Enhanced Therapeutic Potential of Irreversible Electroporation under Combination with Gold-Doped Mesoporous Silica Nanoparticles against EMT-6 Breast Cancer Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Synthesis of Mesoporous Silica Nanoparticles
2.3. Synthesis of Au-MSNs
2.4. Irreversible Electroporation Treatment of EMT-6 Cells
2.5. Evaluation of Cell Membrane Permeability
2.6. Cellular Uptake of FITC-Au-MSNs
2.7. Cellular ROS Staining
2.8. Evaluation of IRE-Induced Lipid Peroxidation
2.9. Live/Dead Cell Staining
2.10. Statistical Analysis
3. Results and Discussion
3.1. Characteristics of Au-MSNs
3.2. Enhanced Cellular Membrane Permeability under Combination Treatment
3.3. Enhanced Cellular Uptake of Au-MSNs under IRE Treatment
3.4. Cytotoxic ROS Generation and Lipid Peroxidation under Treatment of IRE and Au-MSNs
3.5. Enhanced Cytotoxic Effect of the Combined Treatment of IRE and Au-MSNs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bonferoni, M.C.; Rassu, G.; Gavini, E.; Sorrenti, M.; Catenacci, L.; Torre, M.L.; Perteghella, S.; Ansaloni, L.; Maestri, M.; Giunchedi, P. Electrochemotherapy of Deep-Seated Tumors: State of Art and Perspectives as Possible “EPR Effect En-hancer” to Improve Cancer Nanomedicine Efficacy. Cancers 2021, 13, 4437. [Google Scholar] [CrossRef] [PubMed]
- Szlasa, W.; Kiełbik, A.; Szewczyk, A.; Rembiałkowska, N.; Novickij, V.; Tarek, M.; Saczko, J.; Kulbacka, J. Oxidative Effects during Irreversible Electroporation of Melanoma Cells—In Vitro Study. Molecules 2020, 26, 154. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, M.K.; Karal, M.A.S.; Ahmed, M.; Ahamed, K.; Ahammed, S.; Sharmin, S.; Alam Shibly, S.U. Effects of osmotic pressure on the irreversible electroporation in giant lipid vesicles. PLoS ONE 2021, 16, e0251690. [Google Scholar] [CrossRef] [PubMed]
- Yamada, M.; Han, X.; Benfey, P.N. RGF1 controls root meristem size through ROS signalling. Nature 2020, 577, 85–88. [Google Scholar] [CrossRef] [PubMed]
- Yánez-Ortiz, I.; Catalán, J.; Mateo-Otero, Y.; Dordas-Perpinyà, M.; Gacem, S.; Yeste, N.; Bassols, A.; Yeste, M.; Miró, J. Extracellular Reactive Oxygen Species (ROS) Production in Fresh Donkey Sperm Exposed to Reductive Stress, Oxidative Stress and NETosis. Antioxidants 2021, 10, 1367. [Google Scholar] [CrossRef]
- Song, K.; Li, B.; Chen, Y.Y.; Wang, H.; Liu, K.C.; Tan, W.; Zou, J. LRPPRC regulates metastasis and glycolysis by modu-lating autophagy and the ROS/HIF1-alpha pathway in retinoblastoma. Mol. Ther. Oncolytics 2021, 22, 582–591. [Google Scholar] [CrossRef]
- Ortega, E.; Zamora, A.; Basu, U.; Lippmann, P.; Rodríguez, V.; Janiak, C.; Ott, I.; Ruiz, J. An Erlotinib gold(I) conjugate for combating triple-negative breast cancer. J. Inorg. Biochem. 2019, 203, 110910. [Google Scholar] [CrossRef]
- Hiramoto, F.; Nomura, N.; Furumai, T.; Oki, T.; Igarashi, Y. Apoptosis-like cell death of Saccharomyces cerevisiae induced by a mannose-binding antifungal antibiotic, pradimicin. J. Antibiot. 2003, 56, 768–772. [Google Scholar] [CrossRef] [Green Version]
- Tang, Q.; Bai, L.; Zou, Z.; Meng, P.; Xia, Y.; Cheng, S.; Mu, S.; Zhou, J.; Wang, X.; Qin, X.; et al. Ferroptosis is newly characterized form of neuronal cell death in response to arsenite exposure. Neurotoxicology 2018, 67, 27–36. [Google Scholar] [CrossRef]
- Marracino, P.; Caramazza, L.; Montagna, M.; Ghahri, R.; D’Abramo, M.; Liberti, M.; Apollonio, F. Electric-driven membrane poration: A rationale for water role in the kinetics of pore formation. Bioelectrochemistry 2022, 143, 107987. [Google Scholar] [CrossRef]
- Zu, Y.; Huang, S.; Liao, W.-C.; Lu, Y.; Wang, S. Gold nanoparticles enhanced electroporation for mammalian cell trans-fection. J. Biomed. Nanotechnol 2014, 10, 982–992. [Google Scholar] [CrossRef] [Green Version]
- Abu Lila, A.S.; Huwaimel, B.; Alobaida, A.; Hussain, T.; Rafi, Z.; Mehmood, K.; Abdallah, M.H.; Hagbani, T.A.; Rizvi, S.M.D.; Moin, A.; et al. Delafloxacin-Capped Gold Nanoparticles (DFX-AuNPs): An Effective Antibacterial Nano-Formulation of Fluoroquinolone Antibiotic. Materials 2022, 15, 5709. [Google Scholar] [CrossRef]
- Azan, A.; Gailliègue, F.; Mir, L.M.; Breton, M. Cell Membrane Electropulsation: Chemical Analysis of Cell Membrane Modifications and Associated Transport Mechanisms. In Transport Across Natural and Modified Biological Membranes and Its Implications in Physiology and Therapy; Springer: Cham, Switzerland, 2017; Volume 227, pp. 59–71. [Google Scholar] [CrossRef]
- Gu, Y.; Jiang, Y.; Gong, G.; Cheng, X.; Mei, Y.; Pan, H.; Han, J. Detection of CYFRA21-1 in serum by electrochemical im-munosensor based on nanocomposite consisting of AuNPs@CMK-3@CMWCNTs. Bioelectrochemistry 2022, 148, 108230. [Google Scholar] [CrossRef]
- Rezaee, Z.; Yadollahpour, A.; Bayati, V.; Dehbashi, F.N. Gold nanoparticles and electroporation impose both separate and synergistic radiosensitizing effects in HT-29 tumor cells: An in vitro study. Int. J. Nanomed. 2017, 12, 1431–1439. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Zu, Y.; Wang, S. Gold Nanoparticle-Enhanced Electroporation for Leukemia Cell Transfection. In Electroporation Protocols; Humana Press: New York, NY, USA, 2014; Volume 1121, pp. 69–77. [Google Scholar] [CrossRef]
- Choi, B.J.; Jung, K.O.; Graves, E.E.; Pratx, G. A gold nanoparticle system for the enhancement of radiotherapy and simultaneous monitoring of reactive-oxygen-species formation. Nanotechnology 2018, 29, 504001. [Google Scholar] [CrossRef]
- Chang, M.-Y.; Shiau, A.-L.; Chen, Y.-H.; Chang, C.-J.; Chen, H.H.-W.; Wu, C.-L. Increased apoptotic potential and dose-enhancing effect of gold nanoparticles in combination with single-dose clinical electron beams on tumor-bearing mice. Cancer Sci. 2008, 99, 1479–1484. [Google Scholar] [CrossRef]
- Yildirim, A.; Demirel, G.B.; Erdem, R.; Senturk, B.; Tekinay, T.; Bayindir, M. Pluronic polymer capped biocompatible mesoporous silica nanocarriers. Chem. Commun. 2013, 49, 9782–9784. [Google Scholar] [CrossRef]
- Kerkhofs, S.; Willhammar, T.; Noortgate, H.V.D.; Kirschhock, C.E.A.; Breynaert, E.; Van Tendeloo, G.; Bals, S.; Martens, J.A. Self-Assembly of Pluronic F127—Silica Spherical Core–Shell Nanoparticles in Cubic Close-Packed Structures. Chem. Mater. 2015, 27, 5161–5169. [Google Scholar] [CrossRef]
- Garcia-Munoz, P.; Fresno, F.; Lefevre, C.; Robert, D.; Keller, N. Ti-Modified LaFeO3/beta-SiC Alveolar Foams as Immobilized Dual Catalysts with Combined Photo-Fenton and Photocatalytic Activity. ACS Appl. Mater. Interfaces 2020, 12, 57025–57037. [Google Scholar] [CrossRef]
- Delannoy, L.; El Hassan, N.; Musi, A.; Le To, N.N.; Krafft, J.-M.; Louis, C. Preparation of Supported Gold Nanoparticles by a Modified Incipient Wetness Impregnation Method. J. Phys. Chem. B 2006, 110, 22471–22478. [Google Scholar] [CrossRef] [Green Version]
- Apostol, B.L.; Kazantsev, A.; Raffioni, S.; Illes, K.; Pallos, J.; Bodai, L.; Slepko, N.; Bear, J.E.; Gertler, F.B.; Hersch, S.; et al. A cell-based assay for aggregation inhibitors as therapeutics of polyglutamine-repeat disease and validation in Drosophila. Proc. Natl. Acad. Sci. USA 2003, 100, 5950–5955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muralidharan, A.; Rems, L.; Kreutzer, M.T.; Boukany, P.E. Actin networks regulate the cell membrane permeability during electroporation. Biochim. Biophys. Acta (BBA)-Biomembr. 2020, 1863, 183468. [Google Scholar] [CrossRef] [PubMed]
- Perrier, D.L.; Vahid, A.; Kathavi, V.; Stam, L.; Rems, L.; Mulla, Y.; Muralidharan, A.; Koenderink, G.H.; Kreutzer, M.T.; Boukany, P.E. Response of an actin network in vesicles under electric pulses. Sci. Rep. 2019, 9, 8151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Shan, A.; Duan, S.; Zhao, H.; Wang, R.; Lau, W.-M. Au@Co2P core/shell nanoparticles as a nano-electrocatalyst for enhancing the oxygen evolution reaction. RSC Adv. 2019, 9, 40811–40818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maccarrone, M.; Bladergroen, M.; Rosato, N.; Agrò, A.F.F. Role of Lipid Peroxidation in Electroporation-Induced Cell Permeability. Biochem. Biophys. Res. Commun. 1995, 209, 417–425. [Google Scholar] [CrossRef]
- Yadav, D.K.; Kumar, S.; Choi, E.-H.; Kim, M.-H. Electric-field-induced electroporation and permeation of reactive oxygen species across a skin membrane. J. Biomol. Struct. Dyn. 2020, 39, 1343–1353. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Y.; Jenjob, R.; Yang, S.-G. Enhanced Therapeutic Potential of Irreversible Electroporation under Combination with Gold-Doped Mesoporous Silica Nanoparticles against EMT-6 Breast Cancer Cells. Biosensors 2023, 13, 41. https://doi.org/10.3390/bios13010041
Jiang Y, Jenjob R, Yang S-G. Enhanced Therapeutic Potential of Irreversible Electroporation under Combination with Gold-Doped Mesoporous Silica Nanoparticles against EMT-6 Breast Cancer Cells. Biosensors. 2023; 13(1):41. https://doi.org/10.3390/bios13010041
Chicago/Turabian StyleJiang, Yixin, Ratchapol Jenjob, and Su-Geun Yang. 2023. "Enhanced Therapeutic Potential of Irreversible Electroporation under Combination with Gold-Doped Mesoporous Silica Nanoparticles against EMT-6 Breast Cancer Cells" Biosensors 13, no. 1: 41. https://doi.org/10.3390/bios13010041
APA StyleJiang, Y., Jenjob, R., & Yang, S. -G. (2023). Enhanced Therapeutic Potential of Irreversible Electroporation under Combination with Gold-Doped Mesoporous Silica Nanoparticles against EMT-6 Breast Cancer Cells. Biosensors, 13(1), 41. https://doi.org/10.3390/bios13010041