maslov, V.G.; Zhou, D.; Jing, P.; Shen, D.; Qu, S.; Rogach, A.L. Multilevel Data Encryption Using Thermal-Treatment Controlled Room Temperature Phosphorescence of Carbon Dot/Polyvinylalcohol Composites. Adv. Sci. 2018, 5, 1800795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, M.; Qu, S.; Hao, Z.; Ji, W.; Jing, P.; Zhang, H.; Zhang, L.; Zhao, J.; Shen, D. Towards Efficient Solid-State Photoluminescence Based on Carbon-Nanodots and Starch Composites. Nanoscale 2014, 6, 13076–13081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Wang, N.; Yu, Y.; Yan, Y.; Zhang, H.; Li, J.; Yu, J. Carbon dots in zeolites: A new class of thermally activated delayed fluorescence materials with ultralong lifetimes. Sci. Adv. 2017, 3, e1603171. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Li, Y.; Yan, Y.; Xu, J.; Guan, B.; Wang, Q.; Li, J.; Yu, J. Luminescent Carbon Dots in a New Magnesium Aluminophosphate Zeolite. Chem. Commun. 2013, 49, 9006–9008. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, J.; Wang, B.; Liu, K.; Chen, G.; Yu, X.; Li, J.; Yu, J. Zeolite-Confined Carbon Dots: Tuning Thermally Activated Delayed Fluorescence Emission: Via Energy Transfer. Mater. Chem. Front. 2020, 4, 1404–1410. [Google Scholar] [CrossRef]
- Dong, X.; Wei, L.; Su, Y.; Li, Z.; Geng, H.; Yang, C.; Zhang, Y. Efficient Long Lifetime Room Temperature Phosphorescence of Carbon Dots in a Potash Alum Matrix. J. Mater. Chem. C 2015, 3, 2798–2801. [Google Scholar] [CrossRef]
- Shen, C.L.; Zang, J.H.; Lou, Q.; Su, L.X.; Li, Z.; Liu, Z.Y.; Dong, L.; Shan, C.X. In-Situ Embedding Carbon Dots in Trisodium Citrate Crystal Matrix for Tunable Solid-State Fluorescence. Carbon 2018, 136, 359–368. [Google Scholar] [CrossRef]
- Zhai, Y.; Zhou, D.; Jing, P.; Li, D.; Zeng, H.; Qu, S. Preparation and Application of Carbon-Nanodot@NaCl Composite Phosphors with Strong Green Emission. J. Colloid Interface Sci. 2017, 497, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wang, W.; Tang, J.; Wang, Y.; Liu, J.; Huang, L.; Wang, Y.; Guo, F.; Wang, J.; Shen, W.; et al. Classification, Synthesis, and Application of Luminescent Silica Nanoparticles: A Review. Nanoscale Res. Lett. 2019, 14, 190. [Google Scholar] [CrossRef]
- Fedorenko, S.; Stepanov, A.; Sibgatullina, G.; Samigullin, D.; Mukhitov, A.; Petrov, K.; Mendes, R.; Rümmeli, M.; Giebeler, L.; Weise, B.; et al. Fluorescent Magnetic Nanoparticles for Modulating the Level of Intracellular Ca2+ in Motoneurons. Nanoscale 2019, 11, 16103–16113. [Google Scholar] [CrossRef]
- Narayan, R.; Nayak, U.Y.; Raichur, A.M.; Garg, S. Mesoporous Silica Nanoparticles: A Comprehensive Review on Synthesis and Recent Advances. Pharmaceutics 2018, 10, 118. [Google Scholar] [CrossRef] [Green Version]
- Ren, G.; Su, H.; Wang, S. The Combined Method to Synthesis Silica Nanoparticle by Stöber Process. J. Sol-Gel Sci. Technol. 2020, 96, 108–120. [Google Scholar] [CrossRef]
- Li, W.; Wu, S.; Xu, X.; Zhuang, J.; Zhang, H.; Zhang, X.; Hu, C.; Lei, B.; Kaminski, C.F.; Liu, Y. Carbon Dot-Silica Nanoparticle Composites for Ultralong Lifetime Phosphorescence Imaging in Tissue and Cells at Room Temperature. Chem. Mater. 2019, 31, 9887–9894. [Google Scholar] [CrossRef]
- Wei, B.; Dong, F.; Yang, W.; Luo, C.; Dong, Q.; Zhou, Z.; Yang, Z.; Sheng, L. Synthesis of Carbon-Dots@SiO2@TiO2 Nanoplatform for Photothermal Imaging Induced Multimodal Synergistic Antitumor. J. Adv. Res. 2020, 23, 13–23. [Google Scholar] [CrossRef]
- Sun, M.; Han, Y.; Yuan, X.; Jing, P.; Zhang, L.; Zhao, J.; Zheng, Y. Efficient Full-Color Emitting Carbon-Dot-Based Composite Phosphors by Chemical Dispersion. Nanoscale 2020, 12, 15823–15831. [Google Scholar] [CrossRef]
- Guan, Y.; Yang, Y.; Wang, X.; Yuan, H.; Yang, Y.; Li, N.; Ni, C. Multifunctional Fe3O4@SiO2-CDs Magnetic Fluorescent Nanoparticles as Effective Carrier of Gambogic Acid for Inhibiting VX2 Tumor Cells. J. Mol. Liq. 2021, 327, 114783. [Google Scholar] [CrossRef]
- Xu, X.; Ray, R.; Gu, Y.; Ploehn, H.J.; Gearheart, L.; Raker, K.; Scrivens, W.A. Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments. J. Am. Chem. Soc. 2004, 126, 12736–12737. [Google Scholar] [CrossRef] [PubMed]
- Kokorina, A.A.; Prikhozhdenko, E.S.; Sukhorukov, G.B.; Sapelkin, A.V.; Goryacheva, I.Y. Luminescent Carbon Nanoparticles: Synthesis, Methods of Investigation, Applications. Russ. Chem. Rev. 2017, 86, 1157–1171. [Google Scholar] [CrossRef]
- Song, Y.; Zhu, S.; Yang, B. Bioimaging Based on Fluorescent Carbon Dots. RSC Adv. 2014, 4, 27184–27200. [Google Scholar] [CrossRef]
- Sciortino, A.; Cayuela, A.; Soriano, M.L.; Gelardi, F.M.; Cannas, M.; Valcárcel, M.; Messina, F. Different Natures of Surface Electronic Transitions of Carbon Nanoparticles. Phys. Chem. Chem. Phys. 2017, 19, 22670–22677. [Google Scholar] [CrossRef]
- Cayuela, A.; Soriano, M.L.; Valcárcel, M. Reusable Sensor Based on Functionalized Carbon Dots for the Detection of Silver Nanoparticles in Cosmetics via Inner Filter Effect. Anal. Chim. Acta 2015, 872, 70–76. [Google Scholar] [CrossRef]
- Ding, H.; Zhang, P.; Wang, T.Y.; Kong, J.L.; Xiong, H.M. Nitrogen-Doped Carbon Dots Derived from Polyvinyl Pyrrolidone and Their Multicolor Cell Imaging. Nanotechnology 2014, 25, 205604. [Google Scholar] [CrossRef]
- Das, A.; Gude, V.; Roy, D.; Chatterjee, T.; De, C.K.; Mandal, P.K. On the Molecular Origin of Photoluminescence of Nonblinking Carbon Dot. J. Phys. Chem. C 2017, 121, 9634–9641. [Google Scholar] [CrossRef]
- Cayuela, A.; Soriano, M.L.; Carrión, M.C.; Valcárcel, M. Functionalized Carbon Dots as Sensors for Gold Nanoparticles in Spiked Samples: Formation of Nanohybrids. Anal. Chim. Acta 2014, 820, 133–138. [Google Scholar] [CrossRef]
- Nguyen, V.; Si, J.; Yan, L.; Hou, X. Direct Demonstration of Photoluminescence Originated from Surface Functional Groups in Carbon Nanodots. Carbon 2016, 108, 268–273. [Google Scholar] [CrossRef]
- Sciortino, L.; Sciortino, A.; Popescu, R.; Schneider, R.; Gerthsen, D.; Agnello, S.; Cannas, M.; Messina, F. Tailoring the Emission Color of Carbon Dots through Nitrogen-Induced Changes of Their Crystalline Structure. J. Phys. Chem. C 2018, 122, 19897–19903. [Google Scholar] [CrossRef]
- Fuyuno, N.; Kozawa, D.; Miyauchi, Y.; Mouri, S.; Kitaura, R.; Shinohara, H.; Yasuda, T.; Komatsu, N.; Matsuda, K. Drastic Change in Photoluminescence Properties of Graphene Quantum Dots by Chromatographic Separation. Adv. Opt. Mater. 2014, 2, 983–989. [Google Scholar] [CrossRef]
- Shinde, D.B.; Pillai, V.K. Electrochemical Preparation of Luminescent Graphene Quantum Dots from Multiwalled Carbon Nanotubes. Chem. Eur. J. 2012, 18, 12522–12528. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Yang, Y.; Zhang, C.Y. A Low-Temperature Solid-Phase Method to Synthesize Highly Fluorescent Carbon Nitride Dots with Tunable Emission. Chem. Commun. 2013, 49, 8605–8607. [Google Scholar] [CrossRef]
- Messina, F.; Sciortino, L.; Popescu, R.; Venezia, A.M.; Sciortino, A.; Buscarino, G.; Agnello, S.; Schneider, R.; Gerthsen, D.; Cannas, M.; et al. Fluorescent Nitrogen-Rich Carbon Nanodots with an Unexpected β-C3N4 Nanocrystalline Structure. J. Mater. Chem. C 2016, 4, 2598–2605. [Google Scholar] [CrossRef]
- Sciortino, A.; Mauro, N.; Buscarino, G.; Sciortino, L.; Popescu, R.; Schneider, R.; Giammona, G.; Gerthsen, D.; Cannas, M.; Messina, F. β-C3N4 Nanocrystals: Carbon Dots with Extraordinary Morphological, Structural, and Optical Homogeneity. Chem. Mater. 2018, 30, 1695–1700. [Google Scholar] [CrossRef]
- Serhan, M.; Sprowls, M.; Jackemeyer, D.; Long, M.; Perez, I.D.; Maret, W.; Tao, N.; Forzani, E. Total Iron Measurement in Human Serum with a Smartphone. In Proceedings of the 2019 AIChE Annual Meeting, Orlando, FL, USA, 10–15 November 2019; American Institute of Chemical Engineers: New York, NY, USA, 2019. [Google Scholar] [CrossRef]
- Cayuela, A.; Soriano, M.L.; Valcárcel, M. Photoluminescent Carbon Dot Sensor for Carboxylated Multiwalled Carbon Nanotube Detection in River Water. Sens. Actuators B: Chem. 2015, 207, 596–601. [Google Scholar] [CrossRef]
- Zhu, S.; Song, Y.; Zhao, X.; Shao, J.; Zhang, J.; Yang, B. The Photoluminescence Mechanism in Carbon Dots (Graphene Quantum Dots, Carbon Nanodots, and Polymer Dots): Current State and Future Perspective. Nano Res. 2015, 8, 355–381. [Google Scholar] [CrossRef]
- Yan, F.; Sun, Z.; Zhang, H.; Sun, X.; Jiang, Y.; Bai, Z. The Fluorescence Mechanism of Carbon Dots, and Methods for Tuning Their Emission Color: A Review. Microchim. Acta 2019, 186, 583. [Google Scholar] [CrossRef]
- Schneider, J.; Reckmeier, C.J.; Xiong, Y.; von Seckendorff, M.; Susha, A.S.; Kasak, P.; Rogach, A.L. Molecular Fluorescence in Citric Acid-Based Carbon Dots. J. Phys. Chem. C 2017, 121, 2014–2022. [Google Scholar] [CrossRef]
- Zhou, Y.; Zahran, E.M.; Quiroga, B.A.; Perez, J.; Mintz, K.J.; Peng, Z.; Liyanage, P.Y.; Pandey, R.R.; Chusuei, C.C.; Leblanc, R.M. Size-Dependent Photocatalytic Activity of Carbon Dots with Surface-State Determined Photoluminescence. Appl. Catal. B: Environ. 2019, 248, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Zuo, P.; Lu, X.; Sun, Z.; Guo, Y.; He, H. A Review on Syntheses, Properties, Characterization and Bioanalytical Applications of Fluorescent Carbon Dots. Microchim. Acta 2016, 183, 519–542. [Google Scholar] [CrossRef]
- Tao, S.; Zhu, S.; Feng, T.; Xia, C.; Song, Y.; Yang, B. The Polymeric Characteristics and Photoluminescence Mechanism in Polymer Carbon Dots: A Review. Mater. Today Chem. 2017, 6, 13–25. [Google Scholar] [CrossRef]
- Pirsaheb, M.; Mohammadi, S.; Salimi, A.; Payandeh, M. Functionalized Fluorescent Carbon Nanostructures for Targeted Imaging of Cancer Cells: A Review. Microchim. Acta 2019, 186, 231. [Google Scholar] [CrossRef] [PubMed]
- Althagafi, I.I.; Ahmed, S.A.; El-Said, W.A. Colorimetric Aflatoxins Immunoassay by Using Silica Nanoparticles Decorated with Gold Nanoparticles. Spectrochim. Acta-Part A: Mol. Biomol. Spectrosc. 2021, 246, 118999. [Google Scholar] [CrossRef] [PubMed]
- Prajapati, J.P.; Das, D.; Katlakunta, S.; Maramu, N.; Ranjan, V.; Mallick, S. Synthesis and Characterization of Ultrasmall Cu2O Nanoparticles on Silica Nanoparticles Surface. Inorg. Chim. Acta 2021, 515, 120069. [Google Scholar] [CrossRef]
- Drozd, D.; Zhang, H.; Goryacheva, I.; de Saeger, S.; Beloglazova, N.V. Silanization of Quantum Dots: Challenges and Perspectives. Talanta 2019, 205, 120164. [Google Scholar] [CrossRef] [PubMed]
- Asgari, M.; Soleymani, M.; Miri, T.; Barati, A. A Robust Method for Fabrication of Monodisperse Magnetic Mesoporous Silica Nanoparticles with Core-Shell Structure as Anticancer Drug Carriers. J. Mol. Liq. 2019, 292, 111367. [Google Scholar] [CrossRef]
- Fernandes, R.S.; Raimundo, I.M.; Pimentel, M.F. Revising the Synthesis of Stöber Silica Nanoparticles: A Multivariate Assessment Study on the Effects of Reaction Parameters on the Particle Size. Colloids Surf. A: Physicochem. Eng. Asp. 2019, 577, 1–7. [Google Scholar] [CrossRef]
- Ghimire, P.P.; Jaroniec, M. Renaissance of Stöber Method for Synthesis of Colloidal Particles: New Developments and Opportunities. J. Colloid Interface Sci. 2021, 584, 838–865. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhen, B.; Hu, Y.; Liang, G.; Feng, Y. A Reverse Micellar System with Triton X-100: Effect of Surfactant Polydispersity and Preparation of Monodisperse Silica Nanoparticles. Soft Matter 2020, 16, 383–389. [Google Scholar] [CrossRef] [PubMed]
Synthesis CNS | Synthesis Composite | Composite | Application | References | |||
---|---|---|---|---|---|---|---|
Precursor | Method | Precursor | Method | Size, nm | Property | ||
CA, AEAPTMS | Pyrolysis | CNSs, TEOS | Hydrolysis by reverse microemulsion | ~150 | PL: λex. = 380 nm λem. = 460 nm QY = 56% | Labels for immunochemical analysis | [18] |
CA, AEAPTMS | 84–190 | PL: λex. = 380 nm λem. = 460 nm | Detecting fingermarks | [19] | |||
CA, urea | HT | CNSs, TEOS, APTES | 18–159 | PL: λex. = 365 nm λem. = 450–650 nm | LEDs | [17] | |
Polyacrylic acid, EDA | CNSs, TEOS | Hydrolysis by Stober | - | Phosphorescence: λem. = 520 nm | Labels in tissues | [38] | |
CA, urea | Solvothermic | CNSs, ARTMS, and silica nanoparticles | Chemical grafting | 25–40 | PL: λex. = 400 nm λem. = 455–650 nm QY = 30–60%. | LEDs | [40] |
1. Nylon 6, sulfuric acid 2. Obtained CNSs, nitric acid | 1. Pyrolysis 2. Solvothermic | Two methods: (a) silica modified with APTES/GOPTMS, CNSs (b) Silica, CNSs | (a) Chemical grafting (b) Thermal annealing | - | PL: λex. = 360 nm λem. = 460 nm QY = 2.5%. | Determination of ions | [23] |
CA, AEAPTMS | Pyrolysis | CNSs, silica microsized particles | Sonication, mechanical mixing | >5000 | - | Stationary-phase chromatography | [22] |
Urea, folic acid | Microwave | Fe3O4, TEOS, APTES, CNSs | Hydrolysis by Stober and chemical grafting | 155 | PL: λex. = 370 nm λem. = 455 nm A magnetic saturation intensity: 31.2 emu/g | Synergistic medicine | [41] |
CA, EDA | CdTe, TEOS, APTES, CNSs | 50 | PL: λex. = 350 nm λem. = 455 and 658 nm | Ratiometric optical labels | [21] | ||
CA, EDA, silica spheres | HT | Silica spheres@CNSs, AuNCs, APTES | Chemical grafting | 57 | PL: λex. = 360 nm λem. = 448 and 610 nm | [20] | |
CA, urea | CNSs, APTES, TEOS, TiO2 | Hydrolysis by Stober | 150 | - | Photothermal and photodynamic therapy | [39] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Podkolodnaya, Y.A.; Kokorina, A.A.; Ponomaryova, T.S.; Goryacheva, O.A.; Drozd, D.D.; Khitrov, M.S.; Huang, L.; Yu, Z.; Tang, D.; Goryacheva, I.Y. Luminescent Composite Carbon/SiO2 Structures: Synthesis and Applications. Biosensors 2022, 12, 392. https://doi.org/10.3390/bios12060392
Podkolodnaya YA, Kokorina AA, Ponomaryova TS, Goryacheva OA, Drozd DD, Khitrov MS, Huang L, Yu Z, Tang D, Goryacheva IY. Luminescent Composite Carbon/SiO2 Structures: Synthesis and Applications. Biosensors. 2022; 12(6):392. https://doi.org/10.3390/bios12060392
Chicago/Turabian StylePodkolodnaya, Yuliya A., Alina A. Kokorina, Tatiana S. Ponomaryova, Olga A. Goryacheva, Daniil D. Drozd, Mikhail S. Khitrov, Lingting Huang, Zhichao Yu, Dianping Tang, and Irina Yu. Goryacheva. 2022. "Luminescent Composite Carbon/SiO2 Structures: Synthesis and Applications" Biosensors 12, no. 6: 392. https://doi.org/10.3390/bios12060392
APA StylePodkolodnaya, Y. A., Kokorina, A. A., Ponomaryova, T. S., Goryacheva, O. A., Drozd, D. D., Khitrov, M. S., Huang, L., Yu, Z., Tang, D., & Goryacheva, I. Y. (2022). Luminescent Composite Carbon/SiO2 Structures: Synthesis and Applications. Biosensors, 12(6), 392. https://doi.org/10.3390/bios12060392