Fluorescent Sensing of Glutathione and Related Bio-Applications
Abstract
:1. Introduction
2. Fluorescent Sensing Principle
2.1. The Components of Fluorescent Sensors
2.2. The Mechanisms of Fluorescent Sensors
3. Fluorescent Methods for GSH Sensing
3.1. Fluorescent GSH Sensing via Its Reaction with Organic Fluorescent Compounds
3.2. Fluorescent GSH Sensing via Its Interaction with Nanomaterials
3.3. Fluorescent GSH Sensing via Indicator Displacement Assay
4. Fluorescent GSH-Sensing-Actuated Bio-Applications
4.1. GSH Imaging
4.2. Cancer Cell Recognition
4.3. Other Bio-Applications
5. Conclusions and Outlooks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Wang, L.; Ahn, Y.J.; Asmis, R. Sexual dimorphism in glutathione metabolism and glutathione-dependent responses. Redox Biol. 2020, 31, 101410. [Google Scholar] [CrossRef]
- Tian, M.; Liu, Y.; Jiang, F.L. On the Route to Quantitative Detection and Real-Time Monitoring of Glutathione in Living Cells by Reversible Fluorescent Probes. Anal Chem. 2020, 92, 14285–14291. [Google Scholar] [CrossRef]
- Zou, Y.; Li, M.; Xing, Y.; Duan, T.; Zhou, X.; Yu, F. Bioimaging of Glutathione with a Two-Photon Fluorescent Probe and Its Potential Application for Surgery Guide in Laryngeal Cancer. ACS Sens. 2020, 5, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Sudeep, P.K.; Joseph, S.T.; Thomas, K.G. Selective detection of cysteine and glutathione using gold nanorods. J. Am. Chem. Soc. 2005, 127, 6516–6517. [Google Scholar] [CrossRef] [PubMed]
- Saha, A.; Jana, N.R. Detection of cellular glutathione and oxidized glutathione using magnetic-plasmonic nanocomposite-based “turn-off” surface enhanced Raman scattering. Anal Chem. 2013, 85, 9221–9228. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Zhong, Z.; Guo, Y.; Lv, J.; Xu, J.; Zhu, M.; Li, Y.; Liu, H.; Wang, S.; Zhu, Y.; et al. Gold nanoparticle-based monitoring of the reduction of oxidized to reduced glutathione. Langmuir 2007, 23, 8815–8819. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Kwon, Y.; Chung, K.S.; Lim, C.S.; Lee, D.; Yue, Y.; Yoon, J.; Kim, G.; Nam, S.J.; Chung, Y.W.; et al. Naphthalene-based fluorescent probes for glutathione and their applications in living cells and patients with sepsis. Theranostics 2018, 8, 1411–1420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsugawa, S.; Noda, Y.; Tarumi, R.; Mimura, Y.; Yoshida, K.; Iwata, Y.; Elsalhy, M.; Kuromiya, M.; Kurose, S.; Masuda, F.; et al. Glutathione levels and activities of glutathione metabolism enzymes in patients with schizophrenia: A systematic review and meta-analysis. J. Psychopharmacol. 2019, 33, 1199–1214. [Google Scholar] [CrossRef]
- Xu, Z.; Qin, T.; Zhou, X.; Wang, L.; Liu, B. Fluorescent probes with multiple channels for simultaneous detection of Cys, Hcy, GSH, and H2S. Trends Anal. Chem. 2019, 121, 115672. [Google Scholar] [CrossRef]
- Hermann, G.; Heffeter, P.; Kryeziu, K.; Berger, W.; Hann, S.; Koellensperger, G. The study of reduced versus oxidized glutathione in cancer cell models employing isotopically labelled standards. Anal. Methods 2014, 6, 3086–3094. [Google Scholar] [CrossRef]
- McDermott, G.P.; Francis, P.S.; Holt, K.J.; Scott, K.L.; Martin, S.D.; Stupka, N.; Barnett, N.W.; Conlan, X.A. Determination of intracellular glutathione and glutathione disulfide using high performance liquid chromatography with acidic potassium permanganate chemiluminescence detection. Analyst 2011, 136, 2578–2585. [Google Scholar] [CrossRef] [Green Version]
- Vallverdu-Queralt, A.; Verbaere, A.; Meudec, E.; Cheynier, V.; Sommerer, N. Straightforward method to quantify GSH, GSSG, GRP, and hydroxycinnamic acids in wines by UPLC-MRM-MS. J. Agric. Food Chem. 2015, 63, 142–149. [Google Scholar] [CrossRef]
- Kontogianni, V.G.; Tsiafoulis, C.G.; Roussis, I.G.; Gerothanassis, I.P. Selective 1D TOCSY NMR method for the determination of glutathione in white wine. Anal. Methods 2017, 9, 4464–4470. [Google Scholar] [CrossRef]
- Khan, Z.G.; Patil, M.R.; Nangare, S.N.; Patil, A.G.; Boddu, S.H.S.; Tade, R.S.; Patil, P.O. Surface nanoarchitectured metal–organic frameworks-based sensor for reduced glutathione sensing: A review. J. Nanostructure Chem. 2022, 12, 1053–1074. [Google Scholar] [CrossRef]
- Li, N.-N.; Shi, N.-N.; Yang, D.; Wu, R.-X.; Xu, C.-G.; Zhu, B.; Shao, F.; Zhang, X.; Bi, S.-Y.; Fan, Y.-H. Solid-state fluorescent switch based on the intercoversion of J-aggregation and dimer and aggregation pattern-dependent fluorescence colorimetric sensing of GSH/Zn2+/Cd2+. J. Mol. Liq. 2021, 342, 116946. [Google Scholar] [CrossRef]
- Meloni, G.N.; Bertotti, M. Ring-disc Microelectrodes towards Glutathione Electrochemical Detection. Electroanalysis 2017, 29, 787–793. [Google Scholar] [CrossRef]
- Liu, D.; Bai, X.; Sun, J.; Zhao, D.; Hong, C.; Jia, N. Hollow In2O3/In2S3 nanocolumn-assisted molecularly imprinted photoelectrochemical sensor for glutathione detection. Sens. Actuators B Chem. 2022, 359, 131542. [Google Scholar] [CrossRef]
- Hanko, M.; Svorc, L.; Plankova, A.; Mikus, P. Overview and recent advances in electrochemical sensing of glutathione—A review. Anal. Chim. Acta 2019, 1062, 1–27. [Google Scholar] [CrossRef]
- Cheraghi, S.; Taher, M.A.; Karimi-Maleh, H.; Karimi, F.; Shabani-Nooshabadi, M.; Alizadeh, M.; Al-Othman, A.; Erk, N.; Yegya Raman, P.K.; Karaman, C. Novel enzymatic graphene oxide based biosensor for the detection of glutathione in biological body fluids. Chemosphere 2022, 287, 132187. [Google Scholar] [CrossRef]
- Liu, G.; Feng, D.Q.; Hua, D.; Liu, T.; Qi, G.; Wang, W. Fluorescence Enhancement of Terminal Amine Assembled on Gold Nanoclusters and Its Application to Ratiometric Lysine Detection. Langmuir 2017, 33, 14643–14648. [Google Scholar] [CrossRef]
- Nie, L.; Gao, C.; Shen, T.; Jing, J.; Zhang, S.; Zhang, X. Dual-Site Fluorescent Probe to Monitor Intracellular Nitroxyl and GSH-GSSG Oscillations. Anal. Chem. 2019, 91, 4451–4456. [Google Scholar] [CrossRef]
- Bian, B.; Zhu, X.; Wu, Q.; Liu, Y.; Liu, S.; Liu, Q.; Yu, S. Pt and ZnFe2O4 Nanoparticles Immobilized on Carbon for the Detection of Glutathione. ACS Appl. Nano Mater. 2021, 4, 9479–9488. [Google Scholar] [CrossRef]
- Rao, H.L.; Chen, J.W.; Li, M.; Xiao, Y.B.; Fu, J.; Zeng, Y.X.; Cai, M.Y.; Xie, D. Increased intratumoral neutrophil in colorectal carcinomas correlates closely with malignant phenotype and predicts patients’ adverse prognosis. PLoS ONE. 2012, 7, e30806. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Huang, Y.; Cao, D.; Qiu, S.; Chen, B.; Li, J.; Bao, Y.; Wei, Q.; Han, P.; Liu, L. Vitamin C Intake and Cancers: An Umbrella Review. Front. Nutr. 2021, 8, 812394. [Google Scholar] [CrossRef]
- Sasaki, Y.; Kubota, R.; Minami, T. Molecular self-assembled chemosensors and their arrays. Coord. Chem. Rev. 2021, 429, 213607. [Google Scholar] [CrossRef]
- Ding, C.; Zhu, A.; Tian, Y. Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging. Accounts Chem. Res. 2014, 47, 20–30. [Google Scholar] [CrossRef]
- Liu, T.; Yang, L.; Zhang, J.; Liu, K.; Ding, L.; Peng, H.; Belfield, K.D.; Fang, Y. Squaraine-hydrazine adducts for fast and colorimetric detection of aldehydes in aqueous media. Sens. Actuators B Chem. 2019, 292, 88–93. [Google Scholar] [CrossRef]
- Qiao, M.; Zhang, R.; Liu, S.; Liu, J.; Ding, L.; Fang, Y. Imidazolium-Modified Bispyrene-Based Fluorescent Aggregates for Discrimination of Multiple Anions in Aqueous Solution. ACS Appl. Mater. Interfaces 2022, 14, 32706–32718. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Yu, R.; Yan, Y.; Zeng, H.; Luo, S.; Liu, N.; Morrin, A.; Luo, X.; Li, W. A review of ratiometric electrochemical sensors: From design schemes to future prospects. Sens. Actuators B Chem. 2018, 274, 501–516. [Google Scholar] [CrossRef]
- Yu, J.; Tsow, F.; Mora, S.J.; Tipparaju, V.V.; Xian, X. Hydrogel-incorporated Colorimetric Sensors with High Humidity Tolerance for Environmental Gases Sensing. Sens. Actuators B Chem. 2021, 345, 130404. [Google Scholar] [CrossRef]
- Sun, X.H.; Riccardi, L.; De Biasi, F.; Rastrelli, F.; De Vivo, M.; Mancin, F. Molecular dynamic simulation-directed rational design of nanoreceptors with targeted affinity. Angew. Chem. Int. Ed. 2019, 58, 7702–7707. [Google Scholar] [CrossRef]
- De Biasi, F.; Mancin, F.; Rastrelli, F. Nanoparticle-assisted NMR spectroscopy: A chemosensing perspective. Prog. Nucl. Magn. Reson. Spectrosc. 2020, 117, 70–88. [Google Scholar] [CrossRef]
- Riccardi, L.; Gabrielli, L.; Sun, X.; De Biasi, F.; Rastrelli, F.; Mancin, F.; De Vivo, M. Nanoparticle-Based Receptors Mimic Protein-Ligand Recognition. Chem 2017, 3, 92–109. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.-B.; Zhao, H.-Y.; Tong, Z.; Zhang, Y.; Lan, B.; Wang, J. A colorimetric, ratiometric, and fluorescent cobalt(II) chemosensor based on mixed organic ligands. Sens. Actuators B Chem. 2017, 239, 511–514. [Google Scholar] [CrossRef]
- Jonaghani, M.Z.; Zali-Boeini, H.; Moradi, H. A coumarin based highly sensitive fluorescent chemosensor for selective detection of zinc ion. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 207, 16–22. [Google Scholar] [CrossRef]
- Liu, K.; Shang, C.; Wang, Z.; Qi, Y.; Miao, R.; Liu, K.; Liu, T.; Fang, Y. Non-contact identification and differentiation of illicit drugs using fluorescent films. Nat. Commun. 2018, 9, 1695. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Yang, L.; Feng, W.; Liu, K.; Ran, Q.; Wang, W.; Liu, Q.; Peng, H.; Ding, L.; Fang, Y. Dual-Mode Photonic Sensor Array for Detecting and Discriminating Hydrazine and Aliphatic Amines. ACS Appl. Mater. Interfaces 2020, 12, 11084–11093. [Google Scholar] [CrossRef]
- He, S.; Xiao, L.; Marin, L.; Bai, Y.; Cheng, X. Fully-water-soluble BODIPY containing fluorescent polymers prepared by RAFT method for the detection of Fe3+ ions. Eur. Polym. J. 2021, 150, 110428. [Google Scholar] [CrossRef]
- Li, X.G.; Zhang, F.; Gao, Y.; Zhou, Q.M.; Zhao, Y.; Li, Y.; Huo, J.Z.; Zhao, X.J. Facile synthesis of red emitting 3-aminophenylboronic acid functionalized copper nanoclusters for rapid, selective and highly sensitive detection of glycoproteins. Biosens. Bioelectron. 2016, 86, 270–276. [Google Scholar] [CrossRef]
- Chu, C.; Shen, L.; Ge, S.; Ge, L.; Yu, J.; Yan, M.; Song, X. Using “dioscorea batatas bean”-like silver nanoparticles based localized surface plasmon resonance to enhance the fluorescent signal of zinc oxide quantum dots in a DNA sensor. Biosens. Bioelectron. 2014, 61, 344–350. [Google Scholar] [CrossRef]
- Xi, L.-L.; Ma, H.-B.; Tao, G.-H. Thiourea functionalized CdSe/CdS quantum dots as a fluorescent sensor for mercury ion detection. Chin. Chem. Lett. 2016, 27, 1531–1536. [Google Scholar] [CrossRef]
- Zhou, X.; Kim, J.; Liu, Z.; Jo, S.; Pak, Y.L.; Swamy, K.M.K.; Yoon, J. Selective fluorescent and colorimetric recognition of cyanide via altering hydrogen bonding interaction in aqueous solution and its application in bioimaging. Dye. Pigment. 2016, 128, 256–262. [Google Scholar] [CrossRef]
- Yang, Y.S.; Liang, C.; Yang, C.; Zhang, Y.P.; Wang, B.X.; Liu, J. A novel coumarin-derived acylhydrazone Schiff base gelator for synthesis of organogels and identification of Fe(3). Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 237, 118391. [Google Scholar] [CrossRef] [PubMed]
- Pavadai, R.; Amalraj, A.; Subramanian, S.; Perumal, P. High Catalytic Activity of Fluorophore-Labeled Y-Shaped DNAzyme/3D MOF-MoS2NBs as a Versatile Biosensing Platform for the Simultaneous Detection of Hg(2+), Ni(2+), and Ag(+) Ions. ACS Appl. Mater. Interfaces 2021, 13, 31710–31724. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zhou, Q.; Sheng, X.; Li, S.; Tong, Y.; Guo, J.; Zhou, B.; Zhao, J.; Liu, M.; Li, Z.; et al. Highly selective fluorescence sensor sensing benzo[a]pyrene in water utilizing carbon dots derived from 4-carboxyphenylboronic acid. Chemosphere 2021, 282, 131127. [Google Scholar] [CrossRef]
- Cui, Y.; Yuan, C.; Tan, H.; Zhang, Z.; Jia, Y.; Na, N.; Ouyang, J. Plasmon-Enhanced Fluorescent Sensor based on Aggregation-Induced Emission for the Study of Protein Conformational Transformation. Adv. Funct. Mater. 2019, 29, 1807211. [Google Scholar] [CrossRef]
- Ozcan, E.; Tumay, S.O.; Kesan, G.; Yesilot, S.; Cosut, B. The novel anthracene decorated dendrimeric cyclophosphazenes for highly selective sensing of 2,4,6-trinitrotoluene (TNT). Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 220, 117115. [Google Scholar] [CrossRef]
- Laurenti, M.; Paez-Perez, M.; Algarra, M.; Alonso-Cristobal, P.; Lopez-Cabarcos, E.; Mendez-Gonzalez, D.; Rubio-Retama, J. Enhancement of the Upconversion Emission by Visible-to-Near-Infrared Fluorescent Graphene Quantum Dots for miRNA Detection. ACS Appl. Mater. Interfaces 2016, 8, 12644–12651. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, T.; Fang, Y. Perylene Bisimide Derivative-Based Fluorescent Film Sensors: From Sensory Materials to Device Fabrication. Langmuir 2020, 36, 2155–2169. [Google Scholar] [CrossRef]
- Natali, M.; Campagna, S.; Scandola, F. Photoinduced electron transfer across molecular bridges: Electron- and hole-transfer superexchange pathways. Chem. Soc. Rev. 2014, 43, 4005–4018. [Google Scholar] [CrossRef]
- Wu, H.; Du, L.; Luo, J.; Wang, Z.; Phillips, D.L.; Qin, A.; Tang, B.Z. Structural modification on tetraphenylpyrazine: From polarity enhanced emission to polarity quenching emission and its intramolecular charge transfer mechanism. J. Mater. Chem. C Mater. 2022, 10, 8174–8180. [Google Scholar] [CrossRef]
- Si, B.; Wang, Y.; Lu, S.; Liu, E.; Fan, J.; Hu, X. Construction of a nanoprobe based on fluorescence resonance energy transfer for dopamine detection. J. Control. Release 2017, 259, e13–e14. [Google Scholar] [CrossRef]
- Fukuhara, G. Analytical supramolecular chemistry: Colorimetric and fluorimetric chemosensors. J. Photochem. Photobiol. C 2020, 42, 100340. [Google Scholar] [CrossRef]
- Kim, S.; Park, K.S. Fluorescence resonance energy transfer using DNA-templated copper nanoparticles for ratiometric detection of microRNAs. Analyst 2021, 146, 1844–1847. [Google Scholar] [CrossRef] [PubMed]
- Geng, W.C.; Ye, Z.; Zheng, Z.; Gao, J.; Li, J.J.; Shah, M.R.; Xiao, L.; Guo, D.S. Supramolecular Bioimaging through Signal Amplification by Combining Indicator Displacement Assay with Forster Resonance Energy Transfer. Angew. Chem. Int. Ed. Engl. 2021, 60, 19614–19619. [Google Scholar] [CrossRef]
- Praveen Kumar, P.P.; Kaur, N.; Shanavas, A.; Neelakandan, P.P. Nanomolar detection of biothiols via turn-ON fluorescent indicator displacement. Analyst 2020, 145, 851–857. [Google Scholar] [CrossRef]
- Sakakibara, K.; Joyce, L.A.; Mori, T.; Fujisawa, T.; Shabbir, S.H.; Hill, J.P.; Anslyn, E.V.; Ariga, K. A mechanically controlled indicator displacement assay. Angew. Chem. Int. Ed. Engl. 2012, 51, 9643–9646. [Google Scholar] [CrossRef]
- Qin, T.; Zhao, X.; Lv, T.; Yao, G.; Xu, Z.; Wang, L.; Zhao, C.; Xu, H.; Liu, B.; Peng, X. General Method for Pesticide Recognition Using Albumin-Based Host-Guest Ensembles. ACS Sens. 2022, 7, 2020–2027. [Google Scholar] [CrossRef]
- Forman, H.J.; Zhang, H.; Rinna, A. Glutathione: Overview of its protective roles, measurement, and biosynthesis. Mol. Asp. Med. 2009, 30, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Lv, X.; Liu, J.; Sun, Y.Q.; Guo, W. Construction of a selective fluorescent probe for GSH based on a chloro-functionalized coumarin-enone dye platform. Chemistry 2015, 21, 4747–4754. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, L.; Chen, W.; Huang, J.; Huang, C.; Sheng, J.; Song, X. A Lysosome-Targetable Fluorescent Probe for Simultaneously Sensing Cys/Hcy, GSH, and H2S from Different Signal Patterns. ACS Sens. 2018, 3, 2513–2517. [Google Scholar] [CrossRef]
- Li, H.; Yang, Y.; Qi, X.; Zhou, X.; Ren, W.X.; Deng, M.; Wu, J.; Lu, M.; Liang, S.; Teichmann, A.T. Design and applications of a novel fluorescent probe for detecting glutathione in biological samples. Anal. Chim. Acta 2020, 1117, 18–24. [Google Scholar] [CrossRef]
- Lou, X.; Hong, Y.; Chen, S.; Leung, C.W.; Zhao, N.; Situ, B.; Lam, J.W.; Tang, B.Z. A selective glutathione probe based on AIE fluorogen and its application in enzymatic activity assay. Sci. Rep. 2014, 4, 4272. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Wu, S.; Tang, H.; Meier, H.; Cao, D. An efficient probe for sensing different concentration ranges of glutathione based on AIE-active Schiff base nanoaggregates with distinct reaction mechanism. Sens. Actuators B Chem. 2018, 273, 1085–1090. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, J.; Qu, W.; Zhong, X.; Liu, H.; Ren, J.; He, H.; Zhang, X.; Wang, S. Development of a novel benzothiadiazole-based fluorescent turn-on probe for highly selective detection of glutathione over cysteine/homocysteine. Sens. Actuators B Chem. 2018, 266, 528–533. [Google Scholar] [CrossRef]
- Shu, W.; Yu, J.; Wang, H.; Yu, A.; Xiao, L.; Li, Z.; Zhang, H.; Zhang, Y.; Wu, Y. Rational design of a reversible fluorescent probe for sensing GSH in mitochondria. Anal. Chim. Acta 2022, 1220, 340081. [Google Scholar] [CrossRef]
- Hu, L.; Wei, X.; Meng, J.; Wang, X.; Chen, X.; Wang, J. Acetaldehyde-modified-cystine as an enhanced fluorescent probe for intracellular glutathione imaging. Sens. Actuators B Chem. 2018, 268, 264–269. [Google Scholar] [CrossRef]
- Zheng, Z.; Huyan, Y.; Li, H.; Sun, S.; Xu, Y. A lysosome-targetable near infrared fluorescent probe for glutathione sensing and live-cell imaging. Sens. Actuators B Chem. 2019, 301, 127065. [Google Scholar] [CrossRef]
- Halawa, M.I.; Wu, G.; Salem, A.E.A.; Su, L.; Li, B.S.; Zhang, X. In situ synthesis of chiral AuNCs with aggregation-induced emission using glutathione and ceria precursor nanosheets for glutathione biosensing. Analyst 2022, 147, 4525–4535. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Sun, Z.; Zhang, H.; Sun, X.; Jiang, Y.; Bai, Z. The fluorescence mechanism of carbon dots, and methods for tuning their emission color: A review. Mikrochim. Acta 2019, 186, 583. [Google Scholar] [CrossRef]
- Li, J.-F.; Huang, P.-C.; Wu, F.-Y. Highly selective and sensitive detection of glutathione based on anti-aggregation of gold nanoparticles via pH regulation. Sens. Actuators B Chem. 2017, 240, 553–559. [Google Scholar] [CrossRef]
- Hu, P.; Zhang, Y.; Wang, D.; Qi, G.; Jin, Y. Glutathione Content Detection of Single Cells under Ingested Doxorubicin by Functionalized Glass Nanopores. Anal. Chem. 2021, 93, 4240–4245. [Google Scholar] [CrossRef]
- Hu, Q.; Sun, H.; Zhou, X.; Gong, X.; Xiao, L.; Liu, L.; Yang, Z.Q. Bright-yellow-emissive nitrogen-doped carbon nanodots as a fluorescent nanoprobe for the straightforward detection of glutathione in food samples. Food Chem. 2020, 325, 126946. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Shi, L.; Jia, J.; Eltayeb, O.; Lu, W.; Tang, Y.; Dong, C.; Shuang, S. Dual Photoluminescence Emission Carbon Dots for Ratiometric Fluorescent GSH Sensing and Cancer Cell Recognition. ACS Appl. Mater. Interfaces 2020, 12, 18250–18257. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhou, J.; Feng, H.; Zheng, J.; Ma, H.M.; Liu, W.; Tang, C.; Ao, H.; Zhao, M.; Qian, Z. A dual-channel fluorescent chemosensor for discriminative detection of glutathione based on functionalized carbon quantum dots. Biosens. Bioelectron. 2016, 86, 748–755. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Liu, X.; Zhang, X.; Cao, H.; Huang, Y. MnO2 nanowires tuning of photoluminescence of alloy Cu/Ag NCs and thiamine enables a ratiometric fluorescent sensing of glutathione. Sens. Actuators B Chem. 2019, 286, 476–482. [Google Scholar] [CrossRef]
- Zhang, G.; Xiang, M.; Kong, R.M.; Qu, F. Fluorescent and colorimetric determination of glutathione based on the inner filter effect between silica nanoparticle-gold nanocluster nanocomposites and oxidized 3,3′,5,5′-tetramethylbenzidine. Analyst 2020, 145, 6254–6261. [Google Scholar] [CrossRef]
- Zhu, S.; Wang, S.; Xia, M.; Wang, B.; Huang, Y.; Zhang, D.; Zhang, X.; Wang, G. Intracellular Imaging of Glutathione with MnO2 Nanosheet@Ru(bpy)3(2+)-UiO-66 Nanocomposites. ACS Appl. Mater. Interfaces 2019, 11, 31693–31699. [Google Scholar] [CrossRef]
- Guo, F.; Yang, H.; Hong, L.; Sun, X.; Han, J.; Guo, R. Self-organized nanoreceptors-based fluorescent probe for quantitative detection of denatured glutathione. Colloids Surf. A Physicochem. Eng. Asp. 2022, 652, 129914. [Google Scholar] [CrossRef]
- Wang, D.; Meng, Y.-T.; Zhang, Y.; Wang, Q.; Lu, W.-J.; Shuang, S.-M.; Dong, C. A specific discriminating GSH from Cys/Hcy fluorescence nanosensor: The carbon dots-MnO2 nanocomposites. Sens. Actuators B Chem. 2022, 367, 132135. [Google Scholar] [CrossRef]
- Huo, P.; Li, Z.; Gong, C.; Yao, R.; Fan, C.; Chen, Z.; Pu, S. Silver nanoparticles combined with amino-functionalized UiO-66 for sensitive detection of glutathione. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 267, 120617. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Liu, H.; Liang, J.; Zheng, D.; Li, J.; Lan, S.; Wu, M.; Zheng, A.; Liu, X. Protein-assisted formation of gold clusters-MnO2 nanocomposite for fluorescence imaging of intracellular glutathione. Talanta 2020, 209, 120524. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Ling, B.; Wang, L.; Chen, H. A near-infrared luminescent Mn2+-doped NaYF4:Yb,Tm/Fe3+ upconversion nanoparticles redox reaction system for the detection of GSH/Cys/AA. Talanta 2017, 172, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.-T.T.; Huy, B.T.; Tawfik, S.M.; Zayakhuu, G.; Cho, H.H.; Lee, Y.-I. Highly selective and sensitive optosensing of glutathione based on fluorescence resonance energy transfer of upconversion nanoparticles coated with a Rhodamine B derivative. Arab. J. Chem. 2020, 13, 2671–2679. [Google Scholar] [CrossRef]
- Sohal, N.; Maity, B.; Basu, S. Morphology-Dependent Performance of MnO2 Nanostructure-Carbon Dot-Based Biosensors for the Detection of Glutathione. ACS Appl. Bio Mater. 2021, 4, 5158–5168. [Google Scholar] [CrossRef]
- Wang, Q.; Li, L.; Wang, X.; Dong, C.; Shuang, S. Graphene quantum dots wrapped square-plate-like MnO2 nanocomposite as a fluorescent turn-on sensor for glutathione. Talanta 2020, 219, 121180. [Google Scholar] [CrossRef] [PubMed]
- Cai, Q.Y.; Li, J.; Ge, J.; Zhang, L.; Hu, Y.L.; Li, Z.H.; Qu, L.B. A rapid fluorescence “switch-on” assay for glutathione detection by using carbon dots-MnO2 nanocomposites. Biosens. Bioelectron. 2015, 72, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Sun, M.; Lei, T.; Liu, X.; Zhang, Q.; Zong, C. An indicator-displacement assay based on the Murexide-Hg2+ system for fluorescence turn-on detection of biothiols in biological fluids. Sens. Actuators B Chem. 2017, 249, 90–95. [Google Scholar] [CrossRef]
- Das, K.; Sarkar, S.; Das, P.K. Fluorescent Indicator Displacement Assay: Ultrasensitive Detection of Glutathione and Selective Cancer Cell Imaging. ACS Appl. Mater. Interfaces 2016, 8, 25691–25701. [Google Scholar] [CrossRef]
- Yan, X.; Song, Y.; Zhu, C.; Song, J.; Du, D.; Su, X.; Lin, Y. Graphene Quantum Dot-MnO2 Nanosheet Based Optical Sensing Platform: A Sensitive Fluorescence “Turn Off-On” Nanosensor for Glutathione Detection and Intracellular Imaging. ACS Appl. Mater. Interfaces 2016, 8, 21990–21996. [Google Scholar] [CrossRef]
- Sedgwick, A.C.; Gardiner, J.E.; Kim, G.; Yevglevskis, M.; Lloyd, M.D.; Jenkins, A.T.A.; Bull, S.D.; Yoon, J.; James, T.D. Long-wavelength TCF-based fluorescence probes for the detection and intracellular imaging of biological thiols. Chem. Commun. 2018, 54, 4786–4789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Wang, C.; Wang, X.; Zhang, Y.; Wu, Y.; Dong, C.; Shuang, S. Construction of CPs@MnO2-AgNPs as a multifunctional nanosensor for glutathione sensing and cancer theranostics. Nanoscale 2019, 11, 18845–18853. [Google Scholar] [CrossRef]
- Zhang, Y.; Meng, W.; Li, X.; Wang, D.; Shuang, S.; Dong, C. Dendritic Mesoporous Silica Nanoparticle-Tuned High-Affinity MnO2 Nanozyme for Multisignal GSH Sensing and Target Cancer Cell Detection. ACS Sustain. Chem. Eng. 2022, 10, 5911–5921. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, D.; Meng, Y.; Lu, W.; Shuang, S.; Dong, C. Biodegradable Fluorescent SiO2@MnO2-Based Sequence Strategy for Glutathione Sensing in a Biological System and Synergistic Theragnostics to Cancer Cells. ACS Sustain. Chem. Eng. 2021, 9, 2770–2783. [Google Scholar] [CrossRef]
- Jiang, H.; Yin, G.; Gan, Y.; Yu, T.; Zhang, Y.; Li, H.; Yin, P. A multisite-binding fluorescent probe for simultaneous monitoring of mitochondrial homocysteine, cysteine and glutathione in live cells and zebrafish. Chin. Chem. Lett. 2022, 33, 1609–1612. [Google Scholar] [CrossRef]
- Yin, G.X.; Niu, T.T.; Gan, Y.B.; Yu, T.; Yin, P.; Chen, H.M.; Zhang, Y.Y.; Li, H.T.; Yao, S.Z. A Multi-signal Fluorescent Probe with Multiple Binding Sites for Simultaneous Sensing of Cysteine, Homocysteine, and Glutathione. Angew. Chem. Int. Ed. Engl. 2018, 57, 4991–4994. [Google Scholar] [CrossRef]
- Jiang, X.; Yu, Y.; Chen, J.; Zhao, M.; Chen, H.; Song, X.; Matzuk, A.J.; Carroll, S.L.; Tan, X.; Sizovs, A.; et al. Quantitative imaging of glutathione in live cells using a reversible reaction-based ratiometric fluorescent probe. ACS Chem. Biol. 2015, 10, 864–874. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Zhang, C.; Chen, J.; Choi, S.; Zhou, Y.; Zhao, M.; Song, X.; Chen, X.; Maletic-Savatic, M.; Palzkill, T.; et al. Quantitative Real-Time Imaging of Glutathione with Subcellular Resolution. Antioxid. Redox Signal. 2019, 30, 1900–1910. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, X.; Wu, F.G. A graphene oxide-based switch-on fluorescent probe for glutathione detection and cancer diagnosis. J. Colloid Interface Sci. 2018, 530, 511–520. [Google Scholar] [CrossRef]
- Li, L.; Chen, J.; Jin, R.; Yan, Y.; Song, Z.; Wang, J.; Wang, X.; Zhang, Q.; Zhang, C. 2-Mercaptobenzothiazole-supported ratiometric fluorescent copper nanoclusters for activatable GSH sensing to drive tumor recognition. Colloids Surf. B Biointerfaces 2022, 217, 112698. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, F.G.; Liu, P.; Gu, N.; Chen, Z. Enhanced fluorescence of gold nanoclusters composed of HAuCl4 and histidine by glutathione: Glutathione detection and selective cancer cell imaging. Small 2014, 10, 5170–5177. [Google Scholar]
- Niu, T.; Yin, G.; Yu, T.; Gan, Y.; Zhang, C.; Chen, J.; Wu, W.; Chen, H.; Li, H.; Yin, P. A novel fluorescent probe for detection of Glutathione dynamics during ROS-induced redox imbalance. Anal. Chim. Acta 2020, 1115, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Tang, Y.; Yang, Y.; Li, B.; Cui, Y.; Qian, G. Post-modified metal-organic framework as a turn-on fluorescent probe for potential diagnosis of neurological diseases. Microporous Mesoporous Mater. 2019, 288, 109610. [Google Scholar] [CrossRef]
- Xiong, X.; Ye, Y.; Gao, X.; Zhu, H.; Hu, W.; Li, C.; Jian, Z.; Deng, H.; Gu, L. An ultrasensitive fluorescent platform for monitoring GSH variation during ischemic stroke. Chem. Eng. J. 2022, 450, 137931. [Google Scholar] [CrossRef]
Structure | Limit of Detection | Selectivity |
---|---|---|
CBF3 [62] | 9.2 nM | Amino acids, anions, and amines |
Lyso-RC [61] | 27 nM | Cys/Hcy, GSH, and H2S |
NH2-UiO-66@AgNPs [81] | 79 nM | Amino acids |
BSA@AuNCs–MnO2 [82] | 1000 nM | Ions and amino acids |
UCNPs [83] | 200 nM | Ions and amino acids |
UCNP@RBD probe [84] | 50 nM | Serum samples and urine samples |
Cdot-MnO2 nanostructures [85] | 19,000 nM | Amino acids |
GODs-MnO2 [86] | 48 nM | Ions and amino acids |
carbon dots–MnO2 [87] | 300 nM | Electrolytes, amino acids, and proteins |
Murexide-Hg2+ system [88] | 100 nM | Amino acids and anions |
ACD [89] | 6 nM | Cys, Hcys, and GSSG |
Graphene quantum dot−MnO2 [90] | 150 nM | Inorganic salts, metal ions, amino acids, and proteins, |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, X.; Guo, F.; Ye, Q.; Zhou, J.; Han, J.; Guo, R. Fluorescent Sensing of Glutathione and Related Bio-Applications. Biosensors 2023, 13, 16. https://doi.org/10.3390/bios13010016
Sun X, Guo F, Ye Q, Zhou J, Han J, Guo R. Fluorescent Sensing of Glutathione and Related Bio-Applications. Biosensors. 2023; 13(1):16. https://doi.org/10.3390/bios13010016
Chicago/Turabian StyleSun, Xiaohuan, Fei Guo, Qianyun Ye, Jinfeng Zhou, Jie Han, and Rong Guo. 2023. "Fluorescent Sensing of Glutathione and Related Bio-Applications" Biosensors 13, no. 1: 16. https://doi.org/10.3390/bios13010016
APA StyleSun, X., Guo, F., Ye, Q., Zhou, J., Han, J., & Guo, R. (2023). Fluorescent Sensing of Glutathione and Related Bio-Applications. Biosensors, 13(1), 16. https://doi.org/10.3390/bios13010016