Conductive Nanofibers-Enhanced Microfluidic Device for the Efficient Capture and Electrical Stimulation-Triggered Rapid Release of Circulating Tumor Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication and Characterization of CNF-Chip
2.2. Preparation of Herringbone Microchannel and Assembly of the CNF-Chip-Embedded Microfluidic Device
2.3. Cell Capture Performance of CNF-Chip-Embedded Microfluidic Device
2.4. Cell Release Performance of CNF-Chip-Embedded Microfluidic Device
2.5. Isolation of CTCs from Cancer Patients’ Blood Samples
3. Results and Discussion
3.1. Fabrication and Functionalization of CNF-Chip-Embedded Microfluidic Device
3.2. Performance of CNF-Chip-Embedded Microfluidic Device for CTC Capture
3.3. Performance of CNF-Chip-Embedded Microfluidic Device for CTC Release
3.4. Capture of CTCs from Clinical Blood Samples of Patients
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rupp, B.; Ball, H.; Wuchu, F.; Nagrath, D.; Nagrath, S. Circulating Tumor Cells in Precision Medicine: Challenges and Opportunities. Trends Pharmacol. Sci. 2022, 43, 378–391. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.H.; Huertas, C.S.; Mitchell, A.; Deman, A.L.; Laurenceau, E. Biosensors for Circulating Tumor Cells (CTCs)-Biomarker Detection in Lung and Prostate Cancer: Trends and Prospects. Biosens. Bioelectron. 2022, 197, 113770. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; Shen, L.; Luo, M.; Zhang, K.; Li, J.; Yang, Q.; Zhu, F.; Zhou, D.; Zheng, S.; Chen, Y.; et al. Circulating Tumor Cells: Biology and Clinical Significance. Signal Transduct. Target. Ther. 2021, 6, 404. [Google Scholar] [CrossRef]
- Hou, J.; Liu, X.; Zhou, S. Programmable Materials for Efficient CTCs Isolation: From Micro/Nanotechnology to Biomimicry. View 2021, 2, 20200023. [Google Scholar] [CrossRef]
- Li, Y.Q.; Chandran, B.K.; Lim, C.T.; Chen, X. Rational Design of Materials Interface for Efficient Capture of Circulating Tumor Cells. Adv. Sci. 2015, 2, 1500118. [Google Scholar] [CrossRef]
- Xiang, T.; Hou, J.; Xie, H.; Liu, X.; Gong, T.; Zhou, S. Biomimetic Micro/Nano Structures for Biomedical Applications. Nano Today 2020, 35, 100980. [Google Scholar] [CrossRef]
- Riethdorf, S.; O’Flaherty, L.; Hille, C.; Pantel, K. Clinical Applications of the CellSearch Platform in Cancer Patients. Adv. Drug Deliv. Rev. 2018, 125, 102–121. [Google Scholar] [CrossRef]
- Boya, M.; Ozkaya-Ahmadov, T.; Swain, B.E.; Chu, C.H.; Asmare, N.; Civelekoglu, O.; Liu, R.; Lee, D.; Tobia, S.; Biliya, S.; et al. High Throughput, Label-Free Isolation of Circulating Tumor Cell Clusters in Meshed Microwells. Nat. Commun. 2022, 13, 3385. [Google Scholar] [CrossRef]
- Varmazyari, V.; Ghafoorifard, H.; Habibiyan, H.; Ebrahimi, M.; Ghafouri-Fard, S. A Microfluidic Device for Label-Free Separation Sensitivity Enhancement of Circulating Tumor Cells of Various and Similar Size. J. Mol. Liq. 2022, 349, 118192. [Google Scholar] [CrossRef]
- Chen, B.; Zheng, J.; Gao, K.; Hu, X.; Guo, S.S.; Zhao, X.Z.; Liao, F.; Yang, Y.; Liu, W. Noninvasive Optical Isolation and Identification of Circulating Tumor Cells Engineered by Fluorescent Microspheres. ACS Appl. Bio Mater. 2022, 5, 2768–2776. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Pena, A.; Armendariz, E.; Oyarbide, A.; Morales, X.; Ortiz-Espinosa, S.; Ruiz-Fernández de Córdoba, B.; Cochonneau, D.; Cornago, I.; Heymann, D.; Argemi, J.; et al. Design and Validation of a Tunable Inertial Microfluidic System for the Efficient Enrichment of Circulating Tumor Cells in Blood. Bioeng. Transl. Med. 2022, 7, 10331. [Google Scholar] [CrossRef]
- Park, E.S.; Jin, C.; Guo, Q.; Ang, R.R.; Duffy, S.P.; Matthews, K.; Azad, A.; Abdi, H.; Todenhöfer, T.; Bazov, J.; et al. Continuous Flow Deformability-Based Separation of Circulating Tumor Cells Using Microfluidic Ratchets. Small 2016, 12, 1909–1919. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.; Kim, J.; Song, H.; Sohn, K.Y.; Jeon, M.; Han, K.H. Microfluidic Technologies for Circulating Tumor Cell Isolation. Analyst 2018, 143, 2936–2970. [Google Scholar] [CrossRef] [PubMed]
- Jackson, J.M.; Witek, M.A.; Kamande, J.W.; Soper, S.A. Materials and Microfluidics: Enabling the Efficient Isolation and Analysis of Circulating Tumour Cells. Chem. Soc. Rev. 2017, 46, 4245–4280. [Google Scholar] [CrossRef]
- Zhu, P.; Wang, L. Microfluidics-Enabled Soft Manufacture of Materials with Tailorable Wettability. Chem. Rev. 2022, 122, 7010–7060. [Google Scholar] [CrossRef] [PubMed]
- Nagrath, S.; Sequist, L.V.; Maheswaran, S.; Bell, D.W.; Irimia, D.; Ulkus, L.; Smith, M.R.; Kwak, E.L.; Digumarthy, S.; Muzikansky, A.; et al. Isolation of Rare Circulating Tumour Cells in Cancer Patients by Microchip Technology. Nature 2007, 450, 1235–1239. [Google Scholar] [CrossRef]
- Glia, A.; Deliorman, M.; Sukumar, P.; Janahi, F.K.; Samara, B.; Brimmo, A.T.; Qasaimeh, M.A. Herringbone Microfluidic Probe for Multiplexed Affinity-Capture of Prostate Circulating Tumor Cells. Adv. Mater. Technol. 2021, 6, 2100053. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Z.; Zhang, M.; Guo, W.; Li, N.; Deng, Y.; Shi, Q. A Microfluidic Chip with Double-Sided Herringbone Microstructures for Enhanced Capture of Rare Tumor Cells. J. Mater. Chem. B 2017, 5, 9114–9120. [Google Scholar] [CrossRef]
- Park, M.H.; Reátegui, E.; Li, W.; Tessier, S.N.; Wong, K.H.K.; Jensen, A.E.; Thapar, V.; Ting, D.; Toner, M.; Stott, S.L.; et al. Enhanced Isolation and Release of Circulating Tumor Cells Using Nanoparticle Binding and Ligand Exchange in a Microfluidic Chip. J. Am. Chem. Soc. 2017, 139, 2741–2749. [Google Scholar] [CrossRef]
- Sun, N.; Yang, Y.; Miao, H.; Redublo, P.; Liu, H.; Liu, W.; Huang, Y.W.; Teng, P.C.; Zhang, C.; Zhang, R.Y.; et al. Discovery and Characterization of Circulating Tumor Cell Clusters in Neuroendocrine Tumor Patients Using Nanosubstrate-Embedded Microchips. Biosens. Bioelectron. 2022, 199, 113854. [Google Scholar] [CrossRef]
- Gou, Y.; Chen, Z.; Sun, C.; Wang, P.; You, Z.; Yalikun, Y.; Tanaka, Y.; Ren, D. Specific Capture and Intact Release of Breast Cancer Cells Using a Twin-Layer Vein-Shaped Microchip with a Self-Assembled Surface. Nanoscale 2021, 13, 17765–17774. [Google Scholar] [CrossRef]
- Zhang, P.; Chen, L.; Xu, T.; Liu, H.; Liu, X.; Meng, J.; Yang, G.; Jiang, L.; Wang, S. Programmable Fractal Nanostructured Interfaces for Specific Recognition and Electrochemical Release of Cancer Cells. Adv. Mater. 2013, 25, 3566–3570. [Google Scholar] [CrossRef]
- Yang, G.; Li, X.; He, Y.; Xiong, X.; Wang, P.; Zhou, S. Capturing Circulating Tumor Cells through a Combination of Hierarchical Nanotopography and Surface Chemistry. ACS Biomater. Sci. Eng. 2018, 4, 2081–2088. [Google Scholar] [CrossRef] [PubMed]
- Sun, N.; Liu, M.; Wang, J.; Wang, Z.; Li, X.; Jiang, B.; Pei, R. Chitosan Nanofibers for Specific Capture and Nondestructive Release of CTCs Assisted by PCBMA Brushes. Small 2016, 12, 5090–5097. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Dong, R.; Wang, X.; Jiang, X. Flexible Electronic Catheter Based on Nanofibers for the in Vivo Elimination of Circulating Tumor Cells. ACS Nano 2022, 16, 5274–5283. [Google Scholar] [CrossRef]
- Ma, L.; Yang, G.; Wang, N.; Zhang, P.; Guo, F.; Meng, J.; Zhang, F.; Hu, Z.; Wang, S.; Zhao, Y. Trap Effect of Three-Dimensional Fibers Network for High Efficient Cancer-Cell Capture. Adv. Healthc. Mater. 2015, 4, 838–843. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.C.; Ho, B.C.; Juang, R.S.; Hsiao, Y.S.; Naidu, R.V.R.; Kuo, C.W.; You, Y.W.; Shyue, J.J.; Fang, J.T.; Chen, P. Poly(3,4-Ethylenedioxythiophene)-Based Nanofiber Mats as an Organic Bioelectronic Platform for Programming Multiple Capture/Release Cycles of Circulating Tumor Cells. ACS Appl. Mater. Interfaces 2017, 9, 30329–30342. [Google Scholar] [CrossRef] [PubMed]
- Asghari, S.; Mahmoudifard, M. Core-Shell Nanofibrous Membrane of Polycaprolactone-Hyaluronic Acid as a Promising Platform for the Efficient Capture and Release of Circulating Tumor Cells. Polym. Adv. Technol. 2020, 32, 1101–1113. [Google Scholar] [CrossRef]
- Wu, Z.; Zhao, D.; Zhang, Y.; Huang, L.; Huang, H.; Guo, Q.; Zhang, W.; Hou, C.; Wang, H.; Zhang, Q.; et al. Facile Synthesis of 3D Hierarchical Micro-/Nanostructures in Capillaries for Efficient Capture of Circulating Tumor Cells. J. Colloid Interface Sci. 2020, 575, 108–118. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.B.; Xie, M.; Chen, Y.; Xiong, J.; Liu, Y.; Chen, Z.; Guo, S.; Shu, Y.; Wang, M.; Yuan, B.F.; et al. Three-Dimensional Scaffold Chip with Thermosensitive Coating for Capture and Reversible Release of Individual and Cluster of Circulating Tumor Cells. Anal. Chem. 2017, 89, 7924–7932. [Google Scholar] [CrossRef]
- Cui, H.; Liu, Q.; Li, R.; Wei, X.; Sun, Y.; Wang, Z.; Zhang, L.; Zhao, X.Z.; Hua, B.; Guo, S.S. ZnO Nanowire-Integrated Bio-Microchips for Specific Capture and Non-Destructive Release of Circulating Tumor Cells. Nanoscale 2020, 12, 1455–1463. [Google Scholar] [CrossRef]
- Cheng, S.B.; Chen, M.M.; Wang, Y.K.; Sun, Z.H.; Qin, Y.; Tian, S.; Dong, W.G.; Xie, M.; Huang, W.H. A Three-Dimensional Conductive Scaffold Microchip for Effective Capture and Recovery of Circulating Tumor Cells with High Purity. Anal. Chem. 2021, 93, 7102–7109. [Google Scholar] [CrossRef]
- Xu, J.; Zhao, C.; Niu, K.; Gao, Z.; Song, Y.Y. Renewable Photoelectrochemical Cytosensing Platform for Rapid Capture and Detection of Circulating Tumor Cells. Anal. Chim. Acta 2021, 1142, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Yin, S.; Yang, J.; Wu, Y.; Shi, C.; Sun, H.; Wang, G. In Situ Monitoring of Circulating Tumor Cell Adhered on Three-Dimensional Graphene/ZnO Macroporous Structure by Resistance Change and Electrochemical Impedance Spectroscopy. Electrochim. Acta 2021, 393. [Google Scholar] [CrossRef]
- Yan, S.; Chen, P.; Zeng, X.; Zhang, X.; Li, Y.; Xia, Y.; Wang, J.; Dai, X.; Feng, X.; Du, W.; et al. Integrated Multifunctional Electrochemistry Microchip for Highly Efficient Capture, Release, Lysis, and Analysis of Circulating Tumor Cells. Anal. Chem. 2017, 89, 12039–12044. [Google Scholar] [CrossRef]
- Went, P.; Vasei, M.; Bubendorf, L.; Terracciano, L.; Tornillo, L.; Riede, U.; Kononen, J.; Simon, R.; Sauter, G.; Baeuerle, P.A. Frequent High-Level Expression of the Immunotherapeutic Target Ep-CAM in Colon, Stomach, Prostate and Lung Cancers. Br. J. Cancer 2006, 94, 128–135. [Google Scholar] [CrossRef]
- Pinheiro, T.; Marques, A.C.; Carvalho, P.; Martins, R.; Fortunato, E. Paper Microfluidics and Tailored Gold Nanoparticles for Nonenzymatic, Colorimetric Multiplex Biomarker Detection. ACS Appl. Mater. Interfaces 2021, 13, 3576–3590. [Google Scholar] [CrossRef]
- Kwizera, E.A.; Ou, W.; Lee, S.; Stewart, S.; Shamul, J.G.; Xu, J.; Tait, N.; Tkaczuk, K.H.R.; He, X. Greatly Enhanced CTC Culture Enabled by Capturing CTC Heterogeneity Using a PEGylated PDMS-Titanium-Gold Electromicrofluidic Device with Glutathione-Controlled Gentle Cell Release. ACS Nano 2022, 16, 11374–11391. [Google Scholar] [CrossRef]
- Zhang, F.; Jiang, Y.; Liu, X.; Meng, J.; Zhang, P.; Liu, H.; Yang, G.; Li, G.; Jiang, L.; Wan, L.J.; et al. Hierarchical Nanowire Arrays as Three-Dimensional Fractal Nanobiointerfaces for High Efficient Capture of Cancer Cells. Nano Lett. 2016, 16, 766–772. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, X.; Zhou, Y.; Yang, G.; Hou, J.; Zhou, S. Engineered Multifunctional Metal-Phenolic Nanocoatings for Label-Free Capture and “Self-Release” of Heterogeneous Circulating Tumor Cells. Nanoscale 2021, 13, 16923–16931. [Google Scholar] [CrossRef] [PubMed]
- Akter, T.; Kim, W.S. Reversibly Stretchable Transparent Conductive Coatings of Spray-Deposited Silver Nanowires. ACS Appl. Mater. Interfaces 2012, 4, 1855–1859. [Google Scholar] [CrossRef] [PubMed]
- Stott, S.L.; Hsu, C.H.; Tsukrov, D.I.; Yu, M.; Miyamoto, D.T.; Waltman, B.A.; Michael Rothenberg, S.; Shah, A.M.; Smas, M.E.; Korir, G.K.; et al. Isolation of Circulating Tumor Cells Using a Microvortex-Generating Herringbone-Chip. PNAS 2010, 107, 18392–18397. [Google Scholar] [CrossRef] [PubMed]
- Namli, I.; Seyedmirzaei Sarraf, S.; Sheibani Aghdam, A.; Celebi Torabfam, G.; Kutlu, O.; Cetinel, S.; Ghorbani, M.; Koşar, A. Hydrodynamic Cavitation on a Chip: A Tool to Detect Circulating Tumor Cells. ACS Appl. Mater. Interfaces 2022, 14, 40688–40697. [Google Scholar] [CrossRef] [PubMed]
- Hosokawa, M.; Hayata, T.; Fukuda, Y.; Arakaki, A.; Yoshino, T.; Tanaka, T.; Matsunaga, T. Size-Selective Microcavity Array for Rapid and Efficient Detection of Circulating Tumor Cells. Anal. Chem. 2010, 82, 6629–6635. [Google Scholar] [CrossRef] [PubMed]
- Warkiani, M.E.; Guan, G.; Luan, K.B.; Lee, W.C.; Bhagat, A.A.S.; Kant Chaudhuri, P.; Tan, D.S.W.; Lim, W.T.; Lee, S.C.; Chen, P.C.Y.; et al. Slanted Spiral Microfluidics for the Ultra-Fast, Label-Free Isolation of Circulating Tumor Cells. Lab Chip 2014, 14, 128–137. [Google Scholar] [CrossRef] [PubMed]
- Pauli, C.; Münz, M.; Kieu, C.; Mack, B.; Breinl, P.; Wollenberg, B.; Lang, S.; Zeidler, R.; Gires, O. Tumor-Specific Glycosylation of the Carcinoma-Associated Epithelial Cell Adhesion Molecule EpCAM in Head and Neck Carcinomas. Cancer Lett. 2003, 193, 25–32. [Google Scholar] [CrossRef]
- Inaba, R.; Khademhosseini, A.; Suzuki, H.; Fukuda, J. Electrochemical Desorption of Self-Assembled Monolayers for Engineering Cellular Tissues. Biomaterials 2009, 30, 3573–3579. [Google Scholar] [CrossRef]
- Meng, S.; Tripathy, D.; Frenkel, E.P.; Shete, S.; Naftalis, E.Z.; Huth, J.F.; Beitsch, P.D.; Leitch, M.; Hoover, S.; Euhus, D.; et al. Circulating Tumor Cells in Patients with Breast Cancer Dormancy. Clin. Cancer Res. 2004, 10, 8152–8162. [Google Scholar] [CrossRef]
- Wang, M.; Tan, Y.; Li, D.; Xu, G.; Yin, D.; Xiao, Y.; Xu, T.; Chen, X.; Zhu, X.; Shi, X. Negative Isolation of Circulating Tumor Cells Using a Microfluidic Platform Integrated with Streptavidin-Functionalized PLGA Nanofibers. Adv. Fiber Mater. 2021, 3, 192–202. [Google Scholar] [CrossRef]
- Lu, R.; Chen, Q.; Liu, X.; Shen, S.; Pan, Z.; Shi, C. Detection of Circulating Stage III–IV Gastric Cancer Tumor Cells Based on Isolation by Size of Epithelial Tumor: Using the Circulating Tumor Cell Biopsy Technology. Transl. Cancer Res. 2019, 8, 1342–1350. [Google Scholar] [CrossRef]
- Ajanth, P.; Sudeepthi, A.; Sen, A.K. Microfluidics Technology for Label-Free Isolation of Circulating Tumor Cells. J. Inst. Eng. Ser. C 2020, 101, 1051–1071. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, X.; Luo, Z.; Liu, X.; Hou, J.; Zhou, S. Efficient Isolation and In Situ Identification of Viable Circulating Tumor Cells Using Dual-Responsive Fluorescent-Magnetic Nanoparticles. Small Sci. 2022, 2, 2200061. [Google Scholar] [CrossRef]
- He, Y.; Tian, M.; Li, X.; Hou, J.; Chen, S.; Yang, G.; Liu, X.; Zhou, S. A Hierarchical-Structured Mineralized Nanofiber Scaffold with Osteoimmunomodulatory and Osteoinductive Functions for Enhanced Alveolar Bone Regeneration. Adv. Healthc. Mater. 2022, 11, 1–16. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Li, X.; Hou, J.; Luo, Z.; Yang, G.; Zhou, S. Conductive Nanofibers-Enhanced Microfluidic Device for the Efficient Capture and Electrical Stimulation-Triggered Rapid Release of Circulating Tumor Cells. Biosensors 2023, 13, 497. https://doi.org/10.3390/bios13050497
Huang Y, Li X, Hou J, Luo Z, Yang G, Zhou S. Conductive Nanofibers-Enhanced Microfluidic Device for the Efficient Capture and Electrical Stimulation-Triggered Rapid Release of Circulating Tumor Cells. Biosensors. 2023; 13(5):497. https://doi.org/10.3390/bios13050497
Chicago/Turabian StyleHuang, Yisha, Xilin Li, Jianwen Hou, Zhouying Luo, Guang Yang, and Shaobing Zhou. 2023. "Conductive Nanofibers-Enhanced Microfluidic Device for the Efficient Capture and Electrical Stimulation-Triggered Rapid Release of Circulating Tumor Cells" Biosensors 13, no. 5: 497. https://doi.org/10.3390/bios13050497
APA StyleHuang, Y., Li, X., Hou, J., Luo, Z., Yang, G., & Zhou, S. (2023). Conductive Nanofibers-Enhanced Microfluidic Device for the Efficient Capture and Electrical Stimulation-Triggered Rapid Release of Circulating Tumor Cells. Biosensors, 13(5), 497. https://doi.org/10.3390/bios13050497