Investigation of the “Antigen Hook Effect” in Lateral Flow Sandwich Immunoassay: The Case of Lumpy Skin Disease Virus Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis and Characterization of the Gold Nanoparticles (AuNPs)
2.2. Synthesis and Characterization of the mAb_AuNP Conjugates
2.3. Production of the LFIA Strips
2.4. Experimental Design for the SE and for the DE
2.5. Viruses
2.6. In-House Validation of the LSD-LFIA Device
3. Results and Discussion
3.1. Preparation and Spectroscopic Characterization of the mAb_AuNP Conjugates
3.2. Development of the LSDV_LFIA Based on the Combination #2F10_AuNP/#2F10 (SE)
3.3. Development of the LSDV_LFIA Based on the Combination #2F10_AuNP/#2C6 (DE)
3.4. The LFIA Device for the Rapid LSD Antigen Detection
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Briggs, N.; Campbell, S.; Gupta, S. Advances in Rapid Diagnostics for Bloodstream Infections. Diagn. Microbiol. Infect. Dis. 2021, 99, 115219. [Google Scholar] [CrossRef] [PubMed]
- A Review of Antigen-Detecting Rapid Diagnostic Tests for COVID-19. Available online: https://www.news-medical.net/news/20211108/A-review-of-antigen-detecting-rapid-diagnostic-tests-for-COVID-19.aspx (accessed on 24 November 2021).
- Guidance for SARS-CoV-2 Point-of-Care and Rapid Testing CDC. Available online: https://www.cdc.gov/coronavirus/2019-ncov/lab/point-of-care-testing.html (accessed on 24 November 2021).
- Land, K.J.; Boeras, D.I.; Chen, X.S.; Ramsay, A.R.; Peeling, R.W. REASSURED Diagnostics to Inform Disease Control Strategies, Strengthen Health Systems and Improve Patient Outcomes. Nat. Microbiol. 2019, 4, 46–54. [Google Scholar] [CrossRef]
- Rapid Diagnostic Tests for Infectious Diseases—Chapter 11—2020 Yellow Book Travelers’ Health CDC. Available online: https://wwwnc.cdc.gov/travel/yellowbook/2020/posttravel-evaluation/rapid-diagnostic-tests-for-infectious-diseases (accessed on 27 July 2022).
- Boehringer, H.R.; O’Farrell, B.J. Lateral Flow Assays in Infectious Disease Diagnosis. Clin. Chem. 2021, 68, 52–58. [Google Scholar] [CrossRef]
- Sajid, M.; Daud, M. Designs, Formats and Applications of Lateral Flow Assay: A Literature Review. J. Saudi Chem. Soc. 2015, 19, 689–705. [Google Scholar] [CrossRef]
- Di Nardo, F.; Chiarello, M.; Cavalera, S.; Baggiani, C.; Anfossi, L. Ten Years of Lateral Flow Immunoassay Technique Applications: Trends, Challenges and Future Perspectives. Sensors 2021, 21, 5185. [Google Scholar] [CrossRef]
- Dilaveris, D.; European Commission Directorate-General for Health and Food Safety G3-Crisis Management in Food, Animals and Plants Lumpy Skin Disease (LSD). Exit Strategy in South East Europe Possibilities and Challenges Standing Group of Experts on Lumpy Skin Disease in the South East Europe Region under the GF-TADs Umbrella Seventh Meeting (SGE LSD7). Available online: https://rr-europe.woah.org/wp-content/uploads/2019/09/5_sge-lsd7_commission-exit-strategy.pdf9 (accessed on 20 July 2022).
- Klement, E. Economic Impact of Lumpy Skin Disease. In Lumpy Skin Disease; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Molla, W.; de Jong, M.C.M.; Gari, G.; Frankena, K. Economic Impact of Lumpy Skin Disease and Cost Effectiveness of Vaccination for the Control of Outbreaks in Ethiopia. Prev. Vet. Med. 2017, 147, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Babiuk, S. Diagnostic Tools. In Lumpy Skin Disease; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Tuppurainen, E.S.M.; Venter, E.H.; Coetzer, J.A.W. The Detection of Lumpy Skin Disease Virus in Samples of Experimentally Infected Cattle Using Different Diagnostic Techniques. Onderstepoort J. Vet. Res. 2005, 72, 153–164. [Google Scholar] [CrossRef]
- Murray, L.; Edwards, L.; Tuppurainen, E.S.M.; Bachanek-Bankowska, K.; Oura, C.A.L.; Mioulet, V.; King, D.P. Detection of Capripoxvirus DNA Using a Novel Loop-Mediated Isothermal Amplification Assay. BMC Vet. Res. 2013, 9, 90. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Nie, F.; Xiong, Y.; Lin, L.; Shi, M.; Yang, J.; Wang, Y.; Wang, G.; Li, Y.; Huo, D.; et al. Ultra-Sensitive and Point-of-Care Detection of Capripoxvirus (CaPV) Based on Loop-Mediated Amplification (LAMP) and Trans-Cleavage Activity of CRISPR/Cpf1. Anal. Chim. Acta 2022, 1191, 339330. [Google Scholar] [CrossRef]
- Mwanandota, J.J.; Macharia, M.; Ngeleja, C.M.; Sallu, R.S.; Yongolo, M.G.; Mayenga, C.; Holton, T.A. Validation of a Diagnostic Tool for the Diagnosis of Lumpy Skin Disease. Vet. Dermatol. 2018, 29, 532-e178. [Google Scholar] [CrossRef]
- Möller, J.; Moritz, T.; Schlottau, K.; Krstevski, K.; Hoffmann, D.; Beer, M.; Hoffmann, B. Experimental Lumpy Skin Disease Virus Infection of Cattle: Comparison of a Field Strain and a Vaccine Strain. Arch. Virol. 2019, 164, 2931–2941. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Kong, Y.; Mei, L.; Lv, J.; Wu, S.; Lin, X.; Han, X. Multiplex Real-Time PCR Method for Simultaneous Detection and Differentiation of Goat Pox Virus, Sheeppox Virus, and Lumpy Skin Disease Virus. J. AOAC Int. 2021, 104, 1389–1393. [Google Scholar] [CrossRef] [PubMed]
- Haegeman, A.; De Vleeschauwer, A.; De Leeuw, I.; Vidanović, D.; Šekler, M.; Petrović, T.; Demarez, C.; Lefebvre, D.; De Clercq, K. Overview of Diagnostic Tools for Capripox Virus Infections. Prev. Vet. Med. 2020, 181, 104704. [Google Scholar] [CrossRef] [PubMed]
- Amin, D.M.; Shehab, G.; Emran, R.; Hassanien, R.T.; Alagmy, G.N.; Hagag, N.M.; Abd-El-Moniem, M.I.I.; Habashi, A.R.; Ibraheem, E.M.; Shahein, M.A. Diagnosis of Naturally Occurring Lumpy Skin Disease Virus Infection in Cattle Using Virological, Molecular, and Immunohistopathological Assays. Vet. World 2021, 14, 2230–2237. [Google Scholar] [CrossRef]
- Monoclonal Antibodies as Diagnostic Tools for Lumpy Skin Disease—Istituto Zooprofilattico Sperimentale Della Lombardia e Dell’Emilia Romagna. Available online: https://www.izsler.it/pubblicazioni/monoclonal-antibodies-as-diagnostic-tools-for-lumpy-skin-disease/ (accessed on 27 July 2022).
- Cavalera, S.; Di Nardo, F.; Forte, L.; Marinoni, F.; Chiarello, M.; Baggiani, C.; Anfossi, L. Switching from Multiplex to Multimodal Colorimetric Lateral Flow Immunosensor. Sensors 2020, 20, 6609. [Google Scholar] [CrossRef]
- Cavalera, S.; Russo, A.; Foglia, E.A.; Grazioli, S.; Colitti, B.; Rosati, S.; Nogarol, C.; Di Nardo, F.; Serra, T.; Chiarello, M.; et al. Design of Multiplexing Lateral Flow Immunoassay for Detection and Typing of Foot-and-Mouth Disease Virus Using Pan-Reactive and Serotype-Specific Monoclonal Antibodies: Evidence of a New Hook Effect. Talanta 2022, 240, 123155. [Google Scholar] [CrossRef]
- Zhang, L.; Mazouzi, Y.; Salmain, M.; Liedberg, B.; Boujday, S. Antibody-Gold Nanoparticle Bioconjugates for Biosensors: Synthesis, Characterization and Selected Applications. Biosens. Bioelectron. 2020, 165, 112370. [Google Scholar] [CrossRef]
- Di Nardo, F.; Cavalera, S.; Baggiani, C.; Giovannoli, C.; Anfossi, L. Direct vs Mediated Coupling of Antibodies to Gold Nanoparticles: The Case of Salivary Cortisol Detection by Lateral Flow Immunoassay. ACS Appl. Mater. Interfaces 2019, 11, 32758–32768. [Google Scholar] [CrossRef]
- Turkevich, J.; Stevenson, P.C.; Hillier, J. A Study of the Nucleation and Growth Processes in the Synthesis of Colloidal Gold. Discuss. Faraday Soc. 1951, 11, 55–75. [Google Scholar] [CrossRef]
- Reed, L.J.; Muench, H. A Simple Method of Estimating Fifty per Cent Endpoints. Am. J. Epidemiol. 1938, 27, 493–497. [Google Scholar] [CrossRef]
- Serological Elisas Based on Monoclonal Antibodies as Diagnostic Tools. Available online: https://www.slideshare.net/eufmd1/serological-elisas-based-on-monoclonal-antibodies-as-diagnostic-tools-for-lumpy-skin-disease (accessed on 27 July 2022).
- Khlebtsov, N.G. Determination of Size and Concentration of Gold Nanoparticles from Extinction Spectra. Anal. Chem. 2008, 80, 6620–6625. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Hu, D.; Salmain, M.; Liedberg, B.; Boujday, S. Direct Quantification of Surface Coverage of Antibody in IgG-Gold Nanoparticles Conjugates. Talanta 2019, 204, 875–881. [Google Scholar] [CrossRef] [PubMed]
- Byzova, N.A.; Safenkova, I.V.; Slutskaya, E.S.; Zherdev, A.V.; Dzantiev, B.B. Less is More: A Comparison of Antibody–Gold Nanoparticle Conjugates of Different Ratios. Bioconjugate Chem. 2017, 28, 2737–2746. [Google Scholar] [CrossRef] [PubMed]
- Cavalera, S.; Di Nardo, F.; Chiarello, M.; Serra, T.; Colitti, B.; Guiotto, C.; Fagioli, F.; Cagnazzo, C.; Denina, M.; Palazzo, A.; et al. Bacterial ligands as flexible and sensitive detectors in rapid tests for antibodies to SARS-CoV-2. Anal. Bioanal. Chem. 2022, 1–10. [Google Scholar] [CrossRef] [PubMed]
mAb-to-AuNP (× 10 µg/mL) a | OD | Size of AuNP (nm) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
24 | 32 | 36 | ||||||||
0.5× | 0.5 | −2 | −2 | −1 | −2 | −2 | 0 | −2 | −2 | 1 |
1 | −2 | −1 | −1 | −2 | −1 | 0 | −2 | −1 | 1 | |
1.5 | −2 | 1 | −1 | −2 | 1 | 0 | −2 | 1 | 1 | |
2 | −2 | 2 | −1 | −2 | 2 | 0 | −2 | 2 | 1 | |
1.0× | 0.5 | −1 | −2 | −1 | −1 | −2 | 0 | −1 | −2 | 1 |
1 | −1 | −1 | −1 | −1 | −1 | 0 | −1 | −1 | 1 | |
1.5 | −1 | 1 | −1 | −1 | 1 | 0 | −1 | 1 | 1 | |
2 | −1 | 2 | −1 | −1 | 2 | 0 | −1 | 2 | 1 | |
1.5× | 0.5 | 1 | −2 | −1 | 1 | −2 | 0 | 1 | −2 | 1 |
1 | 1 | −1 | −1 | 1 | −1 | 0 | 1 | −1 | 1 | |
1.5 | 1 | 1 | −1 | 1 | 1 | 0 | 1 | 1 | 1 | |
2 | 1 | 2 | −1 | 1 | 2 | 0 | 1 | 2 | 1 | |
2.0× | 0.5 | 2 | −2 | −1 | 2 | −2 | 0 | 2 | −2 | 1 |
1 | 2 | −1 | −1 | 2 | −1 | 0 | 2 | −1 | 1 | |
1.5 | 2 | 1 | −1 | 2 | 1 | 0 | 2 | 1 | 1 | |
2 | 2 | 2 | −1 | 2 | 2 | 0 | 2 | 2 | 1 |
mAb-to-AuNP (× 10 µg/mL) a | OD | Size of AuNP (nm) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
24 | 32 | 36 | ||||||||
0.5× | 2 | −2 | −1 | −1 | −2 | −1 | 0 | −2 | −1 | 1 |
3 | −2 | 0 | −1 | −2 | 0 | 0 | −2 | 0 | 1 | |
4 | −2 | 1 | −1 | −2 | 1 | 0 | −2 | 1 | 1 | |
1.0× | 2 | −1 | −1 | −1 | −1 | −1 | 0 | −1 | −1 | 1 |
3 | −1 | 0 | −1 | −1 | 0 | 0 | −1 | 0 | 1 | |
4 | −1 | 1 | −1 | −1 | 1 | 0 | −1 | 1 | 1 | |
1.5× | 2 | 1 | −1 | −1 | 1 | −1 | 0 | 1 | −1 | 1 |
3 | 1 | 0 | −1 | 1 | 0 | 0 | 1 | 0 | 1 | |
4 | 1 | 1 | −1 | 1 | 1 | 0 | 1 | 1 | 1 | |
2.0× | 2 | 2 | −1 | −1 | 2 | −1 | 0 | 2 | −1 | 1 |
3 | 2 | 0 | −1 | 2 | 0 | 0 | 2 | 0 | 1 | |
4 | 2 | 1 | −1 | 2 | 1 | 0 | 2 | 1 | 1 |
Amount of mAb for mL of AuNP (OD1) | λmax of LSPR | Hydrodynamic Diameter a | ∆ b | Z-Potential |
---|---|---|---|---|
(µg) | (nm) | (nm) | (nm) | (mV) |
0 | 525.5 | 46.4 ± 0.3 | −41.7 ± 0.4 | |
5 | 536.0 | 89.8 ± 3.8 | (21.7) c | −34.5 ± 0.7 |
10 | 529.5 | 50.6 ± 1.5 | 2.1 | −24.2 ± 0.3 |
15 | 530.0 | 51.6 ± 0.2 | 2.6 | −23.5 ± 0.5 |
20 | 530.5 | 52.7 ± 1.7 | 3.2 | −29.7 ± 1.2 |
Within-Assay | Between-Assay | |||||
---|---|---|---|---|---|---|
Level | Within-Day (n = 3) | Between-Day (n = 3) | Overall (n = 9) | Within-Day (n = 3) | Between-Day (n = 3) | Overall a (n = 9) |
2× vLOD | 3, 7 | 7, 1 | 5, 3 | 0, 6 | 8, 3 | 4, 4 |
1× vLOD | 19, 1 | 21,2 | 20, 3 | 27, 5 | 25, 7 | 26,2 |
Sample (#) | Genus | Species | Sampling (m/y) | LSD-LFIA |
---|---|---|---|---|
1 | lentivirus | … | … | NEG |
2 | parapoxvirus | Orf virus | … | NEG |
3 | Orf virus | … | NEG | |
4 | Orf virus | … | NEG | |
5 | Orf virus | … | NEG | |
6 | Orf virus | … | NEG | |
7 | Bovine papular stomatitis virus | 8/2008 | NEG | |
8 | Bovine papular stomatitis virus | 2/2008 | NEG | |
9 | Bovine papular stomatitis virus | 8/1998 | NEG | |
10 | Bovine papular stomatitis virus | 4/2020 | NEG | |
11 | Pseudocowpox | 5/2021 | NEG | |
12 | Pseudocowpox | 5/2009 | NEG |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cavalera, S.; Pezzoni, G.; Grazioli, S.; Brocchi, E.; Baselli, S.; Lelli, D.; Colitti, B.; Serra, T.; Nardo, F.D.; Chiarello, M.; et al. Investigation of the “Antigen Hook Effect” in Lateral Flow Sandwich Immunoassay: The Case of Lumpy Skin Disease Virus Detection. Biosensors 2022, 12, 739. https://doi.org/10.3390/bios12090739
Cavalera S, Pezzoni G, Grazioli S, Brocchi E, Baselli S, Lelli D, Colitti B, Serra T, Nardo FD, Chiarello M, et al. Investigation of the “Antigen Hook Effect” in Lateral Flow Sandwich Immunoassay: The Case of Lumpy Skin Disease Virus Detection. Biosensors. 2022; 12(9):739. https://doi.org/10.3390/bios12090739
Chicago/Turabian StyleCavalera, Simone, Giulia Pezzoni, Santina Grazioli, Emiliana Brocchi, Stefano Baselli, Davide Lelli, Barbara Colitti, Thea Serra, Fabio Di Nardo, Matteo Chiarello, and et al. 2022. "Investigation of the “Antigen Hook Effect” in Lateral Flow Sandwich Immunoassay: The Case of Lumpy Skin Disease Virus Detection" Biosensors 12, no. 9: 739. https://doi.org/10.3390/bios12090739
APA StyleCavalera, S., Pezzoni, G., Grazioli, S., Brocchi, E., Baselli, S., Lelli, D., Colitti, B., Serra, T., Nardo, F. D., Chiarello, M., Testa, V., Rosati, S., Baggiani, C., & Anfossi, L. (2022). Investigation of the “Antigen Hook Effect” in Lateral Flow Sandwich Immunoassay: The Case of Lumpy Skin Disease Virus Detection. Biosensors, 12(9), 739. https://doi.org/10.3390/bios12090739