Advancement and Challenges of Biosensing Using Field Effect Transistors
Abstract
:1. Introduction
2. Working Principle of the Field Effect Transistor as a Biosensor
3. Functionalization of Biomolecules in FET
4. Challenges in Functionalization: Screening Effect
5. Effective Strategies to Overcome Screening Effect
5.1. Using Solution with High Dielectric Constant
5.2. Fragmentation Technique
5.3. Usage of Aptamers
5.4. Usage of Nanobodies
5.5. High Frequency Electronics in Nanobiosensing
5.6. Device Modifications
6. Challenges with Surface Area and Effective Solutions and Strategies
7. Challenges in Device Yield and Device-to-Device Variation
8. Challenges in Current Leakage, Power Dissipation and Proposed Solutions
9. Future Directions and Conclusions
- Fragmentation method in which antigen binding part of the long length antibody is fragmented for the biosensing event to occur closer to the sensor surface and evade the screening effect: This can be used to detect protein molecules down to sub-pM concentration ranges;
- Using short chain aptamers rather than antibodies for detecting the targeted molecules from the 1 pM to 1 nM range;
- Increasing the dielectric constant of the ionic solution for detecting prostate specific antigen at 1 nM concentration.
- ➢
- Application of high frequency voltage waveforms in FET: The method is found to be useful in detecting biomolecules even in high ionic strength solutions. Applying this strategy, two important biosensing devices emerged such as the CMOS pixelated nanocapacitive biosensor and the nanoelectronic heterodyne sensor;
- ➢
- Using an AlGaN/GaN HEMT device with microchannel capillaries to drive the biomolecular solution to the sensing region: Here, the disadvantage of screening is turned to an advantage as the electrical double layer forms the solution capacitance that controls the current through the channel. A higher ionic strength solution thus enhances the capacitance, which increases the sensitivity and current gain of the device;
- ➢
- Using a DMFET with vertical nanogap near to the edge of the gate dielectric: Here, the sensitivity of the device depends on the dielectric constant of the biomolecules and thus the detection process is not hampered by the charge screening effect.
- ❖
- Three-dimensional graphene foam field effect transistor with porous hollow structure and extremely large surface area;
- ❖
- High surface area nanoribbons rather than nanowire, such as a silicon nanowire field effect transistor for detecting biomolecules in high ionic strength solution;
- ❖
- Silicon nanowire networks with extremely high specific surface area and tolerant to defect generation.
- ▪
- Organic field effect transistors can be used for low power operation with operating voltage < 1 Volts;
- ▪
- Dielectrically modulated transistors can also be used to minimize current leakage and power consumption. Here, a high k dielectric layer needs to be chosen with higher conduction band offset over the bandgap of the semiconductor channel.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Špringer, T.; Homola, J. Biofunctionalized gold nanoparticles for SPR-biosensor-based detection of CEA in blood plasma. Anal. Bioanal. Chem. 2012, 404, 2869–2875. [Google Scholar] [CrossRef] [PubMed]
- Roy, N.; Moharana, P.; Ghosh, K.; Paira, P. Green synthesis of highly luminescent biotin-conjugated CdSe quantum dots for bioimaging applications. New J. Chem. 2020, 44, 16891–16899. [Google Scholar]
- Bharathi, M.V.; Ghosh, K.; Paira, P. Glycerol–water mediated centrifuge controlled green synthesis of oleic acid capped PbS quantum dots for live cell imaging. RSC Adv. 2017, 7, 40664–40668. [Google Scholar] [CrossRef]
- Bergveld, P. Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans. Biomed. Eng. 1970, 1, 70–71. [Google Scholar] [CrossRef] [PubMed]
- Moss, S.D.; Johnson, C.C.; Janata, J. Hydrogen, calcium, and potassium ion-sensitive FET transducers: A preliminary report. IEEE Trans. Biomed. Eng. 1978, 1, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Thompson, M.; Krull, U.J.; Worsfold, P.J. A study of coated-wire potassium-valinomycin and sodium-monensin ion-sensing systems by use of a conventional field-effect transistor. Talanta 1979, 26, 1015–1018. [Google Scholar] [CrossRef]
- Nakamoto, S.; Ito, N.; Kuriyama, T.; Kimura, J. A lift-off method for patterning enzyme-immobilized membranes in multi-biosensors. Sens. Actuators 1988, 13, 165–172. [Google Scholar] [CrossRef]
- Sulciute, A.; Nishimura, K.; Gilshtein, E.; Cesano, F.; Viscardi, G.; Nasibulin, A.G.; Ohno, Y.; Rackauskas, S. ZnO nanostructures application in electrochemistry: Influence of morphology. J. Phys. Chem. C 2021, 125, 1472–1482. [Google Scholar] [CrossRef]
- Zhang, G.J. Silicon nanowire biosensor for ultrasensitive and label-free direct detection of miRNAs. In MicroRNA and Cancer, 1st ed.; Wei, W., Ed.; Humana Press: Totowa, NJ, USA, 2011; Volume 676, pp. 111–121. [Google Scholar]
- Papageorgiou, D.G.; Kinloch, I.A.; Young, R.J. Mechanical properties of graphene and graphene-based nanocomposites. Prog. Mater. Sci. 2017, 90, 75–127. [Google Scholar] [CrossRef]
- Priyadarsini, S.; Mohanty, S.; Mukherjee, S.; Basu, S.; Mishra, M. Graphene and graphene oxide as nanomaterials for medicine and biology application. J. Nanostruct. Chem. 2018, 8, 123–127. [Google Scholar] [CrossRef]
- Ku, M.; Kim, J.; Won, J.E.; Kang, W.; Park, Y.G.; Park, J.; Lee, J.H.; Cheon, J.; Lee, H.H.; Park, J.U. Smart, soft contact lens for wireless immunosensing of cortisol. Sci. Adv. 2020, 6, eabb2891. [Google Scholar] [CrossRef] [PubMed]
- Calia, A.B.; Codina, E.M.; Smith, T.M.; Schäfer, N.; Rathore, D.; Lucas, E.R.; Illa, X.; Cruz, J.M.D.; Corro, E.D.; Alfonso, E.P.; et al. Full bandwidth electrophysiology of seizures and epileptiform activity enabled by flexible graphene micro-transistor depth neural probes. Nat. Nanotechnol. 2022, 17, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.M.; Cho, S.Y.; Chong, S.; Koh, H.J.; Kim, D.W.; Kim, J.; Jung, H.T. Edge-functionalized graphene nanoribbon chemical sensor: Comparison with carbon nanotube and graphene. ACS Appl. Mater. Interfaces 2018, 10, 42905–42914. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Lieber, C.M. Nano-bioelectronics. Chem. Rev. 2016, 116, 215–257. [Google Scholar] [CrossRef] [PubMed]
- Thriveni, G.; Ghosh, K. Covalent functionalization in graphene nanoribbon: Theoretical modeling and sensitivity analysis. J. Appl. Phys. 2021, 129, 114301. [Google Scholar] [CrossRef]
- Rauti, R.; Musto, M.; Bosi, S.; Prato, M.; Ballerini, L. Properties and behavior of carbon nanomaterials when interfacing neuronal cells: How far have we come? Carbon 2019, 143, 430–446. [Google Scholar] [CrossRef]
- Davis, J.J.; Coleman, K.S.; Azamian, B.R.; Bagshaw, C.B.; Green, M.L. Chemical and biochemical sensing with modified single walled carbon nanotubes. Chem. A Eur. J. 2003, 9, 3732–3739. [Google Scholar] [CrossRef]
- Gooding, J.J.; Wibowo, R.; Liu, J.; Yang, W.; Losic, D.; Orbons, S.; Mearns, F.J.; Shapter, J.G.; Hibbert, D.B. Protein electrochemistry using aligned carbon nanotube arrays. J. Am. Chem. Soc. 2003, 125, 9006–9007. [Google Scholar] [CrossRef]
- Li, J.; Ng, H.T.; Cassell, A.; Fan, W.; Chen, H.; Ye, Q.; Koehne, J.; Han, J.; Meyyappan, M. Carbon nanotube nanoelectrode array for ultrasensitive DNA detection. Nano Lett. 2003, 3, 597–602. [Google Scholar] [CrossRef]
- Zhang, M.; Li, J. Carbon nanotube in different shapes. Mater. Today 2009, 12, 12–18. [Google Scholar] [CrossRef]
- Zaporotskova, I.V.; Boroznina, N.P.; Parkhomenko, Y.N.; Kozhitov, L.V. Carbon nanotubes: Sensor properties. A Rev. Mod. Electron. Mater. 2016, 2, 95–105. [Google Scholar] [CrossRef]
- Sinnott, S.B.; Andrews, R. Carbon nanotubes: Synthesis, properties, and applications. Crit. Rev. Solid State Mater. Sci. 2001, 26, 145–249. [Google Scholar] [CrossRef]
- Shan, J.; Li, J.; Chu, X.; Xu, M.; Jin, F.; Wang, X.; Ma, L.; Fang, X.; Wei, Z.; Wang, X. High sensitivity glucose detection at extremely low concentrations using a MoS2-based field-effect transistor. RSC Adv. 2018, 8, 7942–7948. [Google Scholar] [CrossRef]
- Sotthewes, K.; Van Bremen, R.; Dollekamp, E.; Boulogne, T.; Nowakowski, K.; Kas, D.; Zandvliet, H.J.; Bampoulis, P. Universal Fermi-level pinning in transition-metal dichalcogenides. J. Phys. Chem. C 2019, 123, 5411–5420. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Ren, R.; Pu, H.; Chang, J.; Mao, S.; Chen, J. Field-effect transistor biosensors with two-dimensional black phosphorus nanosheets. Biosens. Bioelectron. 2017, 89, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.H.; Sarangadharan, I.; Regmi, A.; Chen, Y.W.; Hsu, C.P.; Chang, W.H.; Lee, G.Y.; Chyi, J.I.; Chen, C.C.; Shiesh, S.C.; et al. Beyond the Debye length in high ionic strength solution: Direct protein detection with field-effect transistors (FETs) in human serum. Sci. Rep. 2017, 7, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.C.; Chen, Y.W.; Sarangadharan, I.; Hsu, C.P.; Chen, C.C.; Shiesh, S.C.; Lee, G.B.; Wang, Y.L. Field-effect transistor-based biosensors and a portable device for personal healthcare. ECS J. Solid State Sci. Technol. 2017, 6, Q71. [Google Scholar] [CrossRef]
- Woo, K.; Kang, W.; Lee, K.; Lee, P.; Kim, Y.; Yoon, T.S.; Cho, C.Y.; Park, K.H.; Ha, M.W.; Lee, H.H. Enhancement of cortisol measurement sensitivity by laser illumination for AlGaN/GaN transistor biosensor. Biosens. Bioelectron. 2020, 159, 112186. [Google Scholar] [CrossRef]
- Gaddam, P.; Ducker, W. Electrostatic screening length in concentrated salt solutions. Langmuir 2019, 35, 5719–5727. [Google Scholar] [CrossRef]
- Nakatsuka, N.; Yang, K.A.; Abendroth, J.M.; Cheung, K.M.; Xu, X.; Yang, H.; Zhao, C.; Zhu, B.; Rim, Y.S.; Yang, Y.; et al. Aptamer–field-effect transistors overcome Debye length limitations for small-molecule sensing. Science 2018, 362, 319–324. [Google Scholar] [CrossRef]
- Piccinini, E.; Alberti, S.; Longo, G.S.; Berninger, T.; Breu, J.; Dostalek, J.; Azzaroni, O.; Knoll, W. Pushing the boundaries of interfacial sensitivity in graphene FET sensors: Polyelectrolyte multilayers strongly increase the Debye screening length. J. Phys. Chem. C 2018, 122, 10181–10188. [Google Scholar] [CrossRef]
- Heitzinger, C.; Kennell, R.; Klimeck, G.; Mauser, N.; McLennan, M.; Ringhofer, C. Modeling and simulation of field-effect biosensors (BioFETs) and their deployment on the nanoHUB. In Journal of Physics: Conference Series; IOP Publishing: Banff, AB, Canada, 2008; p. 012004. [Google Scholar]
- Shafi, N.; Sahu, C.; Periasamy, C. Analytical modeling of surface potential and drain current for virtually doped symmetrical dielectric modulated biofet. IEEE Sens. J. 2020, 20, 4749–4757. [Google Scholar] [CrossRef]
- Lai, S.; Barbaro, M.; Bonfiglio, A. Tailoring the sensing performances of an OFET-based biosensor. Sens. Actuators B Chem. 2016, 233, 314–319. [Google Scholar] [CrossRef]
- Hess, L.H.; Lyuleeva, A.; Blaschke, B.M.; Sachsenhauser, M.; Seifert, M.; Garrido, J.A.; Deubel, F. Graphene transistors with multifunctional polymer brushes for biosensing applications. ACS Appl. Mater. Interfaces 2014, 6, 9705–9710. [Google Scholar] [CrossRef] [PubMed]
- Dontschuk, N.; Stacey, A.; Tadich, A.; Rietwyk, K.J.; Schenk, A.; Edmonds, M.T.; Shimoni, O.; Pakes, C.I.; Prawer, S.; Cervenka, J. A graphene field-effect transistor as a molecule-specific probe of DNA nucleobases. Nat. Commun. 2015, 6, 6563. [Google Scholar] [CrossRef] [PubMed]
- Ohno, Y.; Maehashi, K.; Yamashiro, Y.; Matsumoto, K. Electrolyte-gated graphene field-effect transistors for detecting pH and protein Adsorption. Nano Lett. 2009, 9, 3318–3322. [Google Scholar] [CrossRef]
- Ma, X.; Peng, R.; Mao, W.; Lin, Y.; Yu, H. Recent advances in ion-sensitive field-effect transistors for biosensing applications. Electrochem. Sci. Adv. 2022, e2100163. [Google Scholar] [CrossRef]
- Im, H.; Huang, X.J.; Gu, B.; Choi, Y.K. A dielectric-modulated field-effect transistor for biosensing. Nat. Nanotechnol. 2007, 2, 430–434. [Google Scholar] [CrossRef]
- Mirsian, S.; Khodadadian, A.; Hedayati, M.; Manzour-ol-Ajdad, A.; Kalantarinejad, R.; Heitzinger, C. A new method for selective functionalization of silicon nanowire sensors and Bayesian inversion for its parameters. Biosens. Bioelectron. 2019, 142, 111527. [Google Scholar] [CrossRef]
- Pykal, M.; Jurečka, P.; Karlický, F.; Otyepka, M. Modelling of graphene functionalization. Phys. Chem. Chem. Phys. 2016, 18, 6351–6372. [Google Scholar] [CrossRef]
- Milowska, K.Z.; Majewski, J.A. Graphene-based sensors: Theoretical study. J. Phys. Chem. C 2014, 118, 17395–17401. [Google Scholar] [CrossRef]
- Bai, R.G.; Muthoosamy, K.; Tuvikene, R.; Ming, H.N.; Manickam, S. Highly Sensitive Electrochemical Biosensor Using Folic Acid-Modified Reduced Graphene Oxide for the Detection of Cancer Biomarker. Nanomaterials 2021, 11, 1272. [Google Scholar]
- Nasrollahpour, H.; Isildak, I.; Rashidi, M.R.; Hashemi, E.A.; Naseri, A.; Khalilzadeh, B. Ultrasensitive bioassaying of HER-2 protein for diagnosis of breast cancer using reduced graphene oxide/chitosan as nanobiocompatible platform. Cancer Nanotechnol. 2021, 12, 10. [Google Scholar] [CrossRef]
- Nam, H.; Oh, B.R.; Chen, M.; Wi, S.; Li, D.; Kurabayashi, K.; Liang, X. Fabrication and comparison of MoS2 and WSe2 field-effect transistor biosensors. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 2015, 33, 06FG01. [Google Scholar] [CrossRef]
- Patolsky, F.; Zheng, G.; Hayden, O.; Lakadamyali, M.; Zhuang, X.; Lieber, C.M. Electrical detection of single viruses. Proc. Nat. Acad. Sci. USA 2004, 101, 14017–14022. [Google Scholar] [CrossRef]
- Liu, F.; Kim, Y.H.; Cheon, D.S.; Seo, T.S. Micropatterned reduced graphene oxide based field-effect transistor for real-time virus detection. Sens. Actuators B Chem. 2013, 186, 252–257. [Google Scholar] [CrossRef]
- Kim, J.Y.; Ahn, J.H.; Moon, D.I.; Park, T.J.; Lee, S.Y.; Choi, Y.K. Multiplex electrical detection of avian influenza and human immunodeficiency virus with an underlap-embedded silicon nanowire field-effect transistor. Biosens. Bioelectron. 2014, 55, 162–167. [Google Scholar] [CrossRef]
- Jin, X.; Zhang, H.; Li, Y.T.; Xiao, M.M.; Zhang, Z.L.; Pang, D.W.; Wong, G.; Zhang, Z.Y.; Zhang, G.J. A field effect transistor modified with reduced graphene oxide for immunodetection of Ebola virus. Microchim. Acta 2019, 186, 223. [Google Scholar] [CrossRef]
- Seo, G.; Lee, G.; Kim, M.J.; Baek, S.H.; Choi, M.; Ku, K.B.; Lee, C.S.; Jun, S.; Park, D.; Kim, H.G.; et al. Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano 2020, 14, 5135–5142. [Google Scholar] [CrossRef]
- Cui, T.R.; Qiao, Y.C.; Gao, J.W.; Wang, C.H.; Zhang, Y.; Han, L.; Yang, Y.; Ren, T.L. Ultrasensitive Detection of COVID-19 Causative Virus (SARS-CoV-2) Spike Protein Using Laser Induced Graphene Field-Effect Transistor. Molecules 2021, 26, 6947. [Google Scholar] [CrossRef]
- Roberts, A.; Chauhan, N.; Islam, S.; Mahari, S.; Ghawri, B.; Gandham, R.K.; Majumdar, S.S.; Ghosh, A.; Gandhi, S. Graphene functionalized field-effect transistors for ultrasensitive detection of Japanese encephalitis and Avian influenza virus. Sci. Rep. 2020, 10, 1–12. [Google Scholar]
- Song, P.; Fu, H.; Wang, Y.; Chen, C.; Ou, P.; Rashid, R.T.; Duan, S.; Song, J.; Mi, Z.; Liu, X. A microfluidic field-effect transistor biosensor with rolled-up indium nitride microtubes. Biosens. Bioelectron. 2021, 190, 113264. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhao, X.; Xi, Z.; Zhang, Y.; Li, H.; Li, Z.; Shi, H.; Huang, L.; Shen, R.; Tao, J.; et al. A new biosensor detection system to overcome the Debye screening effect: Dialysis-silicon nanowire field effect transistor. Int. J. Nanomed. 2019, 14, 2985. [Google Scholar] [CrossRef] [PubMed]
- Vacic, A.; Criscione, J.M.; Rajan, N.K.; Stern, E.; Fahmy, T.M.; Reed, M.A. Determination of molecular configuration by Debye length modulation. J. Am. Chem. Soc. 2011, 133, 13886–13889. [Google Scholar] [CrossRef]
- Kang, H.L.; Yoon, S.; Hong, D.; Song, S.; Kim, Y.J.; Kim, W.H.; Seong, W.K.; Lee, K.N. Verification of operating principle of nano field-effect transistor biosensor with an extended gate electrode. BioChip J. 2020, 14, 381–389. [Google Scholar] [CrossRef]
- Gao, N.; Zhou, W.; Jiang, X.; Hong, G.; Fu, T.M.; Lieber, C.M. General strategy for biodetection in high ionic strength solutions using transistor-based nanoelectronic sensors. Nanoletters 2015, 15, 2143–2148. [Google Scholar] [CrossRef]
- Gao, N.; Gao, T.; Yang, X.; Dai, X.; Zhou, W.; Zhang, A.; Lieber, C.M. Specific detection of biomolecules in physiological solutions using graphene transistor biosensors. Proc. Natl. Acad. Sci. USA 2016, 113, 14633–14638. [Google Scholar] [CrossRef]
- Elnathan, R.; Kwiat, M.; Pevzner, A.; Engel, Y.; Burstein, L.; Khatchtourints, A.; Lichtenstein, A.; Kantaev, R.; Patolsky, F. Biorecognition layer engineering: Overcoming screening limitations of nanowire-based FET devices. Nano Lett. 2012, 12, 5245–5254. [Google Scholar] [CrossRef]
- Farrow, T.; Laumier, S.; Hall, S.; Sandall, I.; van Zalinge, H. Feasibility of a Silicon Thin Film Transistor-Based Aptamer Sensor for COVID-19 Detection; Department of Electrical Engineering and Electronics, University of Liverpool: Liverpool, UK, 2020; to be submitted. [Google Scholar]
- McConnell, E.M.; Nguyen, J.; Li, Y. Aptamer-Based Biosensors for Environmental Monitoring. Front. Chem. 2020, 8, 434. [Google Scholar] [CrossRef]
- Guo, X.; Wen, F.; Zheng, N.; Saive, M.; Fauconnier, M.L.; Wang, J. Aptamer-Based Biosensor for Detection of Mycotoxins. Front. Chem. 2020, 8, 195. [Google Scholar] [CrossRef]
- Yan, X.; Li, W.; Liu, K.; Deng, L. Highly sensitive fluorescent aptasensor for Salmonella paratyphi A via DNase I-mediated cyclic signal amplification. Anal. Method. 2015, 7, 10243. [Google Scholar] [CrossRef]
- Wang, Z.; Hao, Z.; Yu, S.; De Moraes, C.G.; Suh, L.H.; Zhao, X.; Lin, Q. An ultraflexible and stretchable aptameric graphene nanosensor for biomarker detection and monitoring. Adv. Funct. Mater. 2019, 29, 1905202. [Google Scholar] [CrossRef] [PubMed]
- Giraldo, J.P.; Wu, H.; Newkirk, G.M.; Kruss, S. Nanobiotechnology approaches for engineering smart plant sensors. Nat. Nanotechnol. 2019, 14, 541–553. [Google Scholar] [CrossRef] [PubMed]
- Filipiak, M.S.; Rother, M.; Andoy, N.M.; Knudsen, A.C.; Grimm, S.; Bachran, C.; Swee, L.K.; Zaumseil, J.; Tarasov, A. Highly sensitive, selective and label-free protein detection in physiological solutions using carbon nanotube transistors with nanobody receptors. Sens. Actuators B Chem. 2018, 255, 1507–1516. [Google Scholar] [CrossRef]
- Hosseindokht, M.; Bakherad, H.; Zare, H. Nanobodies: A tool to open new horizons in diagnosis and treatment of prostate cancer. Cancer Cell Int. 2021, 21, 580. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Sun, H.; Pei, W.; Jinag, H.; Chen, J. Nanobody-based immunosensing methods for safeguarding public health. J. Biomed. Res. 2021, 35, 318–326. [Google Scholar] [CrossRef]
- Pittino, F.; Selmi, L.; Widdershoven, F. Numerical and analytical models to investigate the AC high-frequency response of nanoelectrode/SAM/electrolyte capacitive sensing elements. Solid-State Electron. 2013, 88, 82–88. [Google Scholar] [CrossRef]
- Pittino, F.; Passerini, F.; Selmi, L.; Widdershoven, F. Numerical simulation of the position and orientation effects on the impedance response of nanoelectrode array biosensors to DNA and PNA strands. Microelectron. J. 2014, 45, 1695–1700. [Google Scholar] [CrossRef]
- Pittino, F.; Scarbolo, P.; Widdershoven, F.; Selmi, L. Derivation and numerical verification of a compact analytical model for the AC admittance response of nanoelectrodes, suitable for the analysis and optimization of impedance biosensors. IEEE Trans. Nanotechnol. 2015, 14, 709–716. [Google Scholar] [CrossRef]
- Laborde, C.; Pittino, F.; Verhoeven, H.A.; Lemay, S.G.; Selmi, L.; Jongsma, M.A.; Widdershoven, F.P. Real-time imaging of microparticles and living cells with CMOS nanocapacitor arrays. Nat. Nanotechnol. 2015, 10, 791–795. [Google Scholar] [CrossRef]
- Alhoshany, A.; Sivashankar, S.; Mashraei, Y.; Omran, H.; Salama, K.N. Biosensor-CMOS Platform and Integrated Readout Circuit in 0.18-µm CMOS Technology for Cancer Biomarker Detection. Sensors 2017, 17, 1942. [Google Scholar] [CrossRef]
- Widdershoven, F.; Cossettini, A.; Laborde, C.; Bandiziol, A.; van Swinderen, P.P.; Lemay, S.G.; Selmi, L. A CMOS pixelated nanocapacitor biosensor platform for high-frequency impedance spectroscopy and imaging. IEEE Trans. Biomed. Circuits Syst. 2018, 12, 1369–1382. [Google Scholar] [CrossRef] [PubMed]
- Widdershoven, F.; Van Steenwinckel, D.; Überfeld, J.; Merelle, T.; Suy, H.; Jedema, F.; Hoofman, R.; Tak, C.; Sedzin, A.; Cobelens, B.; et al. CMOS biosensor platform. In Proceedings of the 2010 International Electron Devices Meeting, San Francisco, CA, USA, 6–8 December 2010; p. 36-1. [Google Scholar]
- Cossettini, A.; Selmi, L. On the response of nanoelectrode impedance spectroscopy measures to plant, animal, and human viruses. IEEE Trans. Nanobiosci. 2018, 17, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Sauer, J.; Dutton, R.W. Effect of electrodiffusion current flow on electrostatic screening in aqueous pores. J. Appl. Phys. 2008, 103, 084701. [Google Scholar] [CrossRef]
- Liu, Y.; Lilja, K.; Heitzinger, C.; Dutton, R.W. Overcoming the screening-induced performance limits of nanowire biosensors: A simulation study on the effect of electro-diffusion flow. In Proceedings of the 2008 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 15–17 December 2008; pp. 1–4. [Google Scholar]
- Kulkarni, G.S.; Zhong, Z. Detection beyond the Debye Screening Length in a High-Frequency Nanoelectronic Biosensor. Nano Lett. 2012, 12, 719–723. [Google Scholar] [CrossRef] [PubMed]
- Gu, B.; Park, T.J.; Ahn, J.H.; Huang, X.J.; Lee, S.Y.; Choi, Y.K. Nanogap field-effect transistor biosensors for electrical detection of avian influenza. Small 2009, 5, 2407–2412. [Google Scholar] [CrossRef]
- Kim, C.H.; Jung, C.; Park, H.G.; Choi, Y.K. Novel dielectric modulated field-effect transistor for label-free DNA detection. BioChip J. 2008, 2, 127–134. [Google Scholar]
- Kim, C.H.; Jung, C.; Lee, K.B.; Park, H.G.; Choi, Y.K. Label-free DNA detection with a nanogap embedded complementary metal oxide semiconductor. Nanotechnology 2011, 22, 135502. [Google Scholar] [CrossRef]
- Kannan, N.; Kumar, M.J. Dielectric-modulated impact-ionization MOS transistor as a label-free biosensor. IEEE Electron. Device Lett. 2013, 34, 1575–1577. [Google Scholar] [CrossRef]
- Rahman, E.; Shadman, A.; Ahmed, I.; Khan, S.U.Z.; Khosru, Q.D. A physically based compact I–V model for monolayer TMDC channel MOSFET and DMFET biosensor. Nanotechnology 2018, 29, 235203. [Google Scholar] [CrossRef]
- Singh, R.; Kaim, S.; MedhaShree, R.; Kumar, A.; Kale, S. Dielectric engineered schottky barrier MOSFET for biosensor applications: Proposal and investigation. Silicon 2021, 14, 1–10. [Google Scholar] [CrossRef]
- Song, R.; Tian, M.; Li, Y.; Liu, J.; Liu, G.; Xu, S.; Wang, J. Detection of microRNA based on three-dimensional graphene field-effect transistor biosensor. Nano 2020, 15, 2050039. [Google Scholar] [CrossRef]
- Ma, S.; Li, X.; Lee, Y.K.; Zhang, A. Direct label-free protein detection in high ionic strength solution and human plasma using dual-gate nanoribbon-based ion-sensitive field-effect transistor biosensor. Biosens. Bioelectron. 2018, 117, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Lee, Y.K.; Zhang, A.; Li, X. Label-free detection of Cordyceps sinensis using dual-gate nanoribbon-based ion-sensitive field-effect transistor biosensor. Sens. Actuators B Chem. 2018, 264, 344–352. [Google Scholar] [CrossRef]
- Nguyen, T.T.T.; Legallais, M.; Morisot, F.; Cazimajou, T.; Mouis, M.; Salem, B.; Stambouli, V.; Ternon, C. On the development of label-free DNA sensor using silicon nanonet field-effect transistors. Multidiscip. Digit. Publ. Inst. Proc. 2017, 1, 312. [Google Scholar]
- Nguyen, T.T.T.; Legallais, M.; Morisot, F.; Cazimajou, T.; Stambouli, V.; Mouis, M.; Salem, B.; Ternon, C. First evidence of superiority of Si nanonet field effect transistors over multi-parallel Si nanowire ones in view of electrical DNA hybridization detection. Mater. Res. Exp. 2018, 6, 016301. [Google Scholar] [CrossRef]
- Shoorideh, K.; Chui, C.O. On the origin of enhanced sensitivity in nanoscale FET-based biosensors. Proc. Nat. Acad. Sci. USA 2014, 111, 5111–5116. [Google Scholar] [CrossRef]
- Shoorideh, K.; Chui, C.O. Optimization of the sensitivity of FET-based biosensors via biasing and surface charge engineering. IEEE Trans. Electron. Devices 2012, 59, 3104–3110. [Google Scholar] [CrossRef]
- Hwang, M.T.; Heiranian, M.; Kim, Y.; You, S.; Leem, J.; Taqieddin, A.; Faramarzi, V.; Jing, Y.; Park, I.; Van der Zande, A.M.; et al. Ultrasensitive detection of nucleic acids usingdeformed graphene channel field effect biosensors. Nat. Commun. 2020, 11, 1543. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, J.; Ryu, K.; Badmaev, A.; Gomez De Arco, L.; Zhou, C. Wafer-scale fabrication of separated carbon nanotube thin-film transistors for display applications. Nano Lett. 2009, 9, 4285–4291. [Google Scholar] [CrossRef]
- Aroonyadet, N.; Wang, X.; Song, Y.; Chen, H.; Cote, R.J.; Thompson, M.E.; Datar, R.H.; Zhou, C. Highly scalable, uniform and sensitive biosensors based on topdown indium oxide nanoribbons and electronic enzyme-linked immunosorbent assay. Nano Lett. 2015, 15, 1943–1951. [Google Scholar] [CrossRef] [PubMed]
- Honda, H.; Kusaka, Y.; Wu, H.; Endo, H.; Tsuya, D.; Ohnuki, H. Toward a Practical Impedimetric Biosensor: A Micro-Gap Parallel Plate Electrode Structure That Suppresses Unexpected Device-toDevice Variations. ACS Omega 2022, 7, 11017−11022. [Google Scholar] [CrossRef]
- Ishikawa, F.N.; Curreli, M.; Chang, H.K.; Chen, P.C.; Zhang, R.; Cote, R.J.; Thompson, M.E.; Zhou, C. A calibration method for nanowire biosensors to suppress device-to-device variation. ACS Nano 2009, 3, 3969–3976. [Google Scholar] [CrossRef]
- Tu, J.; Gan, Y.; Linag, T.; Hu, Q.; Wang, Q.; Ren, T.; Sun, Q.; Wan, H.; Wang, P. Graphene FET Array Biosensor Based on ssDNA Aptamer for Ultrasensitive Hg2+ Detection in Environmental Pollutants. Front. Chem. 2018, 6, 333. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, D.; Kumar, S.; Panda, S. Amorphous IGZO field effect transistor based flexible chemical and biosensors for label free detection. Flex. Print. Electron. 2020, 5, 014010. [Google Scholar] [CrossRef]
- Tang, W.; Fu, Y.; Huang, Y.; Li, Y.; Song, Y.; Xi, X.; Yu, Y.; Su, Y.; Yan, F.; Guo, X. Solution processed low power organic field-effect transistor bio-chemical sensor of high transconductance efficiency. NPJ Flex. Electron. 2022, 6, 18. [Google Scholar] [CrossRef]
- Chong, C.; Liu, H.; Wang, S.; Chen, S.; Xie, H. Sensitivity Analysis of Biosensors Based on a Dielectric-Modulated L-Shaped Gate Field-Effect Transistor. Micromachines 2020, 12, 19. [Google Scholar] [CrossRef]
- Thriveni, G.; Ghosh, K. Theoretical analysis and optimization of high-k dielectric layers for designing high-performance and low-power-dissipation nanoscale double-gate MOSFETs. J. Comput. Electron. 2019, 18, 924–940. [Google Scholar] [CrossRef]
- Thriveni, G.; Ghosh, K. Performance analysis of nanoscale double gate strained silicon MOSFET with high k dielectric layers. Mater. Res. Exp. 2019, 6, 085062. [Google Scholar] [CrossRef]
- Damodaran, V.; Choudhury, K.; Ghosh, K. Modelling and simulation of carrier transport in quantum dot memory device for longer data retention and minimized power consumption. J. Comput. Electron. 2021, 20, 178–194. [Google Scholar] [CrossRef]
- Jana, G.; Sen, D.; Debnath, P.; Chanda, M. Power and delay analysis of dielectric modulated dual cavity Junctionless double gate field effect transistor based label-free biosensor. Comput. Electr. Eng. 2022, 99, 107828. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thriveni, G.; Ghosh, K. Advancement and Challenges of Biosensing Using Field Effect Transistors. Biosensors 2022, 12, 647. https://doi.org/10.3390/bios12080647
Thriveni G, Ghosh K. Advancement and Challenges of Biosensing Using Field Effect Transistors. Biosensors. 2022; 12(8):647. https://doi.org/10.3390/bios12080647
Chicago/Turabian StyleThriveni, Gokuraju, and Kaustab Ghosh. 2022. "Advancement and Challenges of Biosensing Using Field Effect Transistors" Biosensors 12, no. 8: 647. https://doi.org/10.3390/bios12080647
APA StyleThriveni, G., & Ghosh, K. (2022). Advancement and Challenges of Biosensing Using Field Effect Transistors. Biosensors, 12(8), 647. https://doi.org/10.3390/bios12080647