Optical Detection of Fat Concentration in Milk Using MXene-Based Surface Plasmon Resonance Structure
Abstract
:1. Introduction
2. Structure Consideration
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Afroozeh, A. Sensing enhancement of nanostructure surface plasmon resonance in optical fiber ring resonator. Opt. Quant. Electron. 2021, 53, 719. [Google Scholar] [CrossRef]
- Babaei, E.; Sharifi, Z.; Gordon, R. Improving sensitivity of existing surface plasmon resonance systems with grating-coupled short-range surface plasmons. J. Opt. Soc. Am. B 2019, 36, F144–F148. [Google Scholar] [CrossRef]
- Massson, J.F. Surface Plasmon resonance clinical biosensors for medical diagnostics. ACS Sens. 2017, 2, 16–30. [Google Scholar] [CrossRef] [PubMed]
- Yupapin, P.; Trabelsi, Y.; Vigneswaran, D.; Taya, S.A.; Daher, M.G.; Colak, I. Ultra-high-sensitive sensor based on surface plasmon resonance structure having Si and graphene layers for the detection of chikungunya virus. Plasmonics 2022, 17, 1315–1321. [Google Scholar] [CrossRef]
- Almawgani, A.H.M.; Taya, S.A.; Daher, M.G.; Colak, I.; Wu, F.; Patel, S.K. Detection of glucose concentration using a surface plasmon resonance biosensor based on barium titanate layers and molybdenum disulphide sheets. Phys. Scr. 2022, 97, 065501. [Google Scholar] [CrossRef]
- Prajapati, Y.K.; Pal, S.; Saini, J.P. Effect of a Metamaterial and silicon layers on performance of surface Plasmon resonance biosensor in infrared range. Silicon 2018, 10, 1451–1460. [Google Scholar] [CrossRef]
- Kumar, R.; Pal, S.; Prajapati, Y.; Saini, J.P. Sensitivity Enhancement of MXene Based SPR Sensor Using Silicon: Theoretical Analysis. Silicon 2021, 13, 1887–1894. [Google Scholar] [CrossRef]
- Yamamoto, M. Surface plasmon resonance (SPR) theory: Tutorial. Rev. Polarogr. 2002, 48, 209–237. [Google Scholar] [CrossRef]
- Xia, G.; Zhou, C.; Jin, S.; Huang, C.; Xing, J.; Liu, Z. Sensitivity enhancement of two-dimensional materials based on genetic optimization in surface Plasmon resonance. Sensors 2019, 19, 1198. [Google Scholar] [CrossRef] [Green Version]
- Lahav, A.; Auslender, M.; Abdulhalim, I., II. Sensitivity enhancement of guided wave surface plasmon resonance sensors using top nano dielectric layer. Opt. Lett. 2008, 33, 2539–2541. [Google Scholar] [CrossRef]
- Schasfoort, R.B.M. Chapter 1: Introduction to Surface Plasmon Resonance. In Handbook of Surface Plasmon Resonance, 2nd ed.; The Royal Society of Chemistry: Cambridge, UK, 2017; pp. 1–26. ISBN 978-1-78801-028-3. [Google Scholar] [CrossRef]
- Piliarik, M.; Homola, J. Surface plasmon resonance (SPR) sensors: Approaching their limits? Opt. Express 2009, 17, 16505–16517. [Google Scholar] [CrossRef] [PubMed]
- Chang, P.-H.; Lin, C.; Engheta, N.; Helmy, A.S. Tailoring of modal losses in anisotropic 2D material ribbons by regulating material absorption. J. Opt. Soc. Am. B 2020, 37, 3681–3689. [Google Scholar] [CrossRef]
- El-Amassi, D.M.; Taya, S.A. Reflection through a parallel-plate waveguide formed by two graphene sheets. Photonics Nanostructures—Fundam. Appl. 2017, 24, 53–57. [Google Scholar] [CrossRef]
- Duan, X.; Wang, C.; Shaw, J.C.; Cheng, R.; Chen, Y.; Li, H.; Wu, X.; Tang, Y.; Zhang, Q.; Pan, A.; et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 2014, 9, 1024–1030. [Google Scholar] [CrossRef] [PubMed]
- Ji, W.; Zhao, G.; Guo, C.; Fan, L.; Deng, H.; Du, R.; Fu, M.; Sui, G.; Fu, Q. A novel method to fabricate two-dimensional nanomaterial based on electrospinning. Compos. Part A Appl. Sci. Manuf. 2021, 143, 106275. [Google Scholar] [CrossRef]
- Liu, Y.; Weiss, N.O.; Duan, X.; Chen, H.C.; Huang, Y.; Duan, X. Van der Waals heterostructures and devices. Nat. Rev. Mater. 2016, 1, 16042. [Google Scholar] [CrossRef]
- Maurya, J.B.; Prajapati, Y.K.; Singh, V.; Saini, J.P.; Tripathi, R. Performance of graphene–MoS2 based surface plasmon resonance sensor using silicon layer. Opt. Quant. Electron. 2015, 47, 3599–3611. [Google Scholar] [CrossRef]
- Verma, R.; Gupta, B.D.; Jha, R. Sensitivity enhancement of a surface plasmon resonance-based biomolecules sensor using graphene and silicon layers. Sens. Actuators B Chem. 2011, 160, 623–631. [Google Scholar] [CrossRef]
- Ouyang, Q.; Zeng, S.; Jiang, L.; Hong, L.; Xu, G.; Dinh, X.Q.; Yong, K.T. Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor. Sci. Rep. 2016, 6, 28190. [Google Scholar] [CrossRef]
- Srivastava, A.; Prajapati, Y.K. Performance analysis of silicon and blue Phosphorene/MoS2 hetero-structure based SPR sensor. Photonic Sens. 2019, 9, 284–292. [Google Scholar] [CrossRef] [Green Version]
- Sinha, A.; Dhanjai, Z.H.; Huang, Y.; Lu, X.; Chen, J.; Jain, R. MXene: An emerging material for sensing and biosensing. TrAC Trends Anal. Chem. 2018, 105, 424–435. [Google Scholar] [CrossRef]
- Verma, A.; Prakash, A.; Tripathi, R. Performance analysis of graphene- based surface plasmon resonance biosensors for detection of pseudomonas-like bacteria. Opt. Quant. Electron. 2015, 47, 1197–1205. [Google Scholar] [CrossRef]
- Bai, Y.; Zhou, K.; Narasimalu, S.; Pang, J.; He, X.; Wang, R. Dependence of elastic and optical properties on surface terminated groups in two-dimensional MXene monolayers: A first-principles study. RSC Adv. 2016, 6, 35731–35739. [Google Scholar] [CrossRef]
- Wu, L.; You, Q.; Shan, Y.; Gan, S.; Zhao, Y.; Dai, X.; Xiang, Y. Few layer Ti3C2Tx MXene: A promising surface plasmon resonance biosensing material to enhance sensitivity. Sens. Actuators B Chem. 2018, 277, 210–215. [Google Scholar] [CrossRef]
- Srivastava, A.; Verma, A.; Das, R.; Prajapati, Y.K. A theoretical approach to improve the performance of SPR biosensor using MXene and black phosphorus. Optik 2020, 203, 163430. [Google Scholar] [CrossRef]
- Pal, S.; Pal, N.; Prajapati, Y.K.; Saini, J.P. Sensitivity analysis of surface Plasmon resonance biosensor based on Heterostructure of 2D BlueP/MoS2 and MXene. In Layered 2D Advanced Materials and Their Allied Applications; Inamuddin, B.R., Ahamed, M.I., Asiri, A.M., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2020; pp. 103–129. [Google Scholar] [CrossRef]
- Botelho, B.G.; Reis, N.; Oliveira, L.S.; Sena, M.M. Development and analytical validation of a screening method for simultaneous detection of five adulterants in raw milk using mid-infrared spectroscopy and PLS-DA. Food Chem. 2015, 181, 31–37. [Google Scholar] [CrossRef]
- da Costa Filho, P.A.; Cobuccio, L.; Mainali, D.; Rault, M.; Cavin, C. Rapid analysis of food raw materials adulteration using laser direct infrared spectroscopy and imaging. Food Control 2020, 113, 107114. [Google Scholar] [CrossRef]
- Mehaney, A. Biodiesel Physical Properties Detection Using One-Dimensional Phononic Crystal Sensor. Acoust. Phys. 2019, 65, 374–378. [Google Scholar] [CrossRef]
- Shehatah, A.A.; Mehaney, A. Temperature influences on the performance of biodiesel phononic crystal sensor. Mater. Res. Express 2019, 6, 125556. [Google Scholar] [CrossRef]
- Daher, M.G.; Taya, S.A.; Colak, I.; Patel, S.K.; Olaimat, M.M.; Ramahi, O. Surface plasmon resonance biosensor based on graphene layer for the detection of waterborne bacteria. J. Biophotonics 2022, 15, e202200001. [Google Scholar] [CrossRef]
- Lin, Z.; Jiang, L.; Wu, L.; Guo, J.; Dai, X.; Xiang, Y.; Fan, D. Tuning and sensitivity enhancement of surface plasmon resonance biosensor with graphene covered Au MoS2-Au films. IEEE Photon. J. 2016, 8, 1–8. [Google Scholar]
- Almawgani, A.H.M.; Daher, M.G.; Taya, S.A.; Olaimat, M.M.; Alhawari, A.R.H.; Colak, I. Detection of blood plasma concentration theoretically using SPR-based biosensor employing black phosphor layers and different metals. Plasmonics 2022. [Google Scholar] [CrossRef]
- Bruna, M.; Borini, S. Optical constants of graphene layers in the visible range. Appl. Phys. Lett. 2009, 94, 03190. [Google Scholar] [CrossRef]
- Ghosh, S.; Ray, M. Analysis of silicon-based surface Plasmon resonance sensors with different amino acids. Silicon 2015, 7, 313–322. [Google Scholar] [CrossRef]
- Daher, M.G.; Taya, S.A.; Colak, I.; Vigneswaran, D.; Olaimat, M.M.; Patel, S.K.; Ramahi, O.M.; Almawgani, A.H.M. Design of a nano-sensor for cancer cell detection based on a ternary photonic crystal with high sensitivity and low detection limit. Chin. J. Phys. 2022, 77, 1168–1181. [Google Scholar] [CrossRef]
- Abohassan, K.M.; Ashour, H.S.; Abadla, M.M. A 1D binary photonic crystal sensor for detecting fat concentrations in commercial milk. RSC Adv. 2021, 11, 12058–12065. [Google Scholar] [CrossRef]
- Yang, Y.; Umrao, S.; Lai, S.; Lee, S. Large-area highly conductive transparent two-dimensional Ti2CTx film. J. Phys. Chem. Lett. 2017, 8, 859–865. [Google Scholar] [CrossRef]
- Pal, S.; Verma, A.; Saini, J.P.; Prajapati, Y.K. Sensitivity enhancement using silicon-black phosphorus-TDMC coated surface plasmon resonance biosensor. IET Optoelectron. 2019, 13, 196–201. [Google Scholar] [CrossRef]
- Ahmed, A.M.; Mehaney, A. Ultra-high sensitive 1D porous silicon photonic crystal sensor based on the coupling of Tamm/Fano resonances in the mid-infrared region. Sci. Rep. 2019, 9, 6973. [Google Scholar] [CrossRef] [Green Version]
- Kushwaha, A.S.; Kumar, A.; Kumar, R.; Srivastava, M.; Srivastava, S.K. Zinc oxide, gold and graphene-based surface plasmon resonance (SPR) biosensor for detection of pseudomonas like bacteria: A comparative study. Optik 2018, 172, 697–707. [Google Scholar] [CrossRef]
- Hossain, M.B.; Mehedi, I.M.; Moznuzzaman, M.; Abdulrazak, L.F.; Hossain, M.A. High performance refractive index SPR sensor modeling employing graphene tri sheets. Results Phys. 2019, 15, 102719. [Google Scholar] [CrossRef]
- Pal, S.; Prajapati, Y.K.; Saini, J.P. Influence of graphene’s chemical potential on SPR biosensor using ZnO for DNA hybridization. Opt. Rev. 2020, 27, 57–64. [Google Scholar] [CrossRef]
- Taya, S.A.; Al-Ashi, N.E.; Ramahi, O.M.; Colak, I.; Amiri, I.S. Surface plasmon resonance-based optical sensor using a thin layer of plasma. J. Opt. Soc. Am. B 2021, 38, 2362–2367. [Google Scholar] [CrossRef]
- Hedhly, M.; Wang, Y.; Zeng, S.; Ouerghi, F.; Zhou, J.; Humbert, G. Highly Sensitive Plasmonic Waveguide Biosensor Based on Phase Singularity-Enhanced Goos–Hänchen Shift. Biosensors 2022, 12, 457. [Google Scholar] [CrossRef]
- Park, J.-H.; Cho, Y.-W.; Kim, T.-H. Recent Advances in Surface Plasmon Resonance Sensors for Sensitive Optical Detection of Pathogens. Biosensors 2022, 12, 180. [Google Scholar] [CrossRef]
- Çimen, D.; Bereli, N.; Denizli, A. Surface Plasmon Resonance Based on Molecularly Imprinted Polymeric Film for l-Phenylalanine Detection. Biosensors 2021, 11, 21. [Google Scholar] [CrossRef]
The Coefficient di | Value of di | The Coefficient ei | Value of ei |
---|---|---|---|
d1 | 1.03961212 | e1 | 0.00600069867 |
d2 | 1.01046945 | e2 | 103.560653 |
d3 | 0.231792344 | e3 | 0.0200179144 |
Structure No. | The Used Structure | FWHM (deg.) | DA (deg.−1) | S (deg./RIU) | FOM (RIU−1) |
---|---|---|---|---|---|
1 | Ag | 1.35 | 0.740 | 149.23 | 110.43 |
2 | Ag/Ti3C2Tx | 2.3 | 0.434 | 152.77 | 66.30 |
3 | Ag/Si/Ti3C2Tx | 2.84 | 0.352 | 180 | 63.36 |
Fat Concentration (%) | RI | Resonance Angle (deg.) | Shift in Resonance Angle (deg.) | Sensitivity (deg./RIU) |
---|---|---|---|---|
0 | 1.3452 | 83.18 | - | - |
1.5 | 1.3496 | 84.72 | 1.54 | 350 |
3.3 | 1.3517 | 85.13 | 1.95 | 300.01 |
6.6 | 1.3543 | 85.74 | 2.56 | 281.32 |
10 | 1.3564 | 85.86 | 2.68 | 239.29 |
33.3 | 1.3657 | 86.99 | 2.77 | 185.85 |
Structure | Year | Sensitivity (deg./RIU) | Reference |
---|---|---|---|
An SPR biosensor with ZnO, Ag, and G layers. | 2018 | 187.43 | [42] |
An SPR biosensor using 3 sheets of G. | 2019 | 121.67 | [43] |
An SPR biosensor employing Ti3C2Tx and BP. | 2019 | 190.22 | [26] |
An SPR biosensor employing a thin layer of ZnO for DNA hybridization. | 2020 | 156.33 | [44] |
An SPR sensor employing a thin layer of plasma. | 2021 | 103 | [45] |
An SPR biosensor based on G. | 2022 | 199.87 | [32] |
Detection of fat concentration in milk using SPR biosensor based on Si and Ti3C2Tx. | 2022 | 350 | Current work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almawgani, A.H.M.; Daher, M.G.; Taya, S.A.; Mashagbeh, M.; Colak, I. Optical Detection of Fat Concentration in Milk Using MXene-Based Surface Plasmon Resonance Structure. Biosensors 2022, 12, 535. https://doi.org/10.3390/bios12070535
Almawgani AHM, Daher MG, Taya SA, Mashagbeh M, Colak I. Optical Detection of Fat Concentration in Milk Using MXene-Based Surface Plasmon Resonance Structure. Biosensors. 2022; 12(7):535. https://doi.org/10.3390/bios12070535
Chicago/Turabian StyleAlmawgani, Abdulkarem H. M., Malek G. Daher, Sofyan A. Taya, Mohammad Mashagbeh, and Ilhami Colak. 2022. "Optical Detection of Fat Concentration in Milk Using MXene-Based Surface Plasmon Resonance Structure" Biosensors 12, no. 7: 535. https://doi.org/10.3390/bios12070535
APA StyleAlmawgani, A. H. M., Daher, M. G., Taya, S. A., Mashagbeh, M., & Colak, I. (2022). Optical Detection of Fat Concentration in Milk Using MXene-Based Surface Plasmon Resonance Structure. Biosensors, 12(7), 535. https://doi.org/10.3390/bios12070535