Mental Stress Assessment Using Ultra Short Term HRV Analysis Based on Non-Linear Method
Abstract
:1. Introduction
2. Methods
2.1. Dataset
2.1.1. Subjects
2.1.2. Experimental Protocol
2.2. Data Preprocessing
2.2.1. Noise Removal and Interpolation of HRV Signal
2.2.2. Comparison of Short-Term HRV and Ultra-Short-Term HRV
2.3. Feature Extraction
2.3.1. Time Domain Features
- On the basis of subjectively ranked self-reported stress intensity in the experimental protocol, select the lowest stress rank between Resting 1 and Resting 2.
- If the distribution of data satisfies normality, obtain G-pNNx using the mean value of the distribution; otherwise, obtain it using the median value.
2.3.2. EMD-Based Features
EMD
Entropy Features
Energy Features
SD-IMF and RMSSD-IMF Features
2.4. Feature Ranking Method
2.5. Classification Method
2.5.1. Support Vector Machine (SVM) Classifier
2.5.2. Leave-One-Subject-Out Cross Validation (LOSOCV)
2.5.3. Performance Evaluation
3. Results
3.1. Relationships between Frequency Domain Features and IMF Energy Features
3.2. Comparison of Feature Ranks between Resting and Stress States
3.3. Short-Term HRV Classification and Performance Evaluation
3.4. Ultra-Short-Term Classification and Performance Evaluation
3.5. Salivary Cortisol of Different States
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dimsdale, J.E. Psychological Stress and Cardiovascular Disease. J. Am. Coll. Cardiol. 2008, 51, 1237–1246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duman, R.S. Neurobiology of Stress, Depression, and Rapid Acting Antidepressants: Remodeling Synaptic Connections. Depress. Anxiety 2014, 31, 291–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heraclides, A.M.; Chandola, T.; Witte, D.R.; Brunner, E.J. Work Stress, Obesity and the Risk of Type 2 Diabetes: Gender-Specific Bidirectional Effect in the Whitehall II Study. Obesity 2012, 20, 428–433. [Google Scholar] [CrossRef] [PubMed]
- Yaribeygi, H.; Panahi, Y.; Sahraei, H.; Johnston, T.P.; Sahebkar, A. The Impact of Stress on Body Function: A Review. EXCLI J. 2017, 16, 1057–1072. [Google Scholar] [PubMed]
- Takahashi, T.; Ikeda, K.; Ishikawa, M.; Kitamura, N.; Tsukasaki, T.; Nakama, D.; Kameda, T. Anxiety, Reactivity, and Social Stress-Induced Cortisol Elevation in Humans. Neuroendocrinol. Lett. 2005, 26, 351–354. [Google Scholar] [PubMed]
- Goyal, A.; Singh, S.; Vir, D.; Pershad, D. Automation of Stress Recognition Using Subjective or Objective Measures. Psychol. Stud. 2016, 61, 348–364. [Google Scholar] [CrossRef]
- Cohen, S.; Kamarck, T.; Mermelstein, R. A Global Measure of Perceived Stress. J. Health Soc. Behav. 1983, 24, 385–396. [Google Scholar] [CrossRef]
- Spielberger, C.D. State-Trait Anxiety Inventory; Mind Garden: Redwood City, CA, USA, 1981. [Google Scholar] [CrossRef]
- Khoulji, S.; García, E.; Aguiló, S.; Arza, A.; Garzón-Rey, J.M.; Aguilóa, J. Psychological and Physiological Profiles in Oncology Caregivers: A Multivariable Cross-Sectional Study. Trans. Mach. Learn. Artif. Intell. 2017, 5, 4. [Google Scholar] [CrossRef] [Green Version]
- Urwyler, S.A.; Schuetz, P.; Sailer, C.; Christ-Crain, M. Copeptin as a Stress Marker Prior and after a Written Examination-the CoEXAM Study. Stress 2015, 18, 134–137. [Google Scholar] [CrossRef]
- Kalatzis, A.; Stanley, L.; Karthikeyan, R.; Mehta, R.K. Mental Stress Classification during a Motor Task in Older Adults Using an Artificial Neural Network. In Proceedings of the Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers, Online Conference, 12–17 September 2020; pp. 244–248. [Google Scholar]
- Szakonyi, B.; Vassányi, I.; Schumacher, E.; Kósa, I. Efficient Methods for Acute Stress Detection Using Heart Rate Variability Data from Ambient Assisted Living Sensors. Biomed. Eng. Online 2021, 20, 73. [Google Scholar] [CrossRef]
- Villarejo, M.V.; Zapirain, B.G.; Zorrilla, A.M. A Stress Sensor Based on Galvanic Skin Response (GSR) Controlled by ZigBee. Sensors 2012, 12, 6075–6101. [Google Scholar] [CrossRef] [Green Version]
- Greco, A.; Valenza, G.; Lazaro, J.; Garzon-Rey, J.M.; Aguilo, J.; De-la-Camara, C.; Bailon, R.; Scilingo, E.P. Acute Stress State Classification Based on Electrodermal Activity Modeling. IEEE Trans. Affect. Comput. 2021, 3045. [Google Scholar] [CrossRef]
- Asif, A.; Majid, M.; Anwar, S.M. Human Stress Classification Using EEG Signals in Response to Music Tracks. Comput. Biol. Med. 2019, 107, 182–196. [Google Scholar] [CrossRef]
- Arsalan, A.; Majid, M.; Butt, A.R.; Anwar, S.M. Classification of Perceived Mental Stress Using a Commercially Available EEG Headband. IEEE J. Biomed. Health Inform. 2019, 23, 2257–2264. [Google Scholar] [CrossRef]
- Mozos, O.M.; Sandulescu, V.; Andrews, S.; Ellis, D.; Bellotto, N.; Dobrescu, R.; Ferrandez, J.M. Stress Detection Using Wearable Physiological and Sociometric Sensors. Int. J. Neural Syst. 2017, 27, 1650041. [Google Scholar] [CrossRef] [Green Version]
- Arsalan, A.; Majid, M. Human Stress Classification during Public Speaking Using Physiological Signals. Comput. Biol. Med. 2021, 133, 104377. [Google Scholar] [CrossRef]
- Karthikeyan, P.; Murugappan, M.; Yaacob, S. Analysis of Stroop Colorword Test-Based Human Stress Detection Using Electrocardiography and Heart Rate Variability Signals. Arab. J. Sci. Eng. 2012, 39, 1835–1847. [Google Scholar] [CrossRef]
- Kirschbaum, C.; Pirke, K.-M.; Hellhammer, D.H. The ‘Trier Social Stress Test’—A Tool for Investigating Psychobiological Stress Responses in a Laboratory Setting. Neuropsychobiology 1993, 28, 76–81. [Google Scholar] [CrossRef]
- Subhani, A.R.; Mumtaz, W.; Saad, M.N.B.M.; Kamel, N.; Malik, A.S. Machine Learning Framework for the Detection of Mental Stress at Multiple Levels. IEEE Access 2017, 5, 13545–13556. [Google Scholar] [CrossRef]
- Slavich, G.M.; Taylor, S.; Picard, R.W. Stress Measurement Using Speech: Recent Advancements, Validation Issues, and Ethical and Privacy Considerations. Stress 2019, 22, 408–413. [Google Scholar] [CrossRef] [Green Version]
- Bornoiu, I.V.; Grigore, O. A Study about Feature Extraction for Stress Detection. In Proceedings of the 2013 8th International Symposium on Advanced Topics in Electrical Engineering (ATEE), Bucharest, Romania, 23–25 May 2013; pp. 1–4. [Google Scholar] [CrossRef]
- Fan, J.; Li, H.; Zhan, Y.; Yu, Y. An Electrocardiogram Acquisition and Analysis System for Detection of Human Stress. In Proceedings of the 12th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics: CISP-BMEI 2019, Huaqiao, China, 19–21 October 2019. [Google Scholar] [CrossRef]
- Dickerson, S.S.; Kemeny, M.E. Acute Stressors and Cortisol Responses: A Theoretical Integration and Synthesis of Laboratory Research. Psychol. Bull. 2004, 130, 355–391. [Google Scholar] [CrossRef] [Green Version]
- Force, T. Heart Rate Variability Guidelines: Standards of Measurement, Physiological Interpretation, and Clinical Use. Eur. Hear. J. 1996, 17, 354–381. [Google Scholar]
- Athavale, Y.; Krishnan, S. Biosignal Monitoring Using Wearables: Observations and Opportunities. Biomed. Signal Process. Control. 2017, 38, 22–33. [Google Scholar] [CrossRef]
- Zubair, M.; Yoon, C. Multilevel Mental Stress Detection Using Ultra-Short Pulse Rate Variability Series. Biomed. Signal Process. Control. 2020, 57, 101736. [Google Scholar] [CrossRef]
- Zhang, C.; Starner, T.; Inan, O.; Abowd, G.D.; Xue, Q.; Waghmare, A.; Meng, R.; Jain, S.; Han, Y.; Li, X.; et al. FingerPing: Recognizing Fine-Grained Hand Poses Using Active Acoustic On-Body Sensing. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems—CHI ’18, Montreal, QC, Canada, 21–26 April 2018; ACM Press: New York, NY, USA, 2018; pp. 1–10. [Google Scholar]
- Castaldo, R.; Xu, W.; Melillo, P.; Pecchia, L.; Santamaria, L.; James, C. Detection of Mental Stress Due to Oral Academic Examination via Ultra-Short-Term HRV Analysis. In Proceedings of the 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Orlando, FL, USA, 16–20 August 2016; pp. 3805–3808. [Google Scholar] [CrossRef]
- Yentes, J.M.; Hunt, N.; Schmid, K.K.; Kaipust, J.P.; McGrath, D.; Stergiou, N. The Appropriate Use of Approximate Entropy and Sample Entropy with Short Data Sets. Ann. Biomed. Eng. 2013, 41, 349–365. [Google Scholar] [CrossRef]
- Castaldo, R.; Montesinos, L.; Melillo, P.; James, C.; Pecchia, L. Ultra-Short Term HRV Features as Surrogates of Short Term HRV: A Case Study on Mental Stress Detection in Real Life. BMC Med. Inform. Decis. Mak. 2019, 19, 12. [Google Scholar] [CrossRef] [Green Version]
- Cheema, A.; Singh, M. Psychological Stress Detection Using Phonocardiography Signal: An Empirical Mode Decomposition Approach. Biomed. Signal Process. Control. 2019, 49, 493–505. [Google Scholar] [CrossRef]
- Cheema, A.; Singh, M. An Application of Phonocardiography Signals for Psychological Stress Detection Using Non-Linear Entropy Based Features in Empirical Mode Decomposition Domain. Appl. Soft. Comput. J. 2019, 77, 24–33. [Google Scholar] [CrossRef]
- Deka, D.; Deka, B. Characterization of Heart Rate Variability Signal for Distinction of Meditative and Pre-Meditative States. Biomed. Signal Process. Control. 2021, 66, 102414. [Google Scholar] [CrossRef]
- Porta, A.; Gnecchi-Ruscone, T.; Tobaldini, E.; Guzzetti, S.; Furlan, R.; Montano, N. Progressive Decrease of Heart Period Variability Entropy-Based Complexity during Graded Head-up Tilt. J. Appl. Physiol. 2007, 103, 1143–1149. [Google Scholar] [CrossRef]
- Li, Y.; Pan, W.; Li, K.; Jiang, Q.; Liu, G. Sliding Trend Fuzzy Approximate Entropy as a Novel Descriptor of Heart Rate Variability in Obstructive Sleep Apnea. IEEE J. Biomed. Health Inform. 2019, 23, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Pachori, R.B.; Rajendra Acharya, U. Automated Diagnosis of Atrial Fibrillation ECG Signals Using Entropy Features Extracted from Flexible Analytic Wavelet Transform. Biocybern. Biomed. Eng. 2018, 38, 564–573. [Google Scholar] [CrossRef]
- Amin, M.R.; Wickramasuriya, D.S.; Faghih, R.T. A Wearable Exam Stress Dataset for Predicting Grades Using Physiological Signals. In Proceedings of the 2022 IEEE Healthcare Innovations and Point of Care Technologies (HI-POCT), Houston, TX, USA, 10–11 March 2022; pp. 30–36. [Google Scholar]
- Healey, J.A.; Picard, R.W. Detecting Stress during Real-World Driving Tasks Using Physiological Sensors. IEEE Trans. Intell. Transp. Syst. 2005, 6, 156–166. [Google Scholar] [CrossRef] [Green Version]
- Skosnik, P.D.; Chatterton, R.T.; Swisher, T.; Park, S. Modulation of Attentional Inhibition by Norepinephrine and Cortisol after Psychological Stress. Int. J. Psychophysiol. 2000, 36, 59–68. [Google Scholar] [CrossRef]
- Bosch, J.A. Psychological Stress as a Determinant of Protein Levels and Salivary-Induced Aggregation of Streptococcus Gordonii in Human Whole Saliva. Psychosom. Med. 1996, 382, 374–382. [Google Scholar] [CrossRef]
- Olewuezi, N.P. Note on the Comparison of Some Outlier Labeling Techniques. J. Math. Stat. 2011, 7, 353–355. [Google Scholar] [CrossRef] [Green Version]
- Choi, A.; Shin, H. Quantitative Analysis of the Effect of an Ectopic Beat on the Heart Rate Variability in the Resting Condition. Front. Physiol. 2018, 9, 922. [Google Scholar] [CrossRef]
- Wyss, T.; Boesch, M.; Roos, L.; Tschopp, C.; Frei, K.M.; Annen, H.; La Marca, R. Aerobic Fitness Level Affects Cardiovascular and Salivary Alpha Amylase Responses to Acute Psychosocial Stress. Sport. Med. Open 2016, 2, 33. [Google Scholar] [CrossRef] [Green Version]
- Trimmel, M. Relationship of Heart Rate Variability (HRV) Parameters Including PNNxx With the Subjective Experience of Stress, Depression, Well-Being, and Every-Day Trait Moods (TRIM-T): A Pilot Study. Ergon. Open J. 2015, 8, 32–37. [Google Scholar] [CrossRef]
- Zhaohua Wu, N.E.H. Ensemble Empirical Mode Decomposition: A Noise-Assited. Biomed. Tech. 2010, 55, 193–201. [Google Scholar]
- Voss, A.; Kurths, J.; Kleiner, H.J.; Witt, A.; Wessel, N.; Saparin, P.; Osterziel, K.J.; Schurath, R.; Dietz, R. The Application of Methods of Non-Linear Dynamics for the Improved and Predictive Recognition of Patients Threatened by Sudden Cardiac Death. Cardiovasc. Res. 1996, 31, 419–433. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Snin, H.H.; Zheng, Q.; Yen, N.C.; Tung, C.C.; Liu, H.H. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis Analysis. Proc. R. Soc. A Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Zunino, L.; Olivares, F.; Scholkmann, F.; Rosso, O.A. Permutation Entropy Based Time Series Analysis: Equalities in the Input Signal Can Lead to False Conclusions. Phys. Lett. Sect. A Gen. At. Solid State Phys. 2017, 381, 1883–1892. [Google Scholar] [CrossRef] [Green Version]
- Bandt, C.; Pompe, B. Permutation Entropy: A Natural Complexity Measure for Time Series. Phys. Rev. Lett. 2002, 88, 4. [Google Scholar] [CrossRef]
- Berger, S.; Schneider, G.; Kochs, E.F.; Jordan, D. Permutation Entropy: Too Complex a Measure for EEG Time Series? Entropy 2017, 19, 692. [Google Scholar] [CrossRef] [Green Version]
- Riedl, M.; Müller, A.; Wessel, N. Practical Considerations of Permutation Entropy: A Tutorial Review. Eur. Phys. J. Spec. Top. 2013, 222, 249–262. [Google Scholar] [CrossRef]
- Richman, J.S.; Moorman, J.R. Physiological Time-Series Analysis Using Approximate Entropy and Sample Entropy Maturity in Premature Infants Physiological Time-Series Analysis Using Approximate Entropy and Sample Entropy. Am. J. Physiol. Hear. Circ. Physiol. 2000, 278, H2039–H2049. [Google Scholar] [CrossRef] [Green Version]
- Brugnera, A.; Zarbo, C.; Tarvainen, M.P.; Marchettini, P.; Adorni, R.; Compare, A. Heart Rate Variability during Acute Psychosocial Stress: A Randomized Cross-over Trial of Verbal and Non-Verbal Laboratory Stressors. Int. J. Psychophysiol. 2018, 127, 17–25. [Google Scholar] [CrossRef]
- Pecchia, L.; Castaldo, R.; Montesinos, L.; Melillo, P. Are Ultra-Short Heart Rate Variability Features Good Surrogates of Short-Term Ones? State-of-the-Art Review and Recommendations. Healthc. Technol. Lett. 2018, 5, 94–100. [Google Scholar] [CrossRef]
- Parseval, M.-A. Mémoire Sur Les Séries et Sur L’Intégration Complète d’une Équation Aux Différences Partielles Linéaires Du Second Ordre, à Coefficients Constants. In Mémoires Présentés Par Divers Savants À L’académie Des Sciences De L’institut De France/Sciences Mathématiques Et Physiques; Nabu Press: Charleston, SC, USA, 1806; Volume 1, pp. 638–648. [Google Scholar]
- Kononenko, I. Estimating Attributes: Analysis and Extensions of RELIEF. In European Conference on Machine Learning; Springer: Berlin/Heidelberg, Germany, 1994; pp. 171–182. [Google Scholar] [CrossRef] [Green Version]
- Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Suykens, J.A.K.; Vandewalle, J. Least Squares Support Vector Machine Classifiers. Neural Process. Lett. 1999, 9, 293–300. [Google Scholar] [CrossRef]
- Gholamiangonabadi, D.; Kiselov, N.; Grolinger, K. Deep Neural Networks for Human Activity Recognition with Wearable Sensors: Leave-One-Subject-Out Cross-Validation for Model Selection. IEEE Access 2020, 8, 133982–133994. [Google Scholar] [CrossRef]
- Sokolova, M.; Japkowicz, N.; Szpakowicz, S. Beyond Accuracy, F-Score and ROC: A Family of Discriminant Measures for Performance Evaluation. In Australasian Joint Conference on Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 2006; pp. 1015–1021. ISBN 3540307370. [Google Scholar]
- Hopkins, W.G. A Scale of Magnitudes for Effect Statistics. A New View Stat. 2002, 502, 411. [Google Scholar]
- Esco, M.R.; Williford, H.N.; Flatt, A.A.; Freeborn, T.J.; Nakamura, F.Y. Ultra-Shortened Time-Domain HRV Parameters at Rest and Following Exercise in Athletes: An Alternative to Frequency Computation of Sympathovagal Balance. Eur. J. Appl. Physiol. 2018, 118, 175–184. [Google Scholar] [CrossRef]
- Salahuddin, L.; Cho, J.; Jeong, M.G.; Kim, D. Ultra Short Term Analysis of Heart Rate Variability for Monitoring Mental Stress in Mobile Settings. In Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, 23–26 August 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 4656–4659. [Google Scholar]
HF | LF | LF/HF Ratio | |
---|---|---|---|
0.93 | 0.79 | −0.29 | |
0.77 | 0.92 | −0.03 | |
−0.43 | −0.09 | 0.86 |
Rank | Feature Name | Rank | Feature Name |
---|---|---|---|
1 | Energy | 14 | SpEn |
2 | SDNN | 15 | G-pNNx |
3 | Energy_(IMF2+IMF3) | 16 | PmEn_IMF3 |
4 | SpEn_IMF3 | 17 | pNN50 |
5 | RMSSD_IMF3 | 18 | pNN30 |
6 | Energy_IMF1 | 19 | SpEn_IMF2 |
7 | SDNN_IMF3 | 20 | Energy_IMF23/IMF1 |
8 | HR | 21 | Energy_IMF1/IMF123 |
9 | SDNN_IMF2 | 22 | Energy_IMF23/IMF123 |
10 | RMSSD_IMF2 | 23 | PmEn |
11 | RMSSD | 24 | PmEn_IMF1 |
12 | RMSSD_IMF1 | 25 | PmEn_IMF2 |
13 | SDNN_IMF1 | 26 | SpEn_IMF1 |
Classification Performance (%) | ||||
---|---|---|---|---|
Front | Middle | Last | ||
3-min segments | Accuracy | 90.5 | 84.5 | 84.5 |
F1 Score | 90.3 | 83.7 | 84.6 | |
2-min segments | Accuracy | 87.2 | 81.8 | 82.4 |
F1 Score | 86.7 | 82.1 | 81.9 | |
1-min segments | Accuracy | 82.4 | 85.1 | 79.7 |
F1 Score | 82.4 | 84.5 | 79.2 |
Rest State | Stress State | |||||
---|---|---|---|---|---|---|
HRV Features | 3 vs. 5 min | 2 vs. 5 min | 1 vs. 5 min | 3 vs. 5 min | 2 vs. 5 min | 1 vs. 5 min |
0.978 | 0.941 | 0.901 | 0.959 | 0.948 | 0.920 | |
0.935 | 0.881 | 0.813 | 0.943 | 0.889 | 0.836 | |
0.986 | 0.968 | 0.883 | 0.809 | 0.742 | 0.674 |
Paper | Number of Subjects | Physiological Signals (Modalities) | Classifier | Validation | Accuracy (Classes) |
---|---|---|---|---|---|
[17], 2017 | 18 | ECG (HRV), PPG, GSR | AdaBoost | 4-fold | 79.0% (2) |
[18], 2021 | 40 | PPG PPG + GSR PPG + GSR + EEG | SVM-RBF | LOSOCV | 80.0% (2) 86.3% (2) 96.3% (2) |
[12], 2021 | 12 | ECG (HRV) | Random Forest | 3-fold | Non-overlapping: 85.9% (2) overlapping: 96.0% (2) |
[11], 2020 | 57 | ECG (HRV) | ANN | 5-fold LOSOCV | 91.0% (2) 84.4% (2) |
Proposed | 74 | ECG (HRV) | Linear SVM | LOSOCV | 86.5% (2) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.; Hwang, H.B.; Park, S.; Kim, S.; Ha, J.H.; Jang, Y.; Hwang, S.; Park, H.-K.; Lee, J.; Kim, I.Y. Mental Stress Assessment Using Ultra Short Term HRV Analysis Based on Non-Linear Method. Biosensors 2022, 12, 465. https://doi.org/10.3390/bios12070465
Lee S, Hwang HB, Park S, Kim S, Ha JH, Jang Y, Hwang S, Park H-K, Lee J, Kim IY. Mental Stress Assessment Using Ultra Short Term HRV Analysis Based on Non-Linear Method. Biosensors. 2022; 12(7):465. https://doi.org/10.3390/bios12070465
Chicago/Turabian StyleLee, Seungjae, Ho Bin Hwang, Seongryul Park, Sanghag Kim, Jung Hee Ha, Yoojin Jang, Sejin Hwang, Hoon-Ki Park, Jongshill Lee, and In Young Kim. 2022. "Mental Stress Assessment Using Ultra Short Term HRV Analysis Based on Non-Linear Method" Biosensors 12, no. 7: 465. https://doi.org/10.3390/bios12070465
APA StyleLee, S., Hwang, H. B., Park, S., Kim, S., Ha, J. H., Jang, Y., Hwang, S., Park, H. -K., Lee, J., & Kim, I. Y. (2022). Mental Stress Assessment Using Ultra Short Term HRV Analysis Based on Non-Linear Method. Biosensors, 12(7), 465. https://doi.org/10.3390/bios12070465