Miniaturized Raman Instruments for SERS-Based Point-of-Care Testing on Respiratory Viruses
Abstract
:1. Introduction
1.1. Raman Scattering Principle
1.2. From Raman to Surface-Enhanced Raman Scattering (SERS)
1.3. Enhancement Mechanisms
1.3.1. Chemical Enhancement
1.3.2. Electromagnetic Enhancement
1.4. Factors to Consider for SERS Measurement at the Point of Care
1.4.1. SERS Probe Choice
1.4.2. Instrument Choice
1.4.3. Sample Preparation
1.4.4. Output Signal Representation
2. Handheld Raman Spectrometers
Portable Raman Spectrometers | Laser Wavelength and Power | Raman Spectroscopy Geometry | Detector |
---|---|---|---|
Thermo Fisher Scientific, Gemini [62] | 783 nm | Backscattered geometry | N/A |
Rigaku, Progen [63] | 1064 nm, 30–490 mW | Backscattered geometry | TE cooled InGaAS photodiode |
Metrohm, Mira XTR DS [64] | 785 nm, 100 mW | Backscattered geometry | NIR enhanced back thinned CCD |
B&W Tek, TacticID GP Plus [65] | 785 nm, 30–300 mW | Backscattered geometry | CCD array |
B&W Tek, NanoRam [66] | 785 nm, 30–300 mW | Backscattered geometry | TE-cooled CCD array |
Thermo Fisher Scientific, TruScan RM [67] | 785 nm, 250 mW | Backscattered geometry | N/A |
Rigaku, Progeny ResQ [68] | 1064 nm, 30–490 mW | Backscattered geometry | TE cooled InGaAS photodiode |
Bruker, Bravo [69] | 700–1100 nm (Duo LASERTM), <100 mW | Backscattered geometry | CCD array |
B&W Tek, QTRam [70] | 785 nm, 420 mW | Backscattered geometry | CCD array |
B&W Tek. I-Raman Plus [58] | 532 nm, 42 mW 785 nm, 455 mW | Backscattered geometry | High quantum efficiency CCD Array |
Ocean Insights, QE Pro [71] | 785 nm | Backscattered geometry | Back-thinned FFT-CCD detector |
Emmanuel et al. [72] | 532 nm, 780 mW | Backscattered geometry | Science-Surplus spectrometer, linear CCD detector array (Sony ILX511) |
Dhankhar et al. [73] | 532 nm, 50 mW | Right angle geometry | Google Pixel camera, CMOS BSI sensor (Sony IMX363 Exmor RS, Sony IMX378 Exmor RS) |
Aydogan and Tasal. [74] | 532 nm, 150 mW | Backscattered geometry | CCD array (TCD1304DG, Toshiba (Minato, Tokyo, Japan)) |
Fitzwater et al. [75] | 632.8 nm, 0.5 mW | Right angle geometry | GaAs PMT |
Bandyopadhyay et al. [76] | 514.5 nm, 4 W | Backscattered geometry | PMT (R928, Hamamatsu (Hamamatsu-city, Japan)) |
DeGraff et al. [77] | 532 nm, 10 mW | Right angle geometry | Ocean optics S2000, CCD array (Sony ILX511) |
Young et al. [78] | 532 nm, 4 mW | Right angle geometry | Ocean optics S2000, CCD array (Sony ILX511) |
Mohr et al. [79] | 532 nm, 4 mW | Backscattered geometry | Ocean optics USB 4000, 3648-element CCD array (Toshiba TCD1304AP) |
Somerville et al. [80] | 532 nm, 5 mW | Right angle geometryBackscattered geometry | Ocean optics HR4000, linear silicon CCD array |
Montoya et al. [81] | 532 nm, 100 mW | Transmission geometry | Canon EOS 70D APS-C (22.5 mm × 15 mm) CMOS |
2.1. Handheld Raman Device Configuration and Filters
2.2. Cost-Effective Handheld Raman Spectrometers
3. A Comparative Assessment of Bench-Top and Portable Raman Device
4. SERS Substrates for Diagnosis at the Point-of-Care
5. SERS Based Diagnosis of Virus
5.1. SERS-Based Detection of SARS-CoV-2 Virus
Name of Virus | LoD/Virus Concentration | Laser (nm) | Strategy/ Type of Measurement | SERS Substrate | Ref. |
---|---|---|---|---|---|
SARS-CoV-2 | - | - | Multivariate analysis | ACE2@SN-SERS substrate | [132] |
COVID-19 | 153.3 pM, 230.37 pM | 526, 558 | LSPR | Silver nanodot | [137] |
COVID-19 | 17.7 pM | 785 | - | Gold nanoparticles | [133] |
COVID-19 Viral antigen | ~4 pg/mL | - | - | Gold nanoparticles | [134] |
SARS-CoV-2 | vp/mL | 785 nm | Multivariate analysis | AgNP substrate | [138] |
SARS-CoV-2 | 100 PFU/test | 633 nm | - | Ag@BCNPs (based on silver nanoparticles) | [135] |
SARS-CoV-2 S | M | 632.8 nm | Concentration-dependent study | Silicon nanorod substrates | [136] |
5.2. SERS-Based Detection of Influenza A(H1N1) Virus
5.3. SERS-Based Detection of A(H3N2)
Name of Virus | LoD/Virus Concentration | Laser (nm) | Strategy/Type of Measurement | SERS Substrate | Identification | Ref. |
---|---|---|---|---|---|---|
A/CA/07/2009 (pH1N1) | (TCID/mL) | 632 | Immunoassay | AuNps–Ag–protein G–glass substrate | Indirect | [151] |
(pH1N1)/H275Y mutant | 10 PFU | 633 | Functional nanoparticles | - | Indirect | [152] |
A/FM/1/86 (H1N1) | 50 PFU/mL | 785 | Immunoassay | pAb–LFIA strip of nitrocellulose molecules | Indirect | [153] |
A/WSN/33 (H1N1) | 633 | Wet | Au/Ag multilayered nanorod arrays onto Single-Crystal Silicon | Direct | [154] | |
A/WSN/33 (H1N1) | 633 | Dry | Au substrate on Single-Crystal Silicon | Direct | [155] | |
A/Taiwan/N39/06 (H1N1) | 633 | Wet | Au nanorods onto Single-Crystal Silicon | Direct | [156] | |
A/WSN/33 (H1N1) | 633 | Wet | Au nanorods onto Single-Crystal Silicon | Direct | [157] | |
A/California/04/2009 (H1N1) | __ | 785 | Dry | Aggregates of spherical AuNPs on the cover of glass | Direct | [158] |
6. Future Perspectives
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singh, R. CV raman and the discovery of the raman effect. Phys. Perspect. 2002, 4, 399–420. [Google Scholar] [CrossRef]
- Long, D.A. Early history of the raman effect. Int. Rev. Phys. Chem. 1988, 7, 317–349. [Google Scholar] [CrossRef]
- Adar, F.; Delhaye, M.; DaSilva, E. Evolution of instrumentation for detection of the raman effect as driven by available technologies and by developing applications. J. Chem. Educ. 2007, 84, 50. [Google Scholar] [CrossRef]
- Sweedler, J.V. Charge transfer device detectors and their applications to chemical analysis. Crit. Rev. Anal. Chem. 1993, 24, 59–98. [Google Scholar] [CrossRef]
- Eberhardt, K.; Stiebing, C.; Matthäus, C.; Schmitt, M.; Popp, J. Advantages and limitations of raman spectroscopy for molecular diagnostics: An update. Expert Rev. Mol. Diagn. 2015, 15, 773–787. [Google Scholar] [CrossRef] [PubMed]
- Chase, B. A new generation of raman instrumentation. Appl. Spectrosc. 1994, 48, 14A–19A. [Google Scholar] [CrossRef] [Green Version]
- Lewis, E.N.; Treado, P.J.; Levin, I.W. A miniaturized, no-moving-parts raman spectrometer. Appl. Spectrosc. 1993, 47, 539–543. [Google Scholar] [CrossRef]
- Carron, K.; Cox, R. Qualitative analysis and the answer box: A perspective on portable raman spectroscopy. Anal. Chem. 2010, 82, 3419–3425. [Google Scholar] [CrossRef]
- McCreery, R.L. Raman Spectroscopy for Chemical Analysis; John Wiley & Sons: New Youk, NY, USA, 2005. [Google Scholar]
- Bumbrah, G.S.; Sharma, R.M. Raman spectroscopy–Basic principle, instrumentation and selected applications for the characterization of drugs of abuse. Egypt. J. Forensic Sci. 2016, 6, 209–215. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Lopez, M.; Garcia-Ruiz, C. Infrared and raman spectroscopy techniques applied to identification of explosives. TrAC Trends Anal. Chem. 2014, 54, 36–44. [Google Scholar] [CrossRef]
- Cialla-May, D.; Schmitt, M.; Popp, J. Theoretical principles of raman spectroscopy. Phys. Sci. Rev. 2019, 4. [Google Scholar] [CrossRef]
- Larkin, P. Infrared and Raman Spectroscopy: Principles and Spectral Interpretation; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Staveley, L.A.K. The Characterization of Chemical Purity: Organic Compounds; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Fleischmann, M.; Hendra, P.J.; McQuillan, A.J. raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 1974, 26, 163–166. [Google Scholar] [CrossRef]
- Jeanmaire, D.L.; Van Duyne, R.P. Surface raman spectroelectrochemistry: Part I. heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. Interfacial Electrochem. 1977, 84, 1–20. [Google Scholar] [CrossRef]
- Albrecht, M.G.; Creighton, J.A. Anomalously intense raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 1977, 99, 5215–5217. [Google Scholar] [CrossRef]
- Aroca, R. Surface-Enhanced Vibrational Spectroscopy; John Wiley & Sons: New York, NY, USA, 2006. [Google Scholar]
- Blackie, E.J.; Le Ru, E.C.; Etchegoin, P.G. Single-molecule surface-enhanced raman spectroscopy of nonresonant molecules. J. Am. Chem. Soc. 2009, 131, 14466–14472. [Google Scholar] [CrossRef]
- Alvarez-Puebla, R.A.; Liz-Marzan, L.M. Traps and cages for universal SERS detection. Chem. Soc. Rev. 2012, 41, 43–51. [Google Scholar] [CrossRef]
- Abalde-Cela, S.; Aldeanueva-Potel, P.; Mateo-Mateo, C.; Rodríguez-Lorenzo, L.; Alvarez-Puebla, R.A.; Liz-Marzán, L.M. Surface-enhanced raman scattering biomedical applications of plasmonic colloidal particles. J. R. Soc. Interface 2010, 7, S435–S450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bailo, E.; Deckert, V. Tip-enhanced raman scattering. Chem. Soc. Rev. 2008, 37, 921–930. [Google Scholar] [CrossRef] [PubMed]
- Ko, H.; Singamaneni, S.; Tsukruk, V.V. Nanostructured surfaces and assemblies as SERS media. Small 2008, 4, 1576–1599. [Google Scholar] [CrossRef]
- Serafinelli, C.; Fantoni, A.; Alegria, E.C.; Vieira, M. Plasmonic metal nanoparticles hybridized with 2D nanomaterials for SERS detection: A review. Biosensors 2022, 12, 225. [Google Scholar] [CrossRef] [PubMed]
- Moskovits, M. Surface-enhanced spectroscopy. Rev. Mod. Phys. 1985, 57, 783. [Google Scholar] [CrossRef]
- Long, D.A. Raman Spectroscopy; McGraw-Hill: New York, NY, USA, 1977; p. 1. [Google Scholar]
- Le Ru, E.; Etchegoin, P. Rigorous justification of the| E| 4 enhancement factor in surface enhanced raman spectroscopy. Chem. Phys. Lett. 2006, 423, 63–66. [Google Scholar] [CrossRef]
- Moskovits, M. Surface selection rules. J. Chem. Phys. 1982, 77, 4408–4416. [Google Scholar] [CrossRef]
- Gao, X.; Davies, J.P.; Weaver, M.J. Test of surface selection rules for surface-enhanced raman scattering: The orientation of adsorbed benzene and monosubstituted benzenes on gold. J. Phys. Chem. 1990, 94, 6858–6864. [Google Scholar] [CrossRef]
- Pieczonka, N.P.; Aroca, R.F. Single molecule analysis by surfaced-enhanced raman scattering. Chem. Soc. Rev. 2008, 37, 946–954. [Google Scholar] [CrossRef]
- Alkilany, A.M.; Murphy, C.J. Toxicity and cellular uptake of gold nanoparticles: What we have learned so far? J. Nanoparticle Res. 2010, 12, 2313–2333. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, D.C.; Orts-Gil, G.; Lai, C.-H.; Müller, L.; Haase, A.; Luch, A.; Seeberger, P.H. Carbohydrate functionalization of silver nanoparticles modulates cytotoxicity and cellular uptake. J. Nanotechnol. 2014, 12, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Anselmo, A.C.; Mitragotri, S. Nanoparticles in the clinic. Bioeng. Transl. Med. 2016, 1, 10–29. [Google Scholar] [CrossRef] [PubMed]
- Graham, D.; Faulds, K.; Smith, W.E. Biosensing using silver nanoparticles and surface enhanced resonance raman scattering. Chem. Commun. 2006, 42, 4363–4371. [Google Scholar] [CrossRef]
- Ahn, J.-M.; Eom, H.-J.; Yang, X.; Meyer, J.N.; Choi, J. Comparative toxicity of silver nanoparticles on oxidative stress and DNA damage in the nematode, Caenorhabditis elegans. Chemosphere 2014, 108, 343–352. [Google Scholar] [CrossRef]
- Wang, Y.; Yan, B.; Chen, L. SERS tags: Novel optical nanoprobes for bioanalysis. Chem. Rev. 2013, 113, 1391–1428. [Google Scholar] [CrossRef] [PubMed]
- Harper, M.M.; McKeating, K.S.; Faulds, K. Recent developments and future directions in SERS for bioanalysis. Phys. Chem. Chem. Phys. 2013, 15, 5312–5328. [Google Scholar] [CrossRef] [PubMed]
- Bartczak, D.; Kanaras, A.G. Preparation of peptide-functionalized gold nanoparticles using one pot EDC/sulfo-NHS coupling. Langmuir ACS J. Surf. Colloids 2011, 27, 10119–10123. [Google Scholar] [CrossRef] [PubMed]
- Graham, D.; Smith, W.E.; Linacre, A.M.; Munro, C.H.; Watson, N.D.; White, P.C. Selective detection of deoxyribonucleic acid at ultralow concentrations by SERRS. Anal. Chem. 1997, 69, 4703–4707. [Google Scholar] [CrossRef]
- Bedics, M.A.; Kearns, H.; Cox, J.M.; Mabbott, S.; Ali, F.; Shand, N.C.; Faulds, K.; Benedict, J.B.; Graham, D.; Detty, M.R. Extreme red shifted SERS nanotags. Chem. Sci. 2015, 6, 2302–2306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kearns, H.; Bedics, M.A.; Shand, N.C.; Faulds, K.; Detty, M.R.; Graham, D. Sensitive SERS nanotags for use with 1550 nm (retina-safe) laser excitation. Analyst 2016, 141, 5062–5065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schlücker, S. SERS microscopy: Nanoparticle probes and biomedical applications. ChemPhysChem 2009, 10, 1344–1354. [Google Scholar] [CrossRef] [PubMed]
- Karabeber, H.; Huang, R.; Iacono, P.; Samii, J.M.; Pitter, K.; Holland, E.C.; Kircher, M.F. Guiding brain tumor resection using surface-enhanced raman scattering nanoparticles and a hand-held raman scanner. ACS Nano 2014, 8, 9755–9766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jamieson, L.E.; Jaworska, A.; Jiang, J.; Baranska, M.; Harrison, D.; Campbell, C. Simultaneous intracellular redox potential and pH measurements in live cells using SERS nanosensors. Analyst 2015, 140, 2330–2335. [Google Scholar] [CrossRef] [Green Version]
- Sun, F.; Ella-Menye, J.-R.; Galvan, D.D.; Bai, T.; Hung, H.-C.; Chou, Y.-N.; Zhang, P.; Jiang, S.; Yu, Q. Stealth surface modification of surface-enhanced raman scattering substrates for sensitive and accurate detection in protein solutions. ACS Nano 2015, 9, 2668–2676. [Google Scholar] [CrossRef]
- Marcott, C.; Padalkar, M.; Pleshko, N. 3.23 Infrared and raman Microscopy and Imaging of Biomaterials at the Micro and Nano Scale. In Comprehensive Biomaterials II; Ducheyne, P., Ed.; Elsevier: Oxford, UK, 2017; pp. 498–518. [Google Scholar]
- Košek, F.; Culka, A.; Rousaki, A.; Vandenabeele, P.; Jehlička, J. Evaluation of handheld and portable raman spectrometers with different laser excitation wavelengths for the detection and characterization of organic minerals. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 243, 118818. [Google Scholar] [CrossRef] [PubMed]
- Vagnini, M.; Gabrieli, F.; Daveri, A.; Sali, D. Handheld new technology raman and portable FT-IR spectrometers as complementary tools for the in situ identification of organic materials in modern art. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 176, 174–182. [Google Scholar] [CrossRef]
- Košek, F.; Culka, A.; Rousaki, A.; Vandenabeele, P.; Jehlička, J. Evaluation of miniaturized raman spectrometers for planetary exploration: From aromatics to amino acids. Icarus 2021, 366, 114533. [Google Scholar] [CrossRef]
- Omar, J.; Boix, A.; Ulberth, F. raman spectroscopy for quality control and detection of substandard painkillers. Vib. Spectrosc. 2020, 111, 103147. [Google Scholar] [CrossRef]
- Hajjou, M.; Qin, Y.; Bradby, S.; Bempong, D.; Lukulay, P. Assessment of the performance of a handheld raman device for potential use as a screening tool in evaluating medicines quality. J. Pharm. Biomed. Anal. 2013, 74, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Sun, Y.; Wang, Y.; Li, X.; Zhu, D. Development of a handheld system for liquor authenticity detection based on laser spectroscopy technique. J. Spectrosc. 2022, 2022, 4404749. [Google Scholar] [CrossRef]
- Juliani, H.R.; Kapteyn, J.; Jones, D.; Koroch, A.R.; Wang, M.; Charles, D.; Simon, J.E. Application of near-infrared spectroscopy in quality control and determination of adulteration of african essential oils. Phytochem. Anal. 2006, 17, 121–128. [Google Scholar] [CrossRef]
- Kudelski, A. Analytical applications of raman spectroscopy. Talanta 2008, 76, 1–8. [Google Scholar] [CrossRef]
- Vargas Jentzsch, P.; Torrico-Vallejos, S.; Mendieta-Brito, S.; Ramos, L.A.; Ciobotă, V. Detection of counterfeit stevia products using a handheld raman spectrometer. Vib. Spectrosc. 2016, 83, 126–131. [Google Scholar] [CrossRef]
- Müller-Maatsch, J.; van Ruth, S.M. Handheld devices for food authentication and their applications: A review. Foods 2021, 10, 2901. [Google Scholar] [CrossRef]
- Vargas Jentzsch, P.; Sandoval Pauker, C.; Zárate Pozo, P.; Sinche Serra, M.; Jácome Camacho, G.; Rueda-Ayala, V.; Garrido, P.; Ramos Guerrero, L.; Ciobotă, V. raman spectroscopy in the detection of adulterated essential oils: The case of nonvolatile adulterants. J. Raman Spectrosc. 2021, 52, 1055–1063. [Google Scholar] [CrossRef]
- Tek, B.W. I-Raman Plus. Available online: https://bwtek.com/products/i-raman-plus/ (accessed on 29 May 2022).
- Zhang, Y.; Tran, V.; Adanalic, M.; Schlücker, S. Chapter 9-iSERS microscopy: Point-of-care diagnosis and tissue imaging. In Principles and Clinical Diagnostic Applications of Surface-Enhanced Raman Spectroscopy; Wang, Y., Ed.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 327–372. [Google Scholar]
- Zhang, M.; Liao, J.; Kong, X.; Yu, Q.; Zhang, M.; Wang, A.X. Ultra-sensitive, rapid and on-site sensing harmful ingredients used in aquaculture with magnetic fluid SERS. Biosensors 2022, 12, 169. [Google Scholar] [CrossRef] [PubMed]
- Yeturu, S.; Vargas Jentzsch, P.; Ciobotă, V.; Guerrero, R.; Garrido, P.; Ramos, L.A. Handheld raman spectroscopy for the early detection of plant diseases: Abutilon mosaic virus infecting Abutilon sp. Anal. Methods 2016, 8, 3450–3457. [Google Scholar] [CrossRef]
- Thermofisher. GEMINI. Available online: https://www.thermofisher.com/order/catalog/product/GEMINI (accessed on 29 May 2022).
- Rigaku. Progen. Available online: https://www.rigaku.com/products/raman/progeny-pharmaceutical-material-analyzer#download (accessed on 29 May 2022).
- Metrohm. Mira XTR DS. Available online: https://www.metrohm.com/en_us/products/raman-spectroscopy/mira-ds-mira-xtr-ds.html.html (accessed on 29 May 2022).
- Tek, B.W. TacticID GP Plus. Available online: https://bwtek.com/products/tacticid-gp/ (accessed on 29 May 2022).
- Tek, B.W. NanoRam. Available online: https://bwtek.com/products/nanoram/ (accessed on 29 May 2022).
- Thermofisher. TruScan RM. Available online: https://www.thermofisher.com/order/catalog/product/TRUSCANRM (accessed on 29 May 2022).
- Rigaku. ResQ. Available online: https://www.rigaku.com/products/raman/resq-chemical-analyzer#download (accessed on 29 May 2022).
- Bruker. Bravo. Available online: https://www.bruker.com/en/products-and-solutions/infrared-and-raman/raman-spectrometers/bravo-handheld-raman-spectrometer.html (accessed on 29 May 2022).
- Tek, B.W. QTRam. Available online: https://bwtek.com/products/qtram/ (accessed on 29 May 2022).
- Insights, O. QE Pro. Available online: https://www.oceaninsight.com/products/spectrometers/high-sensitivity/qepro-series/ (accessed on 29 May 2022).
- Emmanuel, N.; Nair, R.B.; Abraham, B.; Yoosaf, K. Fabricating a Low-Cost raman Spectrometer to Introduce Students to Spectroscopy Basics and Applied Instrument Design. J. Chem. Educ. 2021, 98, 2109–2116. [Google Scholar] [CrossRef]
- Dhankhar, D.; Nagpal, A.; Rentzepis, P.M. Cell-phone camera raman spectrometer. Rev. Sci. Instrum. 2021, 92, 054101. [Google Scholar] [CrossRef] [PubMed]
- Aydogan, O.; Tasal, E. Designing and building a 3D printed low cost modular raman spectrometer. CERN IdeaSquare J. Exp. Innov. 2018, 2, 3–14. [Google Scholar]
- Fitzwater, D.A.; Thomasson, K.A.; Glinski, R.J. A modular raman-spectroscopy system using a helium-neon laser that is also suited for emission spectrophotometry experiments. J. Chem. Educ. 1995, 72, 187–189. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.K.; Dilawar, N.; Vijayakumar, A.; Varandani, D.; Singh, D. A low cost laser-raman spectrometer. Bull. Mater. Sci. 1998, 21, 433–438. [Google Scholar] [CrossRef]
- DeGraff, B.A.; Hennip, M.; Jones, J.M.; Salter, C.; Schaertel, S.A. An inexpensive laser raman spectrometer based on CCD detection. Chem. Educ. 2002, 7, 15–18. [Google Scholar] [CrossRef]
- Young, M.A.; Stuart, D.A.; Lyandres, O.; Glucksberg, M.R.; Van Duyne, R.P. Surface-enhanced raman spectroscopy with a laser pointer light source and miniature spectrometer. Can. J. Chem. 2004, 82, 1435–1441. [Google Scholar] [CrossRef]
- Mohr, C.; Spencer, C.L.; Hippler, M. Inexpensive raman Spectrometer for Undergraduate and Graduate Experiments and Research. J. Chem. Educ. 2010, 87, 326–330. [Google Scholar] [CrossRef]
- Somerville, W.R.C.; Le Ru, E.C.; Northcote, P.T.; Etchegoin, P.G. High performance raman spectroscopy with simple optical components. Am. J. Phys. 2010, 78, 671–677. [Google Scholar] [CrossRef] [Green Version]
- Montoya Rossi, E. A Homemade Cost Effective Raman Spectrometer with High Performance. J. Lab. Chem. Educ. 2015, 3, 67–75. [Google Scholar] [CrossRef]
- Yaseen, M.; Cowsill, B.J.; Lu, J.R. 6-Characterisation of biomedical coatings. In Coatings for Biomedical Applications; Driver, M., Ed.; Woodhead Publishing: Cambridgeshire, UK, 2012; pp. 176–220. [Google Scholar]
- Paarmann, L.D. Design and Analysis of Analog Filters: A Signal Processing Perspective; Springer Science & Business Media: Berlin, Germany, 2006; Volume 617. [Google Scholar]
- Zheng, J.; Pang, S.; Labuza, T.P.; He, L. Evaluation of surface-enhanced raman scattering detection using a handheld and a bench-top raman spectrometer: A comparative study. Talanta 2014, 129, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Madiyar, F.R.; Bhana, S.; Swisher, L.Z.; Culbertson, C.T.; Huang, X.; Li, J. Integration of a nanostructured dielectrophoretic device and a surface-enhanced raman probe for highly sensitive rapid bacteria detection. Nanoscale 2015, 7, 3726–3736. [Google Scholar] [CrossRef]
- Pilot, R.; Bozio, R. Validation of SERS enhancement factor measurements. J. Raman Spectrosc. 2018, 49, 462–471. [Google Scholar] [CrossRef]
- Zhang, J.; Malmirchegini, G.R.; Clubb, R.T.; Loo, J.A. Native top-down mass spectrometry for the structural characterization of human hemoglobin. Eur. J. Mass Spectrom. 2015, 21, 221–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, A.; Hwang, E.Y.; Choo, J.; Lim, D.W. Nanoscale graphene oxide-induced metallic nanoparticle clustering for surface-enhanced raman scattering-based IgG detection. Sens. Actuators B Chem. 2018, 255, 183–192. [Google Scholar] [CrossRef]
- Liu, J.-W.; Wang, J.-L.; Huang, W.-R.; Yu, L.; Ren, X.-F.; Wen, W.-C.; Yu, S.-H. Ordering Ag nanowire arrays by a glass capillary: A portable, reusable and durable SERS substrate. Sci. Rep. 2012, 2, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.H.; Choi, M.; Ho, T.S.; Kim, S.; Choi, S.; Choi, S.H.; Byun, K.M. Biological SERS-active sensor platform based on flexible silk fibroin film and gold nanoislands. Opt. Express 2022, 30, 7782–7792. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Li, B.; Chen, L.; Wang, Y.; Gao, D.; Ma, X.; Wu, A. Brushing, a simple way to fabricate SERS active paper substrates. Anal. Methods 2014, 6, 2066–2071. [Google Scholar] [CrossRef]
- Kalachyova, Y.; Erzina, M.; Postnikov, P.; Svorcik, V.; Lyutakov, O. Flexible SERS substrate for portable raman analysis of biosamples. Appl. Surf. Sci. 2018, 458, 95–99. [Google Scholar] [CrossRef]
- Lee, H.G.; Choi, W.; Yang, S.Y.; Kim, D.-H.; Park, S.-G.; Lee, M.-Y.; Jung, H.S. PCR-coupled paper-based surface-enhanced raman scattering (SERS) Sensor for Rapid and Sensitive Detection of Respiratory Bacterial DNA. Sens. Actuators B Chem. 2021, 326, 128802. [Google Scholar] [CrossRef]
- Wang, Y.; Ruan, Q.; Lei, Z.-C.; Lin, S.-C.; Zhu, Z.; Zhou, L.; Yang, C. Highly sensitive and automated surface enhanced Raman scattering-based immunoassay for H5N1 detection with digital microfluidics. Anal. Chem. 2018, 90, 5224–5231. [Google Scholar] [CrossRef] [PubMed]
- Park, H.J.; Yang, S.C.; Choo, J. Early diagnosis of influenza virus A using surface-enhanced raman scattering-based lateral flow assay. Bull. Korean Chem. Soc. 2016, 37, 2019–2024. [Google Scholar] [CrossRef]
- Paria, D.; Kwok, K.S.; Raj, P.; Zheng, P.; Gracias, D.H.; Barman, I. Label-free spectroscopic SARS-CoV-2 detection on versatile nanoimprinted substrates. Nano Lett. 2022, 22, 3620–3627. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, L.; Zhu, L.; Ruan, Y.; Tang, H. Preparation of a native β-cyclodextrin modified plasmonic hydrogel substrate and its use as a surface-enhanced raman scattering scaffold for antibiotics identification. J. Mater. Chem. C 2015, 3, 7575–7582. [Google Scholar] [CrossRef]
- Wang, F.; Cao, S.; Yan, R.; Wang, Z.; Wang, D.; Yang, H. Selectivity/specificity improvement strategies in surface-enhanced raman spectroscopy analysis. Sensors 2017, 17, 2689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, W.Y.; White, I.M. Inkjet-printed paper-based SERS dipsticks and swabs for trace chemical detection. Analyst 2013, 138, 1020–1025. [Google Scholar]
- Gao, F.; Hu, Y.; Chen, D.; Li-Chan, E.C.; Grant, E.; Lu, X. Determination of Sudan I in paprika powder by molecularly imprinted polymers–thin layer chromatography–surface enhanced raman spectroscopic biosensor. Talanta 2015, 143, 344–352. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Lv, D.Y.; Zhu, Q.X.; Li, H.; Chen, H.; Wu, M.M.; Chai, Y.F.; Lu, F. Chromatographic separation and detection of contaminants from whole milk powder using a chitosan-modified silver nanoparticles surface-enhanced raman scattering device. Food Chem. 2017, 224, 382–389. [Google Scholar] [CrossRef]
- Yazdi, S.H.; White, I.M. Optofluidic surface enhanced raman spectroscopy microsystem for sensitive and repeatable on-site detection of chemical contaminants. Anal. Chem. 2012, 84, 7992–7998. [Google Scholar] [CrossRef] [PubMed]
- Kearns, H.; Ali, F.; Bedics, M.A.; Shand, N.C.; Faulds, K.; Detty, M.R.; Graham, D. Sensitive SERS nanotags for use with a hand-held 1064 nm raman spectrometer. R. Soc. Open Sci. 2017, 4, 170422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crocombe, R.A. Handheld spectrometers: The state of the art. Next Gener. Spectrosc. Technol. VI 2013, 8726, 174–187. [Google Scholar]
- Pilot, R.; Signorini, R.; Fabris, L. Surface-enhanced raman spectroscopy: Principles, substrates, and applications. In Metal Nanoparticles and Clusters; Springer: Berlin, Germany, 2018; pp. 89–164. [Google Scholar]
- Wijesuriya, S.; Burugapalli, K.; Mackay, R.; Ajaezi, G.C.; Balachandran, W. Chemically roughened solid silver: A simple, robust and broadband SERS substrate. Sensors 2016, 16, 1742. [Google Scholar] [CrossRef] [Green Version]
- Vallieres, M.; Kay-Rivest, E.; Perrin, L.J.; Liem, X.; Furstoss, C.; Aerts, H.J.; Khaouam, N.; Nguyen-Tan, P.F.; Wang, C.-S.; Sultanem, K. Radiomics strategies for risk assessment of tumour failure in head-and-neck cancer. Sci. Rep. 2017, 7, 10117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kearns, H.; Shand, N.; Smith, W.; Faulds, K.; Graham, D. 1064 nm SERS of NIR active hollow gold nanotags. Phys. Chem. Chem. Phys. 2015, 17, 1980–1986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonifacio, A.; Cervo, S.; Sergo, V. Label-free surface-enhanced raman spectroscopy of biofluids: Fundamental aspects and diagnostic applications. Anal. Bioanal. Chem. 2015, 407, 8265–8277. [Google Scholar] [CrossRef]
- Demirel, G.; Usta, H.; Yilmaz, M.; Celik, M.; Alidagi, H.A.; Buyukserin, F. Surface-enhanced raman spectroscopy (SERS): An adventure from plasmonic metals to organic semiconductors as SERS platforms. J. Mater. Chem. C 2018, 6, 5314–5335. [Google Scholar] [CrossRef]
- Kerr, L.T.; Byrne, H.J.; Hennelly, B.M. Optimal choice of sample substrate and laser wavelength for raman spectroscopic analysis of biological specimen. Anal. Methods 2015, 7, 5041–5052. [Google Scholar] [CrossRef] [Green Version]
- Betz, J.F.; Wei, W.Y.; Cheng, Y.; White, I.M.; Rubloff, G.W. Simple SERS substrates: Powerful, portable, and full of potential. Phys. Chem. Chem. Phys. 2014, 16, 2224–2239. [Google Scholar] [CrossRef] [PubMed]
- Lane, L.A.; Qian, X.; Nie, S. SERS nanoparticles in medicine: From label-free detection to spectroscopic tagging. Chem. Rev. 2015, 115, 10489–10529. [Google Scholar] [CrossRef] [PubMed]
- Shiohara, A.; Wang, Y.; Liz-Marzán, L.M. Recent approaches toward creation of hot spots for SERS detection. J. Photochem. Photobiol. C Photochem. Rev. 2014, 21, 2–25. [Google Scholar] [CrossRef]
- Mosier-Boss, P.A. Review of SERS substrates for chemical sensing. Nanomaterials 2017, 7, 142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qian, X.-M.; Nie, S.M. Single-molecule and single-nanoparticle SERS: From fundamental mechanisms to biomedical applications. Chem. Soc. Rev. 2008, 37, 912–920. [Google Scholar] [CrossRef]
- Kuestner, B.; Gellner, M.; Schuetz, M.; Schoeppler, F.; Marx, A.; Ströbel, P.; Adam, P.; Schmuck, C.; Schlücker, S. SERS Labels for Red Laser Excitation: Silica-Encapsulated SAMs on Tunable Gold/Silver Nanoshells. Angew. Chem. Int. Ed. 2009, 48, 1950–1953. [Google Scholar] [CrossRef] [PubMed]
- Schlücker, S. Surface-Enhanced raman spectroscopy: Concepts and chemical applications. Angew. Chem. Int. Ed. 2014, 53, 4756–4795. [Google Scholar] [CrossRef]
- Fabris, L. Gold-based SERS tags for biomedical imaging. J. Opt. 2015, 17, 114002. [Google Scholar] [CrossRef]
- Fabris, L. SERS tags: The next promising tool for personalized cancer detection? ChemNanoMat 2016, 2, 249–258. [Google Scholar] [CrossRef]
- Guarner, J. Three emerging coronaviruses in two decades: The story of SARS, MERS, and now COVID-19. Am. J. Clin. Pathol. 2020, 153, 420–421. [Google Scholar] [CrossRef] [PubMed]
- Soomro, T.A.; Zheng, L.; Afifi, A.J.; Ali, A.; Yin, M.; Gao, J. Artificial intelligence (AI) for medical imaging to combat coronavirus disease (COVID-19): A detailed review with direction for future research. Artif. Intell. Rev. 2021, 55, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Perlman, S. Another decade, another coronavirus. N. Engl. J. Med. 2020, 382, 760–762. [Google Scholar] [CrossRef] [PubMed]
- Lee, V.J.; Chiew, C.J.; Khong, W.X. Interrupting transmission of COVID-19: Lessons from containment efforts in Singapore. J. Travel Med. 2020, 27, taaa039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, M.P.; Papenburg, J.; Desjardins, M.; Kanjilal, S.; Quach, C.; Libman, M.; Dittrich, S.; Yansouni, C.P. Diagnostic testing for severe acute respiratory syndrome–related coronavirus 2: A narrative review. Ann. Intern. Med. 2020, 172, 726–734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clerc, O.; Greub, G. Routine use of point-of-care tests: Usefulness and application in clinical microbiology. Clin. Microbiol. Infect. 2010, 16, 1054–1061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandenberg, O.; Martiny, D.; Rochas, O.; van Belkum, A.; Kozlakidis, Z. Considerations for diagnostic COVID-19 tests. Nat. Rev. Microbiol. 2021, 19, 171–183. [Google Scholar] [CrossRef] [PubMed]
- Sarychev, A.K.; Sukhanova, A.; Ivanov, A.V.; Bykov, I.V.; Bakholdin, N.V.; Vasina, D.V.; Gushchin, V.A.; Tkachuk, A.P.; Nifontova, G.; Samokhvalov, P.S. Label-free detection of the receptor-binding domain of the SARS-CoV-2 spike glycoprotein at physiologically relevant concentrations using surface-enhanced raman spectroscopy. Biosensors 2022, 12, 300. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.; Sadique, M.A.; Ranjan, P.; Kumar, N.; Singhal, A.; Srivastava, A.K.; Khan, R. SERS based lateral flow immunoassay for point-of-care detection of SARS-CoV-2 in clinical samples. ACS Appl. Bio Mater. 2021, 4, 2974–2995. [Google Scholar] [CrossRef]
- Liu, H.F.; Dai, E.H.; Xiao, R.; Zhou, Z.H.; Zhang, M.L.; Bai, Z.K.; Shao, Y.; Qi, K.Z.; Tu, J.; Wang, C.W.; et al. Development of a SERS-based lateral flow immunoassay for rapid and ultra-sensitive detection of anti-SARS-CoV-2 IgM/IgG in clinical samples. Sens. Actuators B Chem. 2021, 329, 129196. [Google Scholar] [CrossRef] [PubMed]
- Leong, S.X.; Leong, Y.X.; Tan, E.X.; Sim, H.Y.F.; Koh, C.S.L.; Lee, Y.H.; Chong, C.; Ng, L.S.; Chen, J.R.T.; Pang, D.W.C. noninvasive and point-of-care surface-enhanced raman scattering (SERS)-based breathalyzer for mass screening of coronavirus disease 2019 (COVID-19) under 5 min. ACS Nano 2022, 16, 2629–2639. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Zhang, X.; Ma, R.; Deng, S.; Wang, X.; Wang, X.; Zhang, X.; Huang, X.; Liu, Y.; Li, G. Ultra-fast and onsite interrogation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in waters via surface enhanced raman scattering (SERS). Water Res. 2021, 200, 117243. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Peng, Y.; Lin, C.; Long, L.; Hu, J.; He, J.; Zeng, H.; Huang, Z.; Li, Z.-Y.; Tanemura, M. Human ACE2-functionalized gold “virus-trap” nanostructures for accurate capture of SARS-CoV-2 and single-virus SERS detection. Nano Micro Lett. 2021, 13, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Pramanik, A.; Gao, Y.; Patibandla, S.; Mitra, D.; McCandless, M.G.; Fassero, L.A.; Gates, K.; Tandon, R.; Ray, P.C. The rapid diagnosis and effective inhibition of coronavirus using spike antibody attached gold nanoparticles. Nanoscale Adv. 2021, 3, 1588–1596. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, D.; Wang, X.; Wang, Y.; Lin, J.; Jiang, S.; Wu, Z.; He, Y.; Gao, X.; Zhu, Z. Rapid detection of viruses: Based on silver nanoparticles modified with bromine ions and acetonitrile. Chem. Eng. J. 2022, 438, 135589. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, M.B.; Dab, C.; Almalki, M.; Alnaim, A.; Abuzir, A.; Awada, C. Ultrafast Detection of SARS-COV-2 Spike protein (S) and receptor-binding domain (RBD) in Saliva using Surface-enhanced raman spectroscopy. Appl. Sci. 2022, 12, 5039. [Google Scholar] [CrossRef]
- Kim, E.J.; Kim, H.; Park, E.; Kim, T.; Chung, D.R.; Choi, Y.-M.; Kang, M. Based multiplex surface-enhanced raman scattering detection using polymerase chain reaction probe codification. Anal. Chem. 2021, 93, 3677–3685. [Google Scholar] [CrossRef]
- Perez, J.C.R.; Durigon, D. Surface-enhanced raman spectroscopy (SERS) for characterization SARS-CoV-2. Res. Sq. 2022, 1–21. [Google Scholar] [CrossRef]
- Anhlan, D.; Grundmann, N.; Makalowski, W.; Ludwig, S.; Scholtissek, C. Origin of the 1918 pandemic H1N1 influenza A virus as studied by codon usage patterns and phylogenetic analysis. RNA 2011, 17, 64–73. [Google Scholar] [CrossRef] [Green Version]
- Olson, D.R.; Simonsen, L.; Edelson, P.J.; Morse, S.S. Epidemiological evidence of an early wave of the 1918 influenza pandemic in New York City. Proc. Natl. Acad. Sci. USA 2005, 102, 11059–11063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taubenberger, J.K.; Morens, D.M. 1918 Influenza: The mother of all pandemics. Rev. Biomed. 2006, 17, 69–79. [Google Scholar] [CrossRef]
- Mena, I.; Nelson, M.I.; Quezada-Monroy, F.; Dutta, J.; Cortes-Fernández, R.; Lara-Puente, J.H.; Castro-Peralta, F.; Cunha, L.F.; Trovão, N.S.; Lozano-Dubernard, B. Origins of the 2009 H1N1 influenza pandemic in swine in Mexico. Elife 2016, 5, e16777. [Google Scholar] [CrossRef]
- Ravina, R.; Dalal, A.; Mohan, H.; Prasad, M.; Pundir, C. Detection methods for influenza A H1N1 virus with special reference to biosensors: A review. Biosci. Rep. 2020, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chauhan, N.; Narang, J.; Pundir, S.; Singh, S.; Pundir, C. Laboratory diagnosis of swine flu: A review. Artif. Cells Nanomed. Biotechnol. 2013, 41, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Nelson, M.I.; Souza, C.K.; Trovao, N.S.; Diaz, A.; Mena, I.; Rovira, A.; Vincent, A.L.; Torremorell, M.; Marthaler, D.; Culhane, M.R. Human Origin Influenza A(H3N2) Reassortant Viruses in Swine, Southeast Mexico. Emerg. Infect. Dis. 2019, 25, 691–700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamada, A.; Imanishi, J.; Nakajima, E.; Nakajima, K.; Nakajima, S. Detection of influenza viruses in throat swab by using polymerase chain reaction. Microbiol. Immunol. 1991, 35, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Dhawane, A.N.; Sweeney, J.; He, Y.; Vasireddi, M.; Iyer, S.S. Electrochemical assay to detect influenza viruses and measure drug susceptibility. Angew. Chem. 2015, 127, 6027–6030. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, S.R.; Kim, J.; Suzuki, T.; Lee, J.; Park, E.Y. Detection of influenza virus using peroxidase-mimic of gold nanoparticles. Biotechnol. Bioeng. 2016, 113, 2298–2303. [Google Scholar] [CrossRef] [Green Version]
- Wong, C.L.; Chan, J.Y.; Choo, L.X.; Lim, H.Q.; Mittman, H.; Olivo, M. Plasmonic contrast imaging biosensor for the detection of H3N2 influenza protein-antibody and DNA-DNA molecular binding. IEEE Sens. J. 2019, 19, 11828–11833. [Google Scholar] [CrossRef]
- Sun, Y.; Xu, L.; Zhang, F.D.; Song, Z.G.; Hu, Y.W.; Ji, Y.J.; Shen, J.Y.; Li, B.; Lu, H.Z.; Yang, H.F. A promising magnetic SERS immunosensor for sensitive detection of avian influenza virus. Biosens. Bioelectron. 2017, 89, 906–912. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.; Yi, S.Y.; Hwang, A.; Eom, G.; Sim, J.; Jeong, J.; Lim, E.-K.; Chung, B.H.; Kim, B.; Jung, J. Facile and sensitive detection of influenza viruses using SERS antibody probes. RSC Adv. 2016, 6, 84415–84419. [Google Scholar] [CrossRef] [Green Version]
- Eom, G.; Hwang, A.; Lee, D.K.; Guk, K.; Moon, J.; Jeong, J.; Jung, J.; Kim, B.; Lim, E.-K.; Kang, T. Superb specific, ultrasensitive, and rapid identification of the Oseltamivir-resistant H1N1 virus: Naked-eye and SERS dual-mode assay using functional gold nanoparticles. ACS Appl. Bio Mater. 2019, 2, 1233–1240. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wang, C.; Wang, X.; Wang, K.; Zhu, Y.; Rong, Z.; Wang, W.; Xiao, R.; Wang, S. Magnetic SERS strip for sensitive and simultaneous detection of respiratory viruses. ACS Appl. Mater. Interfaces 2019, 11, 19495–19505. [Google Scholar] [CrossRef] [PubMed]
- Sivashanmugan, K.; Liao, J.-D.; You, J.-W.; Wu, C.-L. Focused-ion-beam-fabricated Au/Ag multilayered nanorod array as SERS-active substrate for virus strain detection. Sens. Actuators B Chem. 2013, 181, 361–367. [Google Scholar] [CrossRef]
- Chang, C.-W.; Liao, J.-D.; Shiau, A.-L.; Yao, C.-K. Non-labeled virus detection using inverted triangular Au nano-cavities arrayed as SERS-active substrate. Sens. Actuators B Chem. 2011, 156, 471–478. [Google Scholar] [CrossRef]
- Lin, Y.-Y.; Liao, J.-D.; Yang, M.-L.; Wu, C.-L. Target-size embracing dimension for sensitive detection of viruses with various sizes and influenza virus strains. Biosens. Bioelectron. 2012, 35, 447–451. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-Y.; Liao, J.-D.; Ju, Y.-H.; Chang, C.-W.; Shiau, A.-L. Focused ion beam-fabricated Au micro/nanostructures used as a surface enhanced raman scattering-active substrate for trace detection of molecules and influenza virus. Nanotechnology 2011, 22, 185308. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.-y.; Nam, J.-s.; Yang, S.-e.; Shin, H.; Jang, Y.-h.; Bae, G.-U.; Kang, T.; Lim, K.-i.; Choi, Y. Identification of newly emerging influenza viruses by surface-enhanced raman spectroscopy. Anal. Chem. 2015, 87, 11652–11659. [Google Scholar] [CrossRef]
Merits/Demerits | Desktop | Handheld |
---|---|---|
Signal Variation | Relatively high | Relatively low |
On-site detection | Not portable | Portable |
Scanning Range | Broad | Narrow |
Sensitivity | Relatively High | Relatively low |
Adjustability | Adjustable | Fixed |
Price ($) | Expensive | Inexpensive |
Intelligence | Required manual analysis | Intelligent |
Parameter Comparison | ||
Size (cm3) | (97 × 69 × 61) | (30 × 15 × 7.6) |
Weight (kg) | 56.7 | 1.7 |
Power (mW) | 0–24 (adjustable) | 300 or less |
Estimated resolution (cm−1) | 4.7–8.7 | 7.0–10.5 |
Wavenumber range (cm−1) | 50–3400 | 250–1875 |
Estimated spot size (mm) | 1000–3000 mm (adjustable) | 1–2 mm |
Exposure Time (s) | Adjusted as required | ~40 |
Laser | 780 (could be 632 and 532) | 785 ± 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, A.; Nettey-Oppong, E.E.; Effah, E.; Yu, C.Y.; Muhammad, R.; Soomro, T.A.; Byun, K.M.; Choi, S.H. Miniaturized Raman Instruments for SERS-Based Point-of-Care Testing on Respiratory Viruses. Biosensors 2022, 12, 590. https://doi.org/10.3390/bios12080590
Ali A, Nettey-Oppong EE, Effah E, Yu CY, Muhammad R, Soomro TA, Byun KM, Choi SH. Miniaturized Raman Instruments for SERS-Based Point-of-Care Testing on Respiratory Viruses. Biosensors. 2022; 12(8):590. https://doi.org/10.3390/bios12080590
Chicago/Turabian StyleAli, Ahmed, Ezekiel Edward Nettey-Oppong, Elijah Effah, Chan Yeong Yu, Riaz Muhammad, Toufique Ahmed Soomro, Kyung Min Byun, and Seung Ho Choi. 2022. "Miniaturized Raman Instruments for SERS-Based Point-of-Care Testing on Respiratory Viruses" Biosensors 12, no. 8: 590. https://doi.org/10.3390/bios12080590
APA StyleAli, A., Nettey-Oppong, E. E., Effah, E., Yu, C. Y., Muhammad, R., Soomro, T. A., Byun, K. M., & Choi, S. H. (2022). Miniaturized Raman Instruments for SERS-Based Point-of-Care Testing on Respiratory Viruses. Biosensors, 12(8), 590. https://doi.org/10.3390/bios12080590