Recent Advances in Early Diagnosis of Viruses Associated with Gastroenteritis by Biosensors
Abstract
:1. Introduction
2. Current Diagnostic Strategies for Human Viruses Associated with Acute Gastroenteritis
2.1. Electron Microscope (EM)
2.2. Cell Culture
2.3. Immunoassay Approaches
2.4. Molecular Techniques
Detection Test | Method | Time | Benefits | Limitations | Refs. |
---|---|---|---|---|---|
Electron microscope (EM) | TEM a SEM b | 3–10 days | Broad spectrum, a good test for direct detection and counting of viral particles | Low sensitivity, time consuming, expensive, and needing costly instruments and trained technicians | [27] |
Cell culture | Conventional cell culture shell vial technique | 1–4 days | High specificity, cheap, broad spectrum | Time consuming, low sensitivity, very susceptible to bacterial and fungal contamination. It is not applicable for viruses that do not produce visible CPE. | [26,53] |
Immunoassay | ELISA c RIA d CA e MEIA f CLIA g FPIA h HI i | 30 min–4 h | Acceptable sensitivity, easily settled, need few reagents | Limited sensitivity, time consuming, laborious, and does not produce quantitative data. | [21,59] |
Molecular techniques | PCR j Real-time PCR RT-PCR k DNA Microarrays LAMP l NGS m | 3–10 h | High sensitivity, specificity, and accuracy, high dynamic range action | Need for special instruments, more time, and pre-PCR processes; inability to differentiate viable pathogens from dead ones, and risk of contamination. | [62,63,64] |
Biosensors | Electrochemical Optical Piezoelectric | 3 min–2.30 h | Cheap, simple, rapid, high-level sensitivity and selectivity, reproducibility, low limit of detection, and accurate | - | [69] |
3. Investigation of Various Biosensing Platforms for Detection of Gastroenteritis Viruses
3.1. Electrochemical Biosensors
3.2. Optical Biosensors
3.3. Piezoelectric Biosensors
4. Rotavirus
5. Enteroviruses
6. Norovirus
7. Enteric Adenovirus 40 and 41
8. Conclusions and Future Direction
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chow, C.M.; Leung, A.K.; Hon, K.L. Acute gastroenteritis: From guidelines to real life. Clin. Exp. Gastroenterol. 2010, 3, 97–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiegering, V.; Kaiser, J.; Tappe, D.; Weißbrich, B.; Morbach, H.; Girschick, H.J. Gastroenteritis in childhood: A retrospective study of 650 hospitalized pediatric patients. Int. J. Infect. Dis. 2011, 15, e401–e407. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, S.M.; McLaws, M.-L.; Ellis, J.T. Prevalence of Gastrointestinal Pathogens in Developed and Developing Countries: Systematic Review and Meta-Analysis. J. Public Health Res. 2013, 2, e9–e53. [Google Scholar] [CrossRef] [Green Version]
- Procop, G.W. Gastrointestinal infections. Infect. Dis. Clin. 2001, 15, 1073–1108. [Google Scholar] [CrossRef]
- Hartman, S.; Brown, E.; Loomis, E.; Russell, H.A. Gastroenteritis in children. Am. Fam. Physician 2019, 99, 159–165. [Google Scholar] [PubMed]
- Zboromyrska, Y.; Vila, J. Advanced PCR-based molecular diagnosis of gastrointestinal infections: Challenges and opportunities. Expert Rev. Mol. Diagn. 2016, 16, 631–640. [Google Scholar] [CrossRef] [PubMed]
- Ramani, S.; Kang, G. Viruses causing childhood diarrhoea in the developing world. Curr. Opin. Infect. Dis. 2009, 22, 477–482. [Google Scholar] [CrossRef]
- Graves, N.S. Acute gastroenteritis. Prim. Care 2013, 40, 727. [Google Scholar] [CrossRef]
- Liu, L.; Johnson, H.L.; Cousens, S.; Perin, J.; Scott, S.; Lawn, J.E.; Rudan, I.; Campbell, H.; Cibulskis, R.; Li, M.; et al. Global, regional, and national causes of child mortality: An updated systematic analysis for 2010 with time trends since 2000. Lancet 2012, 379, 2151–2161. [Google Scholar] [CrossRef]
- Black, R.E.; Cousens, S.; Johnson, H.L.; Lawn, J.; Rudan, I.; Bassani, D.G.; Jha, P.; Campbell, H.; Walker, C.F.; Cibulskis, R.; et al. Global, regional, and national causes of child mortality in 2008: A systematic analysis. Lancet 2010, 375, 1969–1987. [Google Scholar] [CrossRef]
- Wardlaw, T.; Salama, P.; Brocklehurst, C.; Chopra, M.; Mason, E. Diarrhoea: Why children are still dying and what can be done. Lancet 2010, 375, 870–872. [Google Scholar] [CrossRef]
- Chhabra, P.; Payne, D.C.; Szilagyi, P.G.; Edwards, K.M.; Staat, M.A.; Shirley, S.H.; Wikswo, M.; Nix, W.A.; Lu, X.; Parashar, U.D. Etiology of viral gastroenteritis in children<5 years of age in the United States, 2008–2009. J. Infect. Dis. 2013, 208, 790–800. [Google Scholar] [PubMed] [Green Version]
- Parashar, U.D.; Gibson, C.J.; Bresee, J.S.; Glass, R.I. Rotavirus and Severe Childhood Diarrhea. Emerg. Infect. Dis. 2006, 12, 304–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilhelmi, I.; Roman, E.; Sanchez-Fauquier, A. Viruses causing gastroenteritis. Clin. Microbiol. Infect. 2003, 9, 247–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okitsu-Negishi, S.; Nguyen, T.A.; Phan, T.G.; Ushijima, H. Molecular epidemiology of viral gastroenteritis in Asia. Pediatr. Int. 2004, 46, 245–252. [Google Scholar] [CrossRef]
- Clark, B.; McKendrick, M. A review of viral gastroenteritis. Curr. Opin. Infect. Dis. 2004, 17, 461–469. [Google Scholar] [CrossRef]
- Rovida, F.; Campanini, G.; Piralla, A.; Adzasehoun, K.M.G.; Sarasini, A.; Baldanti, F. Molecular detection of gastrointestinal viral infections in hospitalized patients. Diagn. Microbiol. Infect. Dis. 2013, 77, 231–235. [Google Scholar] [CrossRef]
- Iturriza-Gómara, M.; Cunliffe, N.A. Viral gastroenteritis. In Hunter’s Tropical Medicine and Emerging Infectious Diseases; Elsevier: Amsterdam, The Netherlands, 2020; pp. 289–307. [Google Scholar]
- Stuempfig, N.D.; Seroy, J. Viral Gastroenteritis; StatPearls: Treasure Island, FL, USA, 2021. [Google Scholar]
- Glass, R.I.; Parashar, U.D.; Estes, M.K. Norovirus gastroenteritis. N. Engl. J. Med. 2009, 361, 1776–1785. [Google Scholar] [CrossRef] [Green Version]
- Rovida, F.; Campanini, G.; Sarasini, A.; Adzasehoun, K.M.G.; Piralla, A.; Baldanti, F. Comparison of immunologic and molecular assays for the diagnosis of gastrointestinal viral infections. Diagn. Microbiol. Infect. Dis. 2012, 75, 110–111. [Google Scholar] [CrossRef]
- Khataee, A.; Sohrabi, H.; Ehsani, M.; Agaei, M.; Sisi, A.J.; Abdi, J.; Yoon, Y. State-of-the-art progress of metal-organic framework-based electrochemical and optical sensing platforms for determination of bisphenol A as an endocrine disruptor. Environ. Res. 2022, 212, 113536. [Google Scholar] [CrossRef]
- Leland, D.S.; Ginocchio, C.C. Role of Cell Culture for Virus Detection in the Age of Technology. Clin. Microbiol. Rev. 2007, 20, 49–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oka, T.; Wang, Q.; Katayama, K.; Saif, L.J. Comprehensive Review of Human Sapoviruses. Clin. Microbiol. Rev. 2015, 28, 32–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kowada, K.; Takeuchi, K.; Hirano, E.; Toho, M.; Sada, K. Development of a multiplex real-time PCR assay for detection of human enteric viruses other than norovirus using samples collected from gastroenteritis patients in Fukui Prefecture, Japan. J. Med. Virol. 2017, 90, 67–75. [Google Scholar] [CrossRef]
- Malik, Y.S.; Verma, A.K.; Kumar, N.; Touil, N.; Karthik, K.; Tiwari, R.; Bora, D.P.; Dhama, K.; Ghosh, S.; Hemida, M.; et al. Advances in Diagnostic Approaches for Viral Etiologies of Diarrhea: From the Lab to the Field. Front. Microbiol. 2019, 10, 1957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinjé, J. Advances in Laboratory Methods for Detection and Typing of Norovirus. J. Clin. Microbiol. 2015, 53, 373–381. [Google Scholar] [CrossRef] [Green Version]
- Sohrabi, H.; Majidi, M.R.; Khaki, P.; Jahanban-Esfahlan, A.; de la Guardia, M.; Mokhtarzadeh, A. State of the art: Lateral flow assays toward the point-of-care foodborne pathogenic bacteria detection in food samples. Compr. Rev. Food Sci. Food Saf. 2022, 21, 1868–1912. [Google Scholar] [CrossRef] [PubMed]
- Mokhtarzadeh, A.; Eivazzadeh-Keihan, R.; Pashazadeh, P.; Hejazi, M.; Gharaatifar, N.; Hasanzadeh, M.; Baradaran, B.; de la Guardia, M. Nanomaterial-based biosensors for detection of pathogenic virus. TrAC Trends Anal. Chem. 2017, 97, 445–457. [Google Scholar] [CrossRef]
- Sohrabi, H.; Hemmati, A.; Majidi, M.R.; Eyvazi, S.; Jahanban-Esfahlan, A.; Baradaran, B.; Adlpour-Azar, R.; Mokhtarzadeh, A.; de la Guardia, M. Recent advances on portable sensing and biosensing assays applied for detection of main chemical and biological pollutant agents in water samples: A critical review. TrAC Trends Anal. Chem. 2021, 143, 116344. [Google Scholar] [CrossRef]
- Sohrabi, H.; Majidi, M.R.; Fakhraei, M.; Jahanban-Esfahlan, A.; Hejazi, M.; Oroojalian, F.; Baradaran, B.; Tohidast, M.; de la Guardia, M.; Mokhtarzadeh, A. Lateral flow assays (LFA) for detection of pathogenic bacteria: A small point-of-care platform for diagnosis of human infectious diseases. Talanta 2022, 243, 123330. [Google Scholar] [CrossRef]
- Majidi, M.R.; Sohrabi, H. Chiral Conductive Polymers. In Conductive Polymers in Analytical Chemistry; ACS Publications: Washington, DC, USA, 2022; pp. 287–312. [Google Scholar]
- Fankhauser, J.; Monroe, S.S. Gastroenteritis viruses: An overview. Gastroenteritis Viruses 2001, 238, 5. [Google Scholar]
- Eckardt, A.J.; Baumgart, D. Viral gastroenteritis in adults. Recent Pat. Anti-Infect. Drug Discov. 2011, 6, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Sohrabi, H.; Bolandi, N.; Hemmati, A.; Eyvazi, S.; Ghasemzadeh, S.; Baradaran, B.; Oroojalian, F.; Majidi, M.R.; de la Guardia, M.; Mokhtarzadeh, A. State-of-the-art cancer biomarker detection by portable (Bio) sensing technology: A critical review. Microchem. J. 2022, 177, 107248. [Google Scholar] [CrossRef]
- Babaei, A.; Pouremamali, A.; Rafiee, N.; Sohrabi, H.; Mokhtarzadeh, A.; de la Guardia, M. Genosensors as an alternative diagnostic sensing approaches for specific detection of various certain viruses: A review of common techniques and outcomes. TrAC Trends Anal. Chem. 2022, 155, 116686. [Google Scholar] [CrossRef] [PubMed]
- Sohrabi, H.; Majidi, M.R.; Asadpour-Zeynali, K.; Khataee, A.; Dastborhan, M.; Mokhtarzadeh, A. A PCR-free genosensing platform for detection of Shigella dysenteriae in human plasma samples by porous and honeycomb-like biochar decorated with ultrathin flower-like MoS2 nanosheets incorporated with Au nanoparticles. Chemosphere 2021, 288, 132531. [Google Scholar] [CrossRef] [PubMed]
- Sohrabi, H.; Majidi, M.R.; Mokhtarzadeh, A.; Asadpour-Zeynali, K. 30 MOF-based Electrochemical Sensors. In Metal-Organic Frameworks-Based Hybrid Materials for Environmental Sensing and Monitoring; CRC Press: Boca Raton, FL, USA, 2022; p. 299. [Google Scholar]
- Janczuk-Richter, M.; Gromadzka, B.; Richter, Ł.; Panasiuk, M.; Zimmer, K.; Mikulic, P.; Bock, W.J.; Maćkowski, S.; Śmietana, M.; Jönsson, J.N. Immunosensor Based on Long-Period Fiber Gratings for Detection of Viruses Causing Gastroenteritis. Sensors 2020, 20, 813. [Google Scholar] [CrossRef] [Green Version]
- Sohrabi, H.; Sani, P.S.; Orooji, Y.; Majidi, M.R.; Yoon, Y.; Khataee, A. MOF-based sensor platforms for rapid detection of pesticides to maintain food quality and safety. Food Chem. Toxicol. 2022, 165, 113176. [Google Scholar] [CrossRef]
- Saylan, Y.; Erdem, Ö.; Ünal, S.; Denizli, A. An alternative medical diagnosis method: Biosensors for virus detection. Biosensors 2019, 9, 65. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Wang, Z.; Liu, Y.; Wang, X.; Li, Y.; Ma, P.; Gu, B.; Li, H. Recent advances in rapid pathogen detection method based on biosensors. Eur. J. Clin. Microbiol. 2018, 37, 1021–1037. [Google Scholar] [CrossRef]
- Guliy, O.I.; Zaitsev, B.D.; Borodina, I.A. Biosensors for virus detection. In Macro, Micro, and Nano-Biosensors; Springer: Berlin/Heidelberg, Germany, 2021; pp. 95–116. [Google Scholar]
- Haramoto, E.; Kitajima, M.; Hata, A.; Torrey, J.R.; Masago, Y.; Sano, D.; Katayama, H. A review on recent progress in the detection methods and prevalence of human enteric viruses in water. Water Res. 2018, 135, 168–186. [Google Scholar] [CrossRef]
- Orooji, Y.; Sohrabi, H.; Hemmat, N.; Oroojalian, F.; Baradaran, B.; Mokhtarzadeh, A.; Mohaghegh, M.; Karimi-Maleh, H. An overview on SARS-CoV-2 (COVID-19) and other human coronaviruses and their detection capability via amplification assay, chemical sensing, biosensing, immunosensing, and clinical assays. Nano Micro Lett. 2021, 13, 18. [Google Scholar] [CrossRef]
- Reddington, K.; Tuite, N.; Minogue, E.; Barry, T. A current overview of commercially available nucleic acid diagnostics approaches to detect and identify human gastroenteritis pathogens. Biomol. Detect. Quantif. 2014, 1, 3–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oroojalian, F.; Haghbin, A.; Baradaran, B.; Hemmat, N.; Shahbazi, M.-A.; Baghi, H.B.; Mokhtarzadeh, A.; Hamblin, M.R. Novel insights into the treatment of SARS-CoV-2 infection: An overview of current clinical trials. Int. J. Biol. Macromol. 2020, 165, 18–43. [Google Scholar] [CrossRef]
- Ong, H.; Chandran, V. Identification of gastroenteric viruses by electron microscopy using higher order spectral features. J. Clin. Virol. 2005, 34, 195–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guliy, O.I.; Zaitsev, B.D.; Larionova, O.S.; Borodina, I.A. Virus Detection Methods and Biosensor Technologies. Biophysics 2019, 64, 890–897. [Google Scholar] [CrossRef]
- McCracken, K.W.; Howell, J.C.; Wells, J.M.; Spence, J.R. Generating human intestinal tissue from pluripotent stem cells in vitro. Nat. Protoc. 2011, 6, 1920–1928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landry, M.L.; Tang, Y.-W. Immunologic and molecular methods for viral diagnosis. Man. Mol. Clin. Lab. Immunol. 2016, 57, 538–549. [Google Scholar]
- Teimoori, A.; Soleimanjahi, H.; Pourasgari, F. Comparison of Rotavirus RF Strain and HSV-1 Titration by CCID50% and Plaque Assays. Pathobiol. Res. 2012, 15, 35–45. [Google Scholar]
- Dilnessa, T.; Zeleke, H. Cell culture, cytopathic effect and immunofluorescence diagnosis of viral infection. J. Microbiol. Mod. Technol. 2017, 2, 102. [Google Scholar]
- Gautam, R.; Lyde, F.; Esona, M.D.; Quaye, O.; Bowen, M.D. Comparison of Premier™ Rotaclone®, ProSpecT™, and RIDASCREEN® rotavirus enzyme immunoassay kits for detection of rotavirus antigen in stool specimens. J. Clin. Virol. 2013, 58, 292–294. [Google Scholar] [CrossRef] [Green Version]
- Alhadrami, H.A.; Al-Amer, S.; Aloraij, Y.; Alhamlan, F.; Chinnappan, R.; Abu-Salah, K.M.; Almatrrouk, S.; Zourob, M.M. Development of a Simple, Fast, and Cost-Effective Nanobased Immunoassay Method for Detecting Norovirus in Food Samples. ACS Omega 2020, 5, 12162–12165. [Google Scholar] [CrossRef]
- Blanchard, E.G.; Miao, C.; Haupt, T.E.; Anderson, L.J.; Haynes, L.M. Development of a recombinant truncated nucleocapsid protein based immunoassay for detection of antibodies against human coronavirus OC43. J. Virol. Methods 2011, 177, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Peruski, A.H.; Peruski Jr, L.F. Immunological methods for detection and identification of infectious disease and biological warfare agents. Clin. Vaccine Immunol. 2003, 10, 506–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, T.L.; Becho, M.C.; Bernardo, A.R.; Chaves, T.C.B.; Ribeiro, R.S.; De Lima, J.S.; Fialho, A.M.; Leite, J.P.G.; Mazur, C.; Danelli, M.D.G.M. Performance of a latex agglutination test in the diagnosis of acute gastroenteritis by rotavirus. Braz. J. Microbiol. 2006, 37, 587–589. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, S.; Vázquez-Villegas, P.; Rito-Palomares, M.; Martinez-Chapa, S.O. Advantages, disadvantages and modifications of conventional ELISA. In Enzyme-Linked Immunosorbent Assay (ELISA); Springer: Berlin/Heidelberg, Germany, 2018; pp. 67–115. [Google Scholar]
- Sair, A.; D’Souza, D.H.; Moe, C.L.; Jaykus, L.-A. Improved detection of human enteric viruses in foods by RT-PCR. J. Virol. Methods 2001, 100, 57–69. [Google Scholar] [CrossRef]
- Reta, D.H.; Tessema, T.S.; Ashenef, A.S.; Desta, A.F.; Labisso, W.L.; Gizaw, S.T.; Abay, S.M.; Melka, D.S.; Reta, F.A. Molecular and Immunological Diagnostic Techniques of Medical Viruses. Int. J. Microbiol. 2020, 2020, 8832728. [Google Scholar] [CrossRef] [PubMed]
- Marthaler, D.; Raymond, L.; Jiang, Y.; Collins, J.; Rossow, K.; Rovira, A. Rapid Detection, Complete Genome Sequencing, and Phylogenetic Analysis of Porcine Deltacoronavirus. Emerg. Infect. Dis. 2014, 20, 1347–1350. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Kibiki, G.; Maro, V.; Maro, A.; Kumburu, H.; Swai, N.; Taniuchi, M.; Gratz, J.; Toney, D.; Kang, G.; et al. Multiplex reverse transcription PCR Luminex assay for detection and quantitation of viral agents of gastroenteritis. J. Clin. Virol. 2011, 50, 308–313. [Google Scholar] [CrossRef] [Green Version]
- Gustavsson, L.; Westin, J.; Andersson, L.-M.; Lindh, M. Rectal swabs can be used for diagnosis of viral gastroenteritis with a multiple real-time PCR assay. J. Clin. Virol. 2011, 51, 279–282. [Google Scholar] [CrossRef]
- Babaei, A.; Malekshahi, S.S.; Pirbonyeh, N.; Sarvari, J.; Moattari, A. Phylogenetic analysis and circulation pattern of human metapneumovirus strains in children with acute respiratory infection in Iran, 2014–2015. Future Virol. 2020, 15, 419–427. [Google Scholar] [CrossRef]
- Beuret, C. Simultaneous detection of enteric viruses by multiplex real-time RT-PCR. J. Virol. Methods 2004, 115, 1–8. [Google Scholar] [CrossRef]
- Thongprachum, A.; Khamrin, P.; Pham, N.T.K.; Takanashi, S.; Okitsu, S.; Shimizu, H.; Maneekarn, N.; Hayakawa, S.; Ushijima, H. Multiplex RT-PCR for rapid detection of viruses commonly causing diarrhea in pediatric patients. J. Med. Virol. 2016, 89, 818–824. [Google Scholar] [CrossRef] [PubMed]
- Cobo, F. Suppl 1: Application of molecular diagnostic techniques for viral testing. Open Virol. J. 2012, 6, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Vigneshvar, S.; Sudhakumari, C.C.; Senthilkumaran, B.; Prakash, H. Recent Advances in Biosensor Technology for Potential Applications—An Overview. Front. Bioeng. Biotechnol. 2016, 4, 11. [Google Scholar] [CrossRef] [Green Version]
- Clark Jr, L.C.; Lyons, C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N. Y. Acad. Sci. 1962, 102, 29–45. [Google Scholar] [CrossRef]
- Hasanzadeh, M.; Zargami, A.; Baghban, H.N.; Mokhtarzadeh, A.; Shadjou, N.; Mahboob, S. Aptamer-based assay for monitoring genetic disorder phenylketonuria (PKU). Int. J. Biol. Macromol. 2018, 116, 735–743. [Google Scholar] [CrossRef] [PubMed]
- Hassanpour, S.; Baradaran, B.; Hejazi, M.; Hasanzadeh, M.; Mokhtarzadeh, A.; de la Guardia, M. Recent trends in rapid detection of influenza infections by bio and nanobiosensor. TrAC Trends Anal. Chem. 2018, 98, 201–215. [Google Scholar] [CrossRef]
- Hassanpour, S.; Baradaran, B.; de la Guardia, M.; Baghbanzadeh, A.; Mosafer, J.; Hejazi, M.; Mokhtarzadeh, A.; Hasanzadeh, M. Diagnosis of hepatitis via nanomaterial-based electrochemical, optical or piezoelectrical biosensors: A review on recent advancements. Mikrochim. Acta 2018, 185, 568. [Google Scholar] [CrossRef]
- Mobed, A.; Baradaran, B.; de la Guardia, M.; Agazadeh, M.; Hasanzadeh, M.; Rezaee, M.A.; Mosafer, J.; Mokhtarzadeh, A.; Hamblin, M.R. Advances in detection of fastidious bacteria: From microscopic observation to molecular biosensors. TrAC Trends Anal. Chem. 2019, 113, 157–171. [Google Scholar] [CrossRef]
- Sohrabi, H.; Majidi, M.R.; Asadpour-Zeynali, K.; Khataee, A.; Mokhtarzadeh, A. Bimetallic Fe/Mn MOFs/MβCD/AuNPs stabilized on MWCNTs for developing a label-free DNA-based genosensing bio-assay applied in the determination of Salmonella typhimurium in milk samples. Chemosphere 2021, 287, 132373. [Google Scholar] [CrossRef]
- Sohrabi, H.; Majidi, M.R.; Nami, F.; Asadpour-Zeynali, K.; Khataee, A.; Mokhtarzadeh, A. A novel engineered label-free Zn-based MOF/CMC/AuNPs electrochemical genosensor for highly sensitive determination of Haemophilus Influenzae in human plasma samples. Mikrochim. Acta 2021, 188, 100. [Google Scholar] [CrossRef]
- Hasanzadeh, M.; Sahmani, R.; Solhi, E.; Mokhtarzadeh, A.; Shadjou, N.; Mahboob, S. Ultrasensitive immunoassay of carcinoma antigen 125 in untreated human plasma samples using gold nanoparticles with flower like morphology: A new platform in early stage diagnosis of ovarian cancer and efficient management. Int. J. Biol. Macromol. 2018, 119, 913–925. [Google Scholar] [CrossRef] [PubMed]
- Safarpour, H.; Dehghani, S.; Nosrati, R.; Zebardast, N.; Alibolandi, M.; Mokhtarzadeh, A.; Ramezani, M. Optical and electrochemical-based nano-aptasensing approaches for the detection of circulating tumor cells (CTCs). Biosens. Bioelectron. 2019, 148, 111833. [Google Scholar] [CrossRef] [PubMed]
- Alhadrami, H.A. Biosensors: Classifications, medical applications, and future prospective. Biotechnol. Appl. Biochem. 2018, 65, 497–508. [Google Scholar] [CrossRef]
- Naresh, V.; Lee, N. A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors. Sensors 2021, 21, 1109. [Google Scholar] [CrossRef] [PubMed]
- Pineda, M.F.; Chan, L.L.-Y.; Kuhlenschmidt, T.; Choi, C.J.; Kuhlenschmidt, M.; Cunningham, B.T. Rapid Specific and Label-Free Detection of Porcine Rotavirus Using Photonic Crystal Biosensors. IEEE Sens. J. 2009, 9, 470–477. [Google Scholar] [CrossRef]
- Mokhtarzadeh, A.; Nazhad Dolatabadi, J.E.; Abnous, K.; de la Guardia, M.; Ramezani, M. Nanomaterial-based cocaine aptasensors. Biosens. Bioelectron. 2015, 68, 95–106. [Google Scholar] [CrossRef]
- Maghsoudi, A.S.; Hassani, S.; Mirnia, K.; Abdollahi, M. Recent Advances in Nanotechnology-Based Biosensors Development for Detection of Arsenic, Lead, Mercury, and Cadmium. Int. J. Nanomed. 2021, 16, 803–832. [Google Scholar] [CrossRef]
- Elahi, N.; Kamali, M.; Baghersad, M.H. Recent biomedical applications of gold nanoparticles: A review. Talanta 2018, 184, 537–556. [Google Scholar] [CrossRef]
- Babaei, A.; Mousavi, S.M.; Ghasemi, M.; Pirbonyeh, N.; Soleimani, M.; Moattari, A. Gold nanoparticles show potential in vitro antiviral and anticancer activity. Life Sci. 2021, 284, 119652. [Google Scholar] [CrossRef]
- Goud, K.Y.; Reddy, K.K.; Khorshed, A.; Kumar, V.S.; Mishra, R.K.; Oraby, M.; Ibrahim, A.H.; Kim, H.; Gobi, K.V. Electrochemical diagnostics of infectious viral diseases: Trends and challenges. Biosens. Bioelectron. 2021, 180, 113112. [Google Scholar] [CrossRef]
- Cesewski, E.; Johnson, B.N. Electrochemical biosensors for pathogen detection. Biosens. Bioelectron. 2020, 159, 112214. [Google Scholar] [CrossRef] [PubMed]
- Hasanzadeh, M.; Shadjou, N.; Mokhtarzadeh, A.; Ramezani, M. Two dimension (2-D) graphene-based nanomaterials as signal amplification elements in electrochemical microfluidic immune-devices: Recent advances. Mater. Sci. Eng. C 2016, 68, 482–493. [Google Scholar] [CrossRef] [PubMed]
- Hasanzadeh, M.; Tagi, S.; Solhi, E.; Shadjou, N.; Jouyban, A.; Mokhtarzadeh, A. Immunosensing of breast cancer prognostic marker in adenocarcinoma cell lysates and unprocessed human plasma samples using gold nanostructure coated on organic substrate. Int. J. Biol. Macromol. 2018, 118, 1082–1089. [Google Scholar] [CrossRef] [PubMed]
- Hasanzadeh, M.; Nahar, A.S.; Hassanpour, S.; Shadjou, N.; Mokhtarzadeh, A.; Mohammadi, J. Proline dehydrogenase-entrapped mesoporous magnetic silica nanomaterial for electrochemical biosensing of L-proline in biological fluids. Enzym. Microb. Technol. 2017, 105, 64–76. [Google Scholar] [CrossRef]
- Hasanzadeh, M.; Baghban, H.N.; Mokhtarzadeh, A.; Shadjou, N.; Mahboob, S. An innovative immunosensor for detection of tumor suppressor protein p53 in unprocessed human plasma and cancer cell lysates. Int. J. Biol. Macromol. 2017, 105, 1337–1348. [Google Scholar] [CrossRef]
- Malhotra, B.D.; Ali, M.A. Nanomaterials in biosensors: Fundamentals and applications. Nanomater. Biosens. 2018, 1–74. [Google Scholar] [CrossRef]
- Kaya, H.O.; Cetin, A.E.; Azimzadeh, M.; Topkaya, S.N. Pathogen detection with electrochemical biosensors: Advantages, challenges and future perspectives. J. Electroanal. Chem. 2021, 882, 114989. [Google Scholar] [CrossRef]
- Eivazzadeh-Keihan, R.; Pashazadeh-Panahi, P.; Baradaran, B.; de la Guardia, M.; Hejazi, M.; Sohrabi, H.; Mokhtarzadeh, A.; Maleki, A. Recent progress in optical and electrochemical biosensors for sensing of Clostridium botulinum neurotoxin. TrAC Trends Anal. Chem. 2018, 103, 184–197. [Google Scholar] [CrossRef]
- Damborský, P.; Švitel, J.; Katrlík, J. Optical biosensors. Essays Biochem. 2016, 60, 91–100. [Google Scholar]
- Chen, Y.; Liu, J.; Yang, Z.; Wilkinson, J.S.; Zhou, X. Optical biosensors based on refractometric sensing schemes: A review. Biosens. Bioelectron. 2019, 144, 111693. [Google Scholar] [CrossRef]
- Soler, M.; Huertas, C.S.; Lechuga, L.M. Label-free plasmonic biosensors for point-of-care diagnostics: A review. Expert Rev. Mol. Diagn. 2019, 19, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Saadati, A.; Hassanpour, S.; de la Guardia, M.; Mosafer, J.; Hashemzaei, M.; Mokhtarzadeh, A.; Baradaran, B. Recent advances on application of peptide nucleic acids as a bioreceptor in biosensors development. TrAC Trends Anal. Chem. 2019, 114, 56–68. [Google Scholar] [CrossRef]
- Yakes, B.J.; Papafragkou, E.; Conrad, S.M.; Neill, J.D.; Ridpath, J.F.; Burkhardt, W., III; Kulka, M.; DeGrasse, S.L. Surface plasmon resonance biosensor for detection of feline calicivirus, a surrogate for norovirus. Int. J. Food Microbiol. 2013, 162, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Rippa, M.; Castagna, R.; Brandi, S.; Fusco, G.; Monini, M.; Chen, D.; Zhou, J.; Zyss, J.; Petti, L. Octupolar Plasmonic Nanosensor Based on Ordered Arrays of Triangular Au Nanopillars for Selective Rotavirus Detection. ACS Appl. Nano Mater. 2020, 3, 4837–4844. [Google Scholar] [CrossRef]
- Heo, N.S.; Oh, S.Y.; Ryu, M.Y.; Baek, S.H.; Park, T.J.; Choi, C.; Huh, Y.S.; Park, J.P. Affinity Peptide-guided Plasmonic Biosensor for Detection of Noroviral Protein and Human Norovirus. Biotechnol. Bioprocess Eng. 2019, 24, 318–325. [Google Scholar] [CrossRef]
- Gautschi, G. Piezoelectric sensors. In Piezoelectric Sensorics; Springer: Berlin/Heidelberg, Germany, 2002; pp. 73–91. [Google Scholar]
- Saylan, Y.; Akgönüllü, S.; Yavuz, H.; Ünal, S.; Denizli, A. Molecularly Imprinted Polymer Based Sensors for Medical Applications. Sensors 2019, 19, 1279. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Lu, P.; Zhu, M.; Li, B.; Yang, P.; Cai, J. Silver nanocluster based sensitivity amplification of a quartz crystal microbalance gene sensor. Mikrochim. Acta 2015, 183, 881–887. [Google Scholar] [CrossRef]
- Kordasht, H.K.; Hassanpour, S.; Baradaran, B.; Nosrati, R.; Hashemzaei, M.; Mokhtarzadeh, A.; de la Guardia, M. Biosensing of microcystins in water samples; recent advances. Biosens. Bioelectron. 2020, 165, 112403. [Google Scholar] [CrossRef]
- Ngo, V.K.T.; Nguyen, D.G.; Nguyen, H.P.U.; Tran, V.M.; Nguyen, T.K.M.; Huynh, T.P.; Lam, Q.V.; Huynh, T.D.; Truong, T.N.L. Quartz crystal microbalance (QCM) as biosensor for the detecting of Escherichia coli O157:H7. Adv. Nat. Sci. Nanosci. Nanotechnol. 2014, 5, 045004. [Google Scholar] [CrossRef]
- Neumann, F.; Madaboosi, N.; Hernández-Neuta, I.; Salas, J.; Ahlford, A.; Mecea, V.; Nilsson, M. QCM mass underestimation in molecular biotechnology: Proximity ligation assay for norovirus detection as a case study. Sens. Actuators B Chem. 2018, 273, 742–750. [Google Scholar] [CrossRef]
- de Eguilaz, M.R.; Cumba, L.R.; Forster, R.J. Electrochemical detection of viruses and antibodies: A mini review. Electrochem. Commun. 2020, 116, 106762. [Google Scholar] [CrossRef] [PubMed]
- Crawford, S.E.; Ramani, S.; Tate, J.E.; Parashar, U.D.; Svensson, L.; Hagbom, M.; Franco, M.A.; Greenberg, H.B.; O’Ryan, M.; Kang, G. Rotavirus infection. Nat. Rev. Dis. Primers 2017, 3, 17083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cunningham, B.T. Photonic crystals utilized for label-free and amplified fluorescence biodetection. In Proceedings of the Micro (MEMS) and Nanotechnologies for Space, Defense, and Security II, Orlando, FL, USA, 14–20 March 2008; p. 695910. [Google Scholar]
- Bresee, J.; Parashar, U.; Holman, R.; Gentsch, J.; Glass, R.; Evanoff, B. Generic Protocols: Hospital-Based Surveillance to Estimate the Burden of Rotavirus Gastroenteritis in Children and Community Based Survey on Utilization of Health Care Services from Gastroenteritis in Children; WHO Publication: Geneva, Switzerland, 2002; pp. 1–67. Available online: http://www.who.int/vaccines-documents (accessed on 16 June 2014).
- Jung, J.H.; Cheon, D.S.; Liu, F.; Lee, K.B.; Seo, T.S. A Graphene Oxide Based Immuno-biosensor for Pathogen Detection. Angew. Chem. 2010, 122, 5844–5847. [Google Scholar] [CrossRef]
- Liu, F.; Choi, K.S.; Park, T.J.; Lee, S.Y.; Seo, T.S. Graphene-based electrochemical biosensor for pathogenic virus detection. BioChip J. 2011, 5, 123–128. [Google Scholar] [CrossRef]
- Driskell, J.; Zhu, Y.; Kirkwood, C.D.; Zhao, Y.; Dluhy, R.A.; Tripp, R.A. Rapid and Sensitive Detection of Rotavirus Molecular Signatures Using Surface Enhanced Raman Spectroscopy. PLoS ONE 2010, 5, e10222. [Google Scholar] [CrossRef]
- Ye, X.; Wang, N.; Li, Y.; Fang, X.; Kong, J. A high-specificity flap probe-based isothermal nucleic acid amplification method based on recombinant FEN1-Bst DNA polymerase. Biosens. Bioelectron. 2021, 192, 113503. [Google Scholar] [CrossRef]
- Liu, F.; Kim, Y.H.; Cheon, D.S.; Seo, T.S. Micropatterned reduced graphene oxide based field-effect transistor for real-time virus detection. Sens. Actuators B Chem. 2013, 186, 252–257. [Google Scholar] [CrossRef]
- Venkatraman, V.; Steckl, A.J. Quantitative Detection in Lateral Flow Immunoassay Using Integrated Organic Optoelectronics. IEEE Sens. J. 2017, 17, 8343–8349. [Google Scholar] [CrossRef]
- Elsheikh, D.M.; Elsadek, H.A.; Abdallah, E.A.; Atteya, S.; ELmazny, W.N. Rapid detection of blood entero-viruses using microstrip antenna bio-sensor. In Proceedings of the 2013 European Microwave Conference, Nuremberg, Germany, 6–10 October 2013; pp. 878–880. [Google Scholar]
- Hasegawa, M.; Wandera, E.A.; Inoue, Y.; Kimura, N.; Sasaki, R.; Mizukami, T.; Shah, M.M.; Shirai, N.; Takei, O.; Shindo, H.; et al. Detection of rotavirus in clinical specimens using an immunosensor prototype based on the photon burst counting technique. Biomed. Opt. Express 2017, 8, 3383–3394. [Google Scholar] [CrossRef] [Green Version]
- Holgado, M.; Sanza, F.J.; López, A.; Lavín, Á.; Casquel, R.; Laguna, M.F. Description of an Advantageous Optical Label-Free Biosensing Interferometric Read-Out Method to Measure Biological Species. Sensors 2014, 14, 3675–3689. [Google Scholar] [CrossRef]
- Maeng, B.; Park, Y.; Park, J. Direct label-free detection of Rotavirus using a hydrogel based nanoporous photonic crystal. RSC Adv. 2016, 6, 7384–7390. [Google Scholar] [CrossRef]
- Attar, A.; Mandli, J.; Ennaji, M.M.; Amine, A. Label-free Electrochemical Impedance Detection of Rotavirus Based on Immobilized Antibodies on Gold Sononanoparticles. Electroanalysis 2016, 28, 1839–1846. [Google Scholar] [CrossRef]
- Pant, M.; Kharkwal, H.; Singh, K.; Joshi, H. Detection of rota virus with the help of nanomaterial based field effect transistor (BIO-FET). Biosens. J. 2017, 6, 1000148. [Google Scholar] [CrossRef]
- Rao, C.D. Enteroviruses in gastrointestinal diseases. Rev. Med. Virol. 2020, 31, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, W.; Omar, M. Enterovirus; StatPearls: Treasure Island, FL, USA, 2020. [Google Scholar]
- Harvala, H.; Broberg, E.; Benschop, K.; Berginc, N.; Ladhani, S.; Susi, P.; Christiansen, C.; McKenna, J.; Allen, D.; Makiello, P.; et al. Recommendations for enterovirus diagnostics and characterisation within and beyond Europe. J. Clin. Virol. 2018, 101, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, N.; Bhardwaj, S.K.; Bhatt, D.; Lim, D.K.; Kim, K.-H.; Deep, A. Optical detection of waterborne pathogens using nanomaterials. TrAC Trends Anal. Chem. 2019, 113, 280–300. [Google Scholar] [CrossRef]
- Chauhan, V.; Elsutohy, M.; McClure, C.; Irving, W.; Roddis, N.; Aylott, J. Gold–Oligonucleotide Nanoconstructs Engineered to Detect Conserved Enteroviral Nucleic Acid Sequences. Biosensors 2021, 11, 238. [Google Scholar] [CrossRef]
- Song, K.-M.; Lee, S.; Ban, C. Aptamers and Their Biological Applications. Sensors 2012, 12, 612–631. [Google Scholar] [CrossRef] [Green Version]
- Chauhan, V.; Elsutohy, M.M.; McClure, C.P.; Irving, W.; Roddis, N.; Aylott, J.W. Gold-Aptamer-Nanoconstructs Engineered to Detect Conserved Enteroviral Nucleic Acid Sequences. ChemRxiv 2019. [Google Scholar] [CrossRef]
- Farkas, K.; Mannion, F.; Hillary, L.S.; Malham, S.K.; Walker, D.I. Emerging technologies for the rapid detection of enteric viruses in the aquatic environment. Curr. Opin. Environ. Sci. Health 2020, 16, 1–6. [Google Scholar] [CrossRef]
- Slama, I.; Abid, N.B.S.; Othman, I.; Ben, A.I.; Chtourou, R.; Aouni, M.; Ichrak, S.; Ben Salem, A.N.; Ines, O.; Radhouane, C.; et al. Label-Free Electrochemical DNA Sensor for Enteroviruses Detection. Sens. Lett. 2016, 14, 1112–1116. [Google Scholar] [CrossRef]
- Mejri, M.B.; Marrakchi, M.; Baccar, H.; Helali, S.; Aouni, M.; Hamdi, M.; Jaffrezic-Renault, N.; AbdelGhani, A. Electrochemical Impedance Spectroscopy for Specific Detection of Enterovirus. Sens. Lett. 2009, 7, 896–899. [Google Scholar] [CrossRef]
- Pierce, V.M.; Hodinka, R.L. Comparison of the GenMark Diagnostics eSensor Respiratory Viral Panel to Real-Time PCR for Detection of Respiratory Viruses in Children. J. Clin. Microbiol. 2012, 50, 3458–3465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, M.-T.; Cheng, Y.-H.; Liu, Y.-N.; Liao, N.-C.; Lu, W.-W.; Kung, S.-H. Real-Time Monitoring of Human Enterovirus (HEV)-Infected Cells and Anti-HEV 3C Protease Potency by Fluorescence Resonance Energy Transfer. Antimicrob. Agents Chemother. 2009, 53, 748–755. [Google Scholar] [CrossRef] [Green Version]
- Green, K.; Knipe, D.M.; Howley, P.M. Fields’ Virology, 6th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2013. [Google Scholar]
- Santos, V.S.; Gurgel, R.Q.; Cavalcante, S.M.; Kirby, A.; Café, L.P.; Souto, M.J.; Dolabella, S.S.; de Assis, M.R.; Fumian, T.M.; Miagostovich, M.P.; et al. Acute norovirus gastroenteritis in children in a highly rotavirus-vaccinated population in Northeast Brazil. J. Clin. Virol. 2017, 88, 33–38. [Google Scholar] [CrossRef]
- Atmar, R.L. Noroviruses: State of the art. Food Environ. Virol. 2010, 2, 117–126. [Google Scholar] [CrossRef]
- Zheng, D.-P.; Ando, T.; Fankhauser, R.L.; Beard, R.S.; Glass, R.I.; Monroe, S.S. Norovirus classification and proposed strain nomenclature. Virology 2006, 346, 312–323. [Google Scholar] [CrossRef] [Green Version]
- Hall, A.J. Noroviruses: The Perfect Human Pathogens? J. Infect. Dis. 2012, 205, 1622–1624. [Google Scholar] [CrossRef] [Green Version]
- Lamhoujeb, S. Human Noroviruses: Characterization, Detection, and Evaluation of Their Persistence in Foods and on Food-Contact Surfaces. Ph.D. Thesis, Université Laval, Quebec, QC, Canada, 2008. [Google Scholar]
- Kapikian, A.Z.; Wyatt, R.G.; Dolin, R.; Thornhill, T.S.; Kalica, A.R.; Chanock, R.M. Visualization by Immune Electron Microscopy of a 27-nm Particle Associated with Acute Infectious Nonbacterial Gastroenteritis. J. Virol. 1972, 10, 1075–1081. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Wang, M.; Graham, D.Y.; Estes, M.K. Expression, self-assembly, and antigenicity of the Norwalk virus capsid protein. J. Virol. 1992, 66, 6527–6532. [Google Scholar] [CrossRef] [Green Version]
- Atmar, R.L.; Estes, M.K. Diagnosis of Noncultivatable Gastroenteritis Viruses, the Human Caliciviruses. Clin. Microbiol. Rev. 2001, 14, 15–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baek, S.H.; Kim, M.W.; Park, C.Y.; Choi, C.-S.; Kailasa, S.K.; Park, J.P.; Park, T.J. Development of a rapid and sensitive electrochemical biosensor for detection of human norovirus via novel specific binding peptides. Biosens. Bioelectron. 2018, 123, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.A.; Kwon, J.; Kim, D.; Yang, S. A rapid, sensitive and selective electrochemical biosensor with concanavalin A for the preemptive detection of norovirus. Biosens. Bioelectron. 2015, 64, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Morita, M.; Takemura, K.; Park, E.Y. A multi-functional gold/iron-oxide nanoparticle-CNT hybrid nanomaterial as virus DNA sensing platform. Biosens. Bioelectron. 2018, 102, 425–431. [Google Scholar] [CrossRef]
- Han, Z.; Weng, Q.; Lin, C.; Yi, J.; Kang, J. Development of CdSe–ZnO Flower-Rod Core-Shell Structure Based Photoelectrochemical Biosensor for Detection of Norovirous RNA. Sensors 2018, 18, 2980. [Google Scholar] [CrossRef] [Green Version]
- Ashiba, H.; Sugiyama, Y.; Wang, X.; Shirato, H.; Higo-Moriguchi, K.; Taniguchi, K.; Ohki, Y.; Fujimaki, M. Detection of norovirus virus-like particles using a surface plasmon resonance-assisted fluoroimmunosensor optimized for quantum dot fluorescent labels. Biosens. Bioelectron. 2017, 93, 260–266. [Google Scholar] [CrossRef] [Green Version]
- Nasrin, F.; Chowdhury, A.D.; Takemura, K.; Lee, J.; Adegoke, O.; Deo, V.K.; Abe, F.; Suzuki, T.; Park, E.Y. Single-step detection of norovirus tuning localized surface plasmon resonance-induced optical signal between gold nanoparticles and quantum dots. Biosens. Bioelectron. 2018, 122, 16–24. [Google Scholar] [CrossRef]
- Selvaratnam, T. Optimering och Karakterisering av en Centralt Funktionaliserad Kvartskristall Mikrovåg Sensoryta för Norovirus Detektion. Master’s Thesis, School of Technology and Health, Stockholm, Sweden, 2015. [Google Scholar]
- Kim, D.; Lee, H.-M.; Oh, K.-S.; Ki, A.Y.; Protzman, R.A.; Kim, D.; Choi, J.-S.; Kim, M.J.; Kim, S.H.; Vaidya, B.; et al. Exploration of the metal coordination region of concanavalin A for its interaction with human norovirus. Biomaterials 2017, 128, 33–43. [Google Scholar] [CrossRef]
- Liu, L.; Moore, M.D. A Survey of Analytical Techniques for Noroviruses. Foods 2020, 9, 318. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Park, J.E.; Lin, M.; Kim, S.; Kim, G.H.; Park, S.; Ko, G.; Nam, J.M. Sensitive, Quantitative Naked-Eye Biodetection with Polyhedral Cu Nanoshells. Adv. Mater. 2017, 29, 1702945. [Google Scholar] [CrossRef]
- Smith, J.G.; Wiethoff, C.M.; Stewart, P.L.; Nemerow, G.R. Adenovirus. In Cell Entry by Non-Enveloped Viruses; Springer: Berlin/Heidelberg, Germany, 2010; pp. 195–224. [Google Scholar]
- Boone, S.A.; Gerba, C.P. Significance of Fomites in the Spread of Respiratory and Enteric Viral Disease. Appl. Environ. Microbiol. 2007, 73, 1687–1696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pabbaraju, K.; Wong, S.; Fox, J.D. Detection of adenoviruses. In Diagnostic Virology Protocols; Springer: Berlin/Heidelberg, Germany, 2010; pp. 1–15. [Google Scholar]
- Percivalle, E.; Sarasini, A.; Torsellini, M.; Bruschi, L.; Antoniazzi, E.; Revello, M.G.; Gerna, G. A comparison of methods for detecting adenovirus type 8 keratoconjunctivitis during a nosocomial outbreak in a Neonatal Intensive Care Unit. J. Clin. Virol. 2003, 28, 257–264. [Google Scholar] [CrossRef]
- Guerreiro, M.R.; Freitas, D.F.; Alves, P.; Coroadinha, A.S. Detection and Quantification of Label-Free Infectious Adenovirus Using a Switch-On Cell-Based Fluorescent Biosensor. ACS Sens. 2019, 4, 1654–1661. [Google Scholar] [CrossRef]
- Lin, D.; Tang, T.; Harrison, D.J.; Lee, W.E.; Jemere, A.B. A regenerating ultrasensitive electrochemical impedance immunosensor for the detection of adenovirus. Biosens. Bioelectron. 2015, 68, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.-H.; Ishii, A.; Aoki, K.; Ishida, S.; Mukasa, K.; Ohno, S. Detection of human adenovirus hexon antigen using carbon nanotube sensors. J. Virol. Methods 2010, 171, 405–407. [Google Scholar] [CrossRef]
- Song, M.-J.; Jin, J.-H. Label-free Electrochemical Detection of the Human Adenovirus 40/41 Fiber Gene. Anal. Sci. 2015, 31, 159–163. [Google Scholar] [CrossRef] [Green Version]
- Kuznetsov, Y.G.; Victoria, J.; Robinson, W., Jr.; McPherson, A. Atomic force microscopy investigation of human immunodeficiency virus (HIV) and HIV-infected lymphocytes. J. Virol. 2003, 77, 11896–11909. [Google Scholar] [CrossRef] [Green Version]
- Eivazzadeh-Keihan, R.; Pashazadeh-Panahi, P.; Mahmoudi, T.; Chenab, K.K.; Baradaran, B.; Hashemzaei, M.; Radinekiyan, F.; Mokhtarzadeh, A.; Maleki, A. Dengue virus: A review on advances in detection and trends—From conventional methods to novel biosensors. Mikrochim. Acta 2019, 186, 329. [Google Scholar] [CrossRef]
- Patolsky, F.; Zheng, G.; Hayden, O.; Lakadamyali, M.; Zhuang, X.; Lieber, C.M. Electrical detection of single viruses. Proc. Natl. Acad. Sci. USA 2004, 101, 14017–14022. [Google Scholar] [CrossRef] [Green Version]
Sensing Technique | Matrix Material | Sample | Assay Duration | Linear Range | LOD | Ref. |
---|---|---|---|---|---|---|
Electrochemical impedance spectroscopy | AuNPs | Rotavirus vaccine antigen | 55 min | 4.6–4.6 × 104 pfu/mL | 2.3 pfu/mL | [122] |
A label-free field-effect transistor (FET) | Reduced graphene oxide | Rotavirus antigen solution | __ | 101–106 particle/mL | __ | [123] |
Microstrip antenna biosensor | Microstrip antenna | Blood serum | __ | __ | __ | [118] |
Optical | 3D nanoporous photonic crystal | Commercial rotavirus antigen | 2 h | 6.35 µg/mL–1.27 mg/mL | __ | [121] |
Optical interferometric | Interferometer | Commercial rotavirus solution | __ | __ | 1.37 ng/mL | [120] |
Optical fluorescent | Well glass slide | 1. Stool 2. Infected cell culture | 3 min | __ | 1. 1 × 105 pfu/mL 2. 1 × 104 pfu/mL | [119] |
Sensing Technique | Matrix Material | Sample | Assay Duration | Linear Range | LOD | Ref. |
---|---|---|---|---|---|---|
SPR | Polyacrylate beads | Strawberries and milk | 15 min | N/A | up to 10 units/mL | [152] |
SERS- ICG | Colloidal gold | Centrifuged fecal specimen | ~15 min | 3~150 ng /mL | 0.5 ng/mL | [153] |
Plasmonic biosensor | AuNP | NoV capsid protein and HuNoV | - | 10~105 copies/mL | 0.1 ng/mL NoV and 9.9 copies/mL HuNoV | [101] |
Naked-eye biosensor | Polyhedral Cu nanoshell deposited AuNP | Stool | 10 min | 2.7 × 103~2.7 × 105 copies | 2700 copies | [154] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Babaei, A.; Rafiee, N.; Taheri, B.; Sohrabi, H.; Mokhtarzadeh, A. Recent Advances in Early Diagnosis of Viruses Associated with Gastroenteritis by Biosensors. Biosensors 2022, 12, 499. https://doi.org/10.3390/bios12070499
Babaei A, Rafiee N, Taheri B, Sohrabi H, Mokhtarzadeh A. Recent Advances in Early Diagnosis of Viruses Associated with Gastroenteritis by Biosensors. Biosensors. 2022; 12(7):499. https://doi.org/10.3390/bios12070499
Chicago/Turabian StyleBabaei, Abouzar, Nastaran Rafiee, Behnaz Taheri, Hessamaddin Sohrabi, and Ahad Mokhtarzadeh. 2022. "Recent Advances in Early Diagnosis of Viruses Associated with Gastroenteritis by Biosensors" Biosensors 12, no. 7: 499. https://doi.org/10.3390/bios12070499
APA StyleBabaei, A., Rafiee, N., Taheri, B., Sohrabi, H., & Mokhtarzadeh, A. (2022). Recent Advances in Early Diagnosis of Viruses Associated with Gastroenteritis by Biosensors. Biosensors, 12(7), 499. https://doi.org/10.3390/bios12070499