In Situ SERS Sensing by a Laser-Induced Aggregation of Silver Nanoparticles Templated on a Thermoresponsive Polymer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Polymer-Templated Synthesis of AgNPs
2.3. UV–Vis Spectroscopy
2.4. Transmission Electron Microscopy (TEM)
2.5. Turbidimetry
2.6. Raman Spectroscopy
3. Results and Discussion
3.1. Physico-Chemical Characterization of the AgNPs Templated on the PB-b-PDMAEMA Micelles
3.2. SERS for the AgNPs Templated on the PB-b-PDMAEMA Micelles
3.3. Theoretical Simulation of Sample Heating by a Laser Beam in SERS Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cialla, D.; März, A.; Böhme, R.; Theil, F.; Weber, K.; Schmitt, M.; Popp, J. Surface-enhanced Raman spectroscopy (SERS): Progress and trends. Anal. Bioanal. Chem. 2012, 403, 27–54. [Google Scholar] [CrossRef] [PubMed]
- Haynes, C.L.; McFarland, A.D.; Van Duyne, R.P. Surface-enhanced Raman spectroscopy. Anal. Chem. 2005, 77, 339A–346A. [Google Scholar] [CrossRef] [Green Version]
- Asiala, S.M.; Schultz, Z.D. Characterization of hotspots in a highly enhancing SERS substrate. Analyst 2011, 136, 4472–4479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brouers, F.; Blacher, S.; Lagarkov, A.; Sarychev, A.K. Theory of giant Raman scattering from semicontinuous metal films. Phys. Rev. B—Condens. Matter Mater. Phys. 1997, 55, 13234–13245. [Google Scholar] [CrossRef] [Green Version]
- Guerrini, L.; Graham, D. Molecularly-mediated assemblies of plasmonic nanoparticles for Surface-Enhanced Raman Spectroscopy applications. Chem. Soc. Rev. 2012, 41, 7085–7107. [Google Scholar] [CrossRef]
- Bell, S.E.J.; Sirimuthu, N.M.S. Surface-Enhanced Raman Spectroscopy as a Probe of Competitive Binding by Anions to Citrate-Reduced Silver Colloids. J. Phys. Chem. A 2005, 109, 7405–7410. [Google Scholar] [CrossRef]
- Radziuk, D.; Grigoriev, D.; Zhang, W.; Su, D.; Möhwald, H.; Shchukin, D. Ultrasound-Assisted Fusion of Preformed Gold Nanoparticles. J. Phys. Chem. C 2010, 114, 1835–1843. [Google Scholar] [CrossRef]
- Podoynitsyn, S.N.; Sorokina, O.N.; Nechaeva, N.L.; Yanovich, S.V.; Kurochkin, I.N. Surface-enhanced Raman spectroscopy in tandem with a gradient electric field from 4-mercaptophenylboronic acid on silver nanoparticles. Microchim. Acta 2020, 187, 566. [Google Scholar] [CrossRef]
- Ding, T.; Rudrum, A.W.; Herrmann, L.O.; Turek, V.; Baumberg, J.J. Polymer-assisted self-assembly of gold nanoparticle monolayers and their dynamical switching. Nanoscale 2016, 8, 15864–15869. [Google Scholar] [CrossRef] [Green Version]
- Manikas, A.C.; Aliberti, A.; Causa, F.; Battista, E.; Netti, P.A. Thermoresponsive PNIPAAm hydrogel scaffolds with encapsulated AuNPs show high analyte-trapping ability and tailored plasmonic properties for high sensing efficiency. J. Mater. Chem. B 2015, 3, 53–58. [Google Scholar] [CrossRef]
- Nguyen, M.; Kanaev, A.; Sun, X.; Lacaze, E.; Lau-Truong, S.; Lamouri, A.; Aubard, J.; Felidj, N.; Mangeney, C. Tunable Electromagnetic Coupling in Plasmonic Nanostructures Mediated by Thermoresponsive Polymer Brushes. Langmuir 2015, 31, 12830–12837. [Google Scholar] [CrossRef] [PubMed]
- Schild, H.G. Poly (N-isopropylacrylamide): Experiment, theory and application. Prog. Polym. Sci. 1992, 17, 163–249. [Google Scholar] [CrossRef]
- Yin, P.G.; Chen, Y.; Jiang, L.; You, T.T.; Lu, X.Y.; Guo, L.; Yang, S. Controlled dispersion of silver nanoparticles into the bulk of thermosensitive polymer microspheres: Tunable plasmonic coupling by temperature detected by surface enhanced Raman scattering. Macromol. Rapid Commun. 2011, 32, 1000–1006. [Google Scholar] [CrossRef]
- Dong, X.; Chen, S.; Zhou, J.; Wang, L.; Zha, L. Self-assembly of monodisperse composite microgels with bimetallic nanorods as core and PNIPAM as shell into close-packed monolayers and SERS efficiency. Mater. Des. 2016, 104, 303–311. [Google Scholar] [CrossRef]
- Dong, X.; Zou, X.; Liu, X.; Lu, P.; Yang, J.; Lin, D.; Zhang, L.; Zha, L. Temperature-tunable plasmonic property and SERS activity of the monodisperse thermo-responsive composite microgels with core-shell structure based on gold nanorod as core. Colloids Surf. A Physicochem. Eng. Asp. 2014, 452, 46–50. [Google Scholar] [CrossRef]
- Zheng, Y.; Soeriyadi, A.H.; Rosa, L.; Ng, S.H.; Bach, U.; Justin, J. Gooding, Reversible gating of smart plasmonic molecular traps using thermoresponsive polymers for single-molecule detection. Nat. Commun. 2015, 6, 8797. [Google Scholar] [CrossRef] [Green Version]
- Elashnikov, R.; Mares, D.; Podzimek, T.; Švorčík, V.; Lyutakov, O. Sandwiched gold/PNIPAm/gold microstructures for smart plasmonics application: Towards the high detection limit and Raman quantitative measurements. Analyst 2017, 142, 2974–2981. [Google Scholar] [CrossRef]
- Wu, Y.; Zhou, F.; Yang, L.; Liu, J. A shrinking strategy for creating dynamic SERS hot spots on the surface of thermosensitive polymer nanospheres. Chem. Commun. 2013, 49, 5025–5027. [Google Scholar] [CrossRef]
- Hofkens, J.; Hotta, J.; Sasaki, K.; Masuhara, H.; Iwai, K. Molecular assembling by the radiation pressure of a focused laser beam: Poly(N-isopropylacrylamide) in aqueous solution. Langmuir 1997, 13, 414–419. [Google Scholar] [CrossRef]
- Tsuboi, Y.; Nishino, M.; Sasaki, T.; Kitamura, N. Poly (N-Isopropylacrylamide) Microparticles Produced by Radiation Pressure of a Focused Laser Beam: A Structural Analysis by Confocal Raman Microspectroscopy Combined with a Laser-Trapping Technique. J. Phys. Chem. B 2005, 109, 7033–7039. [Google Scholar] [CrossRef]
- Aibara, I.; Mukai, S.; Hashimoto, S. Plasmonic-Heating-Induced Nanoscale Phase Separation of Free Poly(N-isopropylacrylamide) Molecules. J. Phys. Chem. C 2016, 120, 17745–17752. [Google Scholar] [CrossRef] [Green Version]
- Yeshchenko, O.A.; Bartenev, A.O.; Naumenko, A.P.; Kutsevol, N.V.; Harahuts, I.I.; Marinin, A.I. Laser-driven aggregation in dextran-graft-PNIPAM/silver nanoparticles hybride nanosystem: Plasmonic effects. Ukr. J. Phys. 2020, 65, 254–267. [Google Scholar] [CrossRef] [Green Version]
- Plamper, F.A.; Schmalz, A.; Ballauff, M.; Müller, A.H.E. Tuning the Thermoresponsiveness of Weak Polyelectrolytes by pH and Light: Lower and Upper Critical-Solution Temperature of Poly(N,N-dimethylaminoethyl methacrylate). J. Am. Chem. Soc. 2007, 129, 14538–14539. [Google Scholar] [CrossRef]
- Plamper, F.A.; Ruppel, M.; Schmalz, A.; Borisov, O.; Ballauff, M.; Müller, A.H.E. Tuning the Thermoresponsive Properties of Weak Polyelectrolytes: Aqueous Solutions of Star-Shaped and Linear Poly(N,N-dimethylaminoethyl Methacrylate). Macromolecules 2007, 40, 8361–8366. [Google Scholar] [CrossRef]
- Sigolaeva, L.V.; Günther, U.; Pergushov, D.V.; Gladyr, S.Y.; Kurochkin, I.N.; Schacher, F.H. Sequential pH-dependent adsorption of ionic amphiphilic diblock copolymer micelles and choline oxidase onto conductive substrates: Toward the design of biosensors. Macromol. Biosci. 2014, 14, 1039–1051. [Google Scholar] [CrossRef] [PubMed]
- Sigolaeva, L.V.; Konyakhina, A.Y.; Pergushov, D.V.; Kurochkin, I.N. Electrochemical Biosensor Based on Nanosized Polymer-Enzyme Films Composed of Linear Poly(N,N-Dimethylaminoethyl Methacrylate) and Choline Oxidase. Moscow Univ. Chem. Bull. 2021, 76, 334–342. [Google Scholar] [CrossRef]
- Sigolaeva, L.V.; Pergushov, D.V.; Synatschke, C.V.; Wolf, A.; Dewald, I.; Kurochkin, I.N.; Fery, A.; Müller, A.H.E. Co-assemblies of micelle-forming diblock copolymers and enzymes on graphite substrate for an improved design of biosensor systems. Soft Matter 2013, 9, 2858–2868. [Google Scholar] [CrossRef]
- Makhaeva, G.F.; Rudakova, E.V.; Sigolaeva, L.V.; Kurochkin, I.N.; Richardson, R.J. Neuropathy target esterase in mouse whole blood as a biomarker of exposure to neuropathic organophosphorus compounds. J. Appl. Toxicol. 2016, 36, 1468–1475. [Google Scholar] [CrossRef]
- Shumyantseva, V.V.; Sigolaeva, L.V.; Agafonova, L.E.; Bulko, T.V.; Pergushov, D.V.; Schacher, F.H.; Archakov, A.I. Facilitated biosensing via direct electron transfer of myoglobin integrated into diblock copolymer/multi-walled carbon nanotube nanocomposites. J. Mater. Chem. B 2015, 3, 5467–5477. [Google Scholar] [CrossRef]
- Sigolaeva, L.V.; Bulko, T.V.; Konyakhina, A.Y.; Kuzikov, A.V.; Masamrekh, R.A.; Max, J.B.; Köhler, M.; Schacher, F.H.; Pergushov, D.V.; Shumyantseva, V.V. Rational design of amphiphilic diblock copolymer/MWCNT surface modifiers and their application for direct electrochemical sensing of DNA. Polymers 2020, 12, 1514. [Google Scholar] [CrossRef]
- Shumyantseva, V.V.; Agafonova, L.E.; Bulko, T.V.; Kuzikov, A.V.; Masamrekh, R.A.; Yuan, J.; Pergushov, D.V.; Sigolaeva, L.V. Electroanalysis of Biomolecules: Rational Selection of Sensor Construction. Biochemistry 2021, 86, S140–S151. [Google Scholar] [CrossRef] [PubMed]
- Shumyantseva, V.V.; Bulko, T.V.; Kuzikov, A.V.; Masamrekh, R.A.; Konyakhina, A.Y.; Romanenko, I.; Max, J.B.; Köhler, M.; Gilep, A.A.; Usanov, S.A.; et al. All-electrochemical nanocomposite two-electrode setup for quantification of drugs and study of their electrocatalytical conversion by cytochromes P450. Electrochim. Acta 2020, 336, 135579. [Google Scholar] [CrossRef]
- Shumyantseva, V.V.; Bulko, T.V.; Tikhonova, E.G.; Sanzhakov, M.A.; Kuzikov, A.V.; Masamrekh, R.A.; Pergushov, D.V.; Schacher, F.H.; Sigolaeva, L.V. Electrochemical studies of the interaction of rifampicin and nanosome/rifampicin with dsDNA. Bioelectrochemistry 2021, 140, 107736. [Google Scholar] [CrossRef] [PubMed]
- Schallon, A.; Synatschke, C.V.; Pergushov, D.V.; Jérôme, V.; Müller, A.H.E.; Freitag, R. DNA Melting Temperature Assay for Assessing the Stability of DNA Polyplexes Intended for Nonviral Gene Delivery. Langmuir 2011, 27, 12042–12051. [Google Scholar] [CrossRef]
- Raup, A.; Wang, H.; Synatschke, C.V.; Jérôme, V.; Agarwal, S.; Pergushov, D.V.; Müller, A.H.E.; Freitag, R. Compaction and transmembrane delivery of pDNA: Differences between l-PEI and two types of amphiphilic block copolymers. Biomacromolecules 2017, 18, 808–818. [Google Scholar] [CrossRef] [PubMed]
- Ou, Y.; Wang, L.Y.; Zhu, L.W.; Wan, L.S.; Xu, Z.K. In-situ immobilization of silver nanoparticles on self-assembled honeycomb-patterned films enables surface-enhanced raman scattering (SERS) substrates. J. Phys. Chem. C 2014, 118, 11478–11484. [Google Scholar] [CrossRef]
- Zhou, J.; Zha, X.; Chen, X.; Ma, J. β-Cyclodextrin-g-Poly(2-(dimethylamino) ethyl methacrylate) as the Stabilizer and Reductant to Prepare Colloid Silver Nanoparticles in situ. Indian J. Pharm. Educ. Res. 2017, 51, 543–550. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Gao, Z.; Yang, L.; Gao, L.; Lv, X. Synthesis and characterization of novel four-arm star PDMAEMA-stabilized colloidal silver nanoparticles. Colloid Polym. Sci. 2010, 288, 1713–1722. [Google Scholar] [CrossRef]
- Nechaeva, N.L.; Boginskaya, I.A.; Ivanov, A.V.; Sarychev, A.K.; Eremenko, A.V.; Ryzhikov, I.A.; Lagarkov, A.N.; Kurochkin, I.N. Multiscale flaked silver SERS-substrate for glycated human albumin biosensing. Anal. Chim. Acta 2020, 1100, 250–257. [Google Scholar] [CrossRef]
- Sun, F.; Bai, T.; Zhang, L.; Ella-Menye, J.-R.; Liu, S.; Nowinski, A.K.; Jiang, S.; Yu, Q. Sensitive and Fast Detection of Fructose in Complex Media via Symmetry Breaking and Signal Amplification Using Surface-Enhanced Raman Spectroscopy. Anal. Chem. 2014, 86, 2387–2394. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sigolaeva, L.V.; Nechaeva, N.L.; Ignatov, A.I.; Filatova, L.Y.; Sharifullin, T.Z.; Eichhorn, J.; Schacher, F.H.; Pergushov, D.V.; Merzlikin, A.M.; Kurochkin, I.N. In Situ SERS Sensing by a Laser-Induced Aggregation of Silver Nanoparticles Templated on a Thermoresponsive Polymer. Biosensors 2022, 12, 628. https://doi.org/10.3390/bios12080628
Sigolaeva LV, Nechaeva NL, Ignatov AI, Filatova LY, Sharifullin TZ, Eichhorn J, Schacher FH, Pergushov DV, Merzlikin AM, Kurochkin IN. In Situ SERS Sensing by a Laser-Induced Aggregation of Silver Nanoparticles Templated on a Thermoresponsive Polymer. Biosensors. 2022; 12(8):628. https://doi.org/10.3390/bios12080628
Chicago/Turabian StyleSigolaeva, Larisa V., Natalia L. Nechaeva, Anton I. Ignatov, Lyubov Y. Filatova, Timur Z. Sharifullin, Jonas Eichhorn, Felix H. Schacher, Dmitry V. Pergushov, Alexander M. Merzlikin, and Ilya N. Kurochkin. 2022. "In Situ SERS Sensing by a Laser-Induced Aggregation of Silver Nanoparticles Templated on a Thermoresponsive Polymer" Biosensors 12, no. 8: 628. https://doi.org/10.3390/bios12080628
APA StyleSigolaeva, L. V., Nechaeva, N. L., Ignatov, A. I., Filatova, L. Y., Sharifullin, T. Z., Eichhorn, J., Schacher, F. H., Pergushov, D. V., Merzlikin, A. M., & Kurochkin, I. N. (2022). In Situ SERS Sensing by a Laser-Induced Aggregation of Silver Nanoparticles Templated on a Thermoresponsive Polymer. Biosensors, 12(8), 628. https://doi.org/10.3390/bios12080628