Development of an Open Microfluidic Platform for Oocyte One-Stop Vitrification with Cryotop Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Device Design and Fabrication
2.2. System Operation
- Step 0: The operator manually places the oocyte at the bottom of the oocyte chamber with a small amount of medium through the stereo microscope.
- Step 1: Load 20 L ES (50 L/min) into the solution exchange chamber. Part of the ES will be introduced into the oocyte chamber through the spontaneous aspirating of the capillary gap. Wait for 9–12 min for equilibration of the oocyte in ES.
- Step 2: Unload ES (100 L/min) from the solution exchange chamber until the liquid level of residual solution around oocyte is below the capillary gap.
- Step 3: Load 20 L VS (50 L/min) into the solution exchange chamber; part of the VS will be introduced into the oocyte chamber, in which the oocyte is treated for 30 s. Note that due to the high concentration of cryoprotectant in VS, excessive operation time will have adverse effects on the oocyte. Steps 3–5 should be completed within 1 min.
- Step 4: Unload VS (100 L/min) from the solution exchange chamber until the liquid level of residual solution around oocyte is below the capillary gap, which is similar to Step 2.
- Step 5: After the CPAs exchange is completed, the operator presses the transfer handle to transfer the oocyte from the channel to the Cryotop by syringe pump. Finally, the operator puts the Cryotop into to complete the vitrification.
2.3. Fluid Simulation
2.4. Characterization of the Open Microfluidic Performance
2.5. Mouse Maintenance and Oocytes Collection
2.6. Manual Vitrification Procedure
2.7. Thawing Procedure
2.8. Evaluation of Success Rate and Oocyte Survival Rate
2.9. JC-1 Staining and ROS Level Measurement of the Oocytes
2.10. Confocal Imaging
2.11. Statistical Analysis
3. Results and Discussion
3.1. Fluid Simulation and Performance Characterization of the Open Microfluidic Chip
3.2. Success Rate and Oocyte Survival Rate
3.3. No Difference between Manual Manipulation and Microfluidics System for Oocytes Cryopreservation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kuwayama, M.; Vajta, G.; Kato, O.; Leibo, S.P. Highly efficient vitrification method for cryopreservation of human oocytes. Reprod. Biomed. Online 2005, 11, 300–308. [Google Scholar] [CrossRef]
- Lucena, E.; Bernal, D.P.; Lucena, C.; Rojas, A.; Moran, A.; Lucena, A. Successful ongoing pregnancies after vitrification of oocytes. Fertil. Steril. 2006, 85, 108–111. [Google Scholar] [CrossRef] [PubMed]
- Gook, D.A.; Edgar, D.H. Human oocyte cryopreservation. Hum. Reprod. Update 2007, 13, 591–605. [Google Scholar] [CrossRef] [PubMed]
- Chen, C. Pregnancy after human oocyte cryopreservation. Lancet 1986, 327, 884–886. [Google Scholar] [CrossRef]
- Kuwayama, M. Highly efficient vitrification for cryopreservation of human oocytes and embryos: The Cryotop method. Theriogenology 2007, 67, 73–80. [Google Scholar] [CrossRef]
- Guo, Y.; Yang, Y.; Yi, X.; Zhou, X. Microfluidic method reduces osmotic stress injury to oocytes during cryoprotectant addition and removal processes in porcine oocytes. Cryobiology 2019, 90, 63–70. [Google Scholar] [CrossRef]
- Al-Hasani, S.; Diedrich, K.; Van der Ven, H.; Reinecke, A.; Hartje, M.; Krebs, D. Cryopreservation of human oocytes. Hum. Reprod. 1987, 2, 695–700. [Google Scholar] [CrossRef]
- Clark, N.A.; Swain, J.E. Oocyte cryopreservation: Searching for novel improvement strategies. J. Assist. Reprod. Genet. 2013, 30, 865–875. [Google Scholar] [CrossRef]
- Cobo, A.; Bellver, J.; Domingo, J.; Pérez, S.; Crespo, J.; Pellicer, A.; Remohí, J. New options in assisted reproduction technology: The Cryotop method of oocyte vitrification. Reprod. Biomed. Online 2008, 17, 68–72. [Google Scholar] [CrossRef]
- Bromfield, J.; Coticchio, G.; Hutt, K.; Sciajno, R.; Borini, A.; Albertini, D.F. Meiotic spindle dynamics in human oocytes following slow-cooling cryopreservation. Hum. Reprod. 2009, 24, 2114–2123. [Google Scholar] [CrossRef] [Green Version]
- Moussa, M.; Shu, J.; Zhang, X.; Zeng, F. Cryopreservation of mammalian oocytes and embryos: Current problems and future perspectives. Sci. China Life Sci. 2014, 57, 903–914. [Google Scholar] [CrossRef] [PubMed]
- Mandawala, A.A.; Harvey, S.C.; Roy, T.; Fowler, K. Cryopreservation of animal oocytes and embryos: Current progress and future prospects. Theriogenology 2016, 86, 1637–1644. [Google Scholar] [CrossRef] [PubMed]
- Cobo, A.; García-Velasco, J.A.; Coello, A.; Domingo, J.; Pellicer, A.; Remohí, J. Oocyte vitrification as an efficient option for elective fertility preservation. Fertil. Steril. 2016, 105, 755–764. [Google Scholar] [CrossRef] [PubMed]
- Antinori, M.; Licata, E.; Dani, G.; Cerusico, F.; Versaci, C.; Antinori, S. Cryotop vitrification of human oocytes results in high survival rate and healthy deliveries. Reprod. Biomed. Online 2007, 14, 72–79. [Google Scholar] [CrossRef]
- Miao, S.; Chen, D.; Nie, Q.; Jiang, X.; Sun, X.; Dai, J.; Liu, Y.H.; Li, X. Development of a Vision-Based Robotic Manipulation System for Transferring of Oocytes. In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 27 September–1 October 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 7470–7475. [Google Scholar]
- Yetkinel, S.; Kilicdag, E.B.; Aytac, P.C.; Haydardedeoglu, B.; Simsek, E.; Cok, T. Effects of the microfluidic chip technique in sperm selection for intracytoplasmic sperm injection for unexplained infertility: A prospective, randomized controlled trial. J. Assist. Reprod. Genet. 2019, 36, 403–409. [Google Scholar] [CrossRef]
- Weng, L. IVF-on-a-Chip: Recent advances in microfluidics technology for in vitro fertilization. Slas Technol. Transl. Life Sci. Innov. 2019, 24, 373–385. [Google Scholar] [CrossRef]
- Thapa, S.; Heo, Y.S. Microfluidic technology for in vitro fertilization (IVF). JMST Adv. 2019, 1, 1–11. [Google Scholar] [CrossRef]
- Chen, Y.S.; Lo, T.W.; Huang, H.Y.; Li, L.M.; Wang, Y.W.; Yao, D.J.; Hsu, W.S.; Liu, C.H. A microfluidic lab chip for the manipulation and co-culturing of embryos with stromal cells. Sens. Actuators B Chem. 2021, 349, 130820. [Google Scholar] [CrossRef]
- Doufène, K.; Tourné-Péteilh, C.; Etienne, P.; Aubert-Pouëssel, A. Microfluidic systems for droplet generation in aqueous continuous phases: A focus review. Langmuir 2019, 35, 12597–12612. [Google Scholar] [CrossRef]
- Damiati, S.; Kompella, U.B.; Damiati, S.A.; Kodzius, R. Microfluidic devices for drug delivery systems and drug screening. Genes 2018, 9, 103. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Torab, P.; Mach, K.E.; Surrette, C.; England, M.R.; Craft, D.W.; Thomas, N.J.; Liao, J.C.; Puleo, C.; Wong, P.K. Adaptable microfluidic system for single-cell pathogen classification and antimicrobial susceptibility testing. Proc. Natl. Acad. Sci. USA 2019, 116, 10270–10279. [Google Scholar] [CrossRef]
- Zhang, X.; Wei, X.; Men, X.; Wu, C.X.; Bai, J.J.; Li, W.T.; Yang, T.; Chen, M.L.; Wang, J.H. Dual-Multivalent-Aptamer-Conjugated Nanoprobes for Superefficient Discerning of Single Circulating Tumor Cells in a Microfluidic Chip with Inductively Coupled Plasma Mass Spectrometry Detection. ACS Appl. Mater. Interfaces 2021, 13, 43668–43675. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wei, X.; Men, X.; Jiang, Z.; Ye, W.Q.; Chen, M.L.; Yang, T.; Xu, Z.R.; Wang, J.H. Inertial-force-assisted, high-throughput, droplet-free, single-cell sampling coupled with ICP-MS for real-time cell analysis. Anal. Chem. 2020, 92, 6604–6612. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Huang, B.; Cai, G.; Chen, Y.; Wu, T. Facile and highly efficient loading and freezing of cryoprotectants for oocyte vitrification based on planar microfluidics. Microfluid. Nanofluidics 2021, 25, 63. [Google Scholar] [CrossRef]
- Pyne, D.G.; Liu, J.; Abdelgawad, M.; Sun, Y. Digital microfluidic processing of mammalian embryos for vitrification. PLoS ONE 2014, 9, e108128. [Google Scholar] [CrossRef] [PubMed]
- Martín-Villalba, T.; Fidalgo, J.S.; Carasa, P.; Garcia, D.; Munuera, C.D.; Cancio-Villalonga, D.; Álvarez-Argüelles, S.; Fernandez, G.; Bajo, E.; Fernandez, A.; et al. Validation of an oocyte vitrification using davitri, a novel automated microfluidics device. Fertil. Steril. 2021, 116, e200–e201. [Google Scholar] [CrossRef]
- Tirgar, P.; Sarmadi, F.; Najafi, M.; Kazemi, P.; AzizMohseni, S.; Fayazi, S.; Zandi, G.; Ziaie, N.; Shoushtari Zadeh Naseri, A.; Ehrlicher, A.; et al. Toward embryo cryopreservation-on-a-chip: A standalone microfluidic platform for gradual loading of cryoprotectants to minimize cryoinjuries. Biomicrofluidics 2021, 15, 034104. [Google Scholar] [CrossRef]
- Lai, D.; Ding, J.; Smith, G.; Smith, G.; Takayama, S. Slow and steady cell shrinkage reduces osmotic stress in bovine and murine oocyte and zygote vitrification. Hum. Reprod. 2015, 30, 37–45. [Google Scholar] [CrossRef]
- Heo, Y.S.; Lee, H.J.; Hassell, B.A.; Irimia, D.; Toth, T.L.; Elmoazzen, H.; Toner, M. Controlled loading of cryoprotectants (CPAs) to oocyte with linear and complex CPA profiles on a microfluidic platform. Lab chip 2011, 11, 3530–3537. [Google Scholar] [CrossRef]
- Song, Y.S.; Moon, S.; Hulli, L.; Hasan, S.K.; Kayaalp, E.; Demirci, U. Microfluidics for cryopreservation. Lab Chip 2009, 9, 1874–1881. [Google Scholar] [CrossRef]
- Miao, S.; Jiang, Z.; Luo, J.; Zhong, F.; Wei, H.; Sun, X.; Jiang, X.; Jiang, M.; Liu, Y. A Robotic System with Embedded Open Microfluidic Chip for Automatic Embryo Vitrification. IEEE Trans. Biomed. Eng. 2022. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Cui, K.; Kong, Q.; Zhang, L.; Ge, S.; Yu, J. A self-powered origami paper analytical device with a pop-up structure for dual-mode electrochemical sensing of ATP assisted by glucose oxidase-triggered reaction. Biosens. Bioelectron. 2020, 148, 111839. [Google Scholar] [CrossRef]
- Berthier, J.; Brakke, K.A.; Berthier, E. Open Microfluidics; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Berthier, J.; Brakke, K.; Furlani, E.; Karampelas, I.; Poher, V.; Gosselin, D.; Cubizolles, M.; Pouteau, P. Whole blood spontaneous capillary flow in narrow V-groove microchannels. Sens. Actuators B Chem. 2015, 206, 258–267. [Google Scholar] [CrossRef]
- Glière, A.; Delattre, C. Modeling and fabrication of capillary stop valves for planar microfluidic systems. Sens. Actuators A Phys. 2006, 130, 601–608. [Google Scholar] [CrossRef]
- De Gennes, P.G.; Brochard-Wyart, F.; Quéré, D. Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves; Springer: Berlin/Heidelberg, Germany, 2004; Volume 315. [Google Scholar]
- Wang, Z.; Chang, C.C.; Hong, S.J.; Sheng, Y.J.; Tsao, H.K. Trapped liquid drop in a microchannel: Multiple stable states. Phys. Rev. E 2013, 87, 062401. [Google Scholar] [CrossRef] [PubMed]
- Udono, H.; Nishida, M. Metformin-ROS-Nrf2 connection in the host defense mechanism against oxidative stress, apoptosis, cancers, and ageing. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2022, 1866, 130171. [Google Scholar] [CrossRef] [PubMed]
- Roy, T.K.; Brandi, S.; Tappe, N.M.; Bradley, C.K.; Vom, E.; Henderson, C.; Lewis, C.; Battista, K.; Hobbs, B.; Hobbs, S.; et al. Embryo vitrification using a novel semi-automated closed system yields in vitro outcomes equivalent to the manual Cryotop method. Hum. Reprod. 2014, 29, 2431–2438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
GV Stage | |||
---|---|---|---|
Number | Success Rate (%) | Survival Rate (%) | |
Manual | 37 | 97.3 | 94.4 |
Microfluidic | 39 | 100 | 97.4 |
MII Stage | |||
---|---|---|---|
Number | Success Rate (%) | Survival Rate (%) | |
Manual | 47 | 97.9 | 97.8 |
Microfluidic | 45 | 100 | 97.8 |
Jiang et al. [25] | 20 | / | 75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miao, S.; Guo, C.; Jiang, Z.; Wei, H.-X.; Jiang, X.; Gu, J.; Hai, Z.; Wang, T.; Liu, Y.-H. Development of an Open Microfluidic Platform for Oocyte One-Stop Vitrification with Cryotop Method. Biosensors 2022, 12, 766. https://doi.org/10.3390/bios12090766
Miao S, Guo C, Jiang Z, Wei H-X, Jiang X, Gu J, Hai Z, Wang T, Liu Y-H. Development of an Open Microfluidic Platform for Oocyte One-Stop Vitrification with Cryotop Method. Biosensors. 2022; 12(9):766. https://doi.org/10.3390/bios12090766
Chicago/Turabian StyleMiao, Shu, Chenxi Guo, Ze Jiang, Hao-Xiang Wei, Xin Jiang, Jingkai Gu, Zhuo Hai, Tianren Wang, and Yun-Hui Liu. 2022. "Development of an Open Microfluidic Platform for Oocyte One-Stop Vitrification with Cryotop Method" Biosensors 12, no. 9: 766. https://doi.org/10.3390/bios12090766
APA StyleMiao, S., Guo, C., Jiang, Z., Wei, H. -X., Jiang, X., Gu, J., Hai, Z., Wang, T., & Liu, Y. -H. (2022). Development of an Open Microfluidic Platform for Oocyte One-Stop Vitrification with Cryotop Method. Biosensors, 12(9), 766. https://doi.org/10.3390/bios12090766