Assessment of Rhizobium anhuiense Bacteria as a Potential Biocatalyst for Microbial Biofuel Cell Design
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Cultivation and Preparation of Rhizobium anhuiense Bacteria
2.3. Assessment of Zeta Potential
2.4. Electrochemical Assessment of Microbial Biofuel Cell
3. Results and Discussion
Source of Bacteria and Comments | Electrodes | Connection | Power or Power Density | Boosted Voltage | Ref. |
---|---|---|---|---|---|
Diluted swine wastewater as the substrate in the anode | Graphite felt/graphite felt | Multiple connection | - | Up to 6.6 V | [8] |
Activated sewage sludge | Carbon fiber veil/carbon cloth | Multiple connection | 770 μW | Up to 2.35 V | [10] |
Glucose oxidase from Penicillium funiculosum 46.1 and horseradish peroxidase-based BFC | Graphite rod electrode/graphite rod electrode | Single | 4.2 μW/cm2 | 530 mV | [12] |
Saccharomyces cerevisiae with multi-walled carbon nanotubes (MWCNT) and 9,10-phenantrenequinone | Graphite rod electrode/platinum-based electrode | Single | 113 nW/cm2 | 24 mV | [13] |
Saccharomyces cerevisiae with 9,10-phenantrenequinone | Graphite rod electrode/platinum-based electrode | Single | 22.2 mW/m2 | 178 mV | [14] |
Geobacter sulfurreducens | Graphite/graphite | Single | - | 0.47 V | [23] |
Saccharomyces cerevisiae in the presence of methylene blue | Graphite/graphite with a proton exchange membrane (PEM) to separate the electrode compartments | Single | 12.3 μW | 250 mV | [26] |
Thermophilic anaerobic digester used to treat wastewater from a brewery | Graphite felt/graphite felt | Single | 1030 ± 340 mW/m2 | - | [30] |
Rhizobium anhuiense in the presence of potassium ferricyanide | Carbon felt (CF)/carbon felt (CF) with a Nafion 115 membrane to separate the electrode compartments | Single | 1.07 mW/m2 | 245 mV | [35] |
Saccharomyces cerevisiae in the presence of 2-methyl-1,4-naphthoquinone as a redox mediator | Graphite/graphite electrodes with a polycarbonate membrane to separate the electrode compartments | Single | 0.408 mW/m2 | 24 mV | [41] |
Clostridium pasteurianum in the presence of potassium ferricyanide | Carbon paper electrodes with proton exchange membranes (PEM) to separate the electrode compartments | Single | 181.48 mW/m3 | 426 mV | [42] |
Saccharomyces cerevisiae and polypyrrole composites in the presence of 9,10-phenantrenequinone | Graphite/graphite electrodes with a polycarbonate membrane to separate the electrode compartments | Single | 47.12 mW/m2 | 390 mV | [43] |
Rhizobium anhuiense in the presence of menadione, riboflavin, or 9,10-phenanthrenequinone as redox mediators | Graphite/platinum wire with a polycarbonate membrane to separate the electrode compartments | Single | 5.5 μW/cm2 | 0.35 mV | This study |
4. Conclusions and Future Developments
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ramanavicius, S.; Ramanavicius, A. Conducting Polymers in the Design of Biosensors and Biofuel Cells. Polymers 2020, 13, 49. [Google Scholar] [CrossRef]
- Ulucak, R. Renewable Energy, Technological Innovation and the Environment: A Novel Dynamic Auto-Regressive Distributive Lag Simulation. Renew. Sustain. Energy Rev. 2021, 150, 111433. [Google Scholar] [CrossRef]
- Santoro, C.; Arbizzani, C.; Erable, B.; Ieropoulos, I. Microbial Fuel Cells: From Fundamentals to Applications. A Review. J. Power Sources 2017, 356, 225–244. [Google Scholar] [CrossRef] [PubMed]
- Logan, B.E.; Rossi, R.; Ragab, A.; Saikaly, P.E. Electroactive Microorganisms in Bioelectrochemical Systems. Nat. Rev. Microbiol. 2019, 17, 307–319. [Google Scholar] [CrossRef] [PubMed]
- Ramanavicius, S.; Ramanavicius, A. Charge Transfer and Biocompatibility Aspects in Conducting Polymer-Based Enzymatic Biosensors and Biofuel Cells. Nanomaterials 2021, 11, 371. [Google Scholar] [CrossRef] [PubMed]
- Andriukonis, E.; Celiesiute-Germaniene, R.; Ramanavicius, S.; Viter, R.; Ramanavicius, A. From Microorganism-Based Amperometric Biosensors towards Microbial Fuel Cells. Sensors 2021, 21, 2442. [Google Scholar] [CrossRef] [PubMed]
- Pasupuleti, S.B.; Srikanth, S.; Dominguez-Benetton, X.; Mohan, S.V.; Pant, D. Dual Gas Diffusion Cathode Design for Microbial Fuel Cell (MFC): Optimizing the Suitable Mode of Operation in Terms of Bioelectrochemical and Bioelectro-Kinetic Evaluation: Dual Gas Diffusion Cathode Design for Microbial Fuel Cell (MFC). J. Chem. Technol. Biotechnol. 2016, 91, 624–639. [Google Scholar] [CrossRef]
- Kim, T.; Yeo, J.; Yang, Y.; Kang, S.; Paek, Y.; Kwon, J.K.; Jang, J.K. Boosting Voltage without Electrochemical Degradation Using Energy-Harvesting Circuits and Power Management System-Coupled Multiple Microbial Fuel Cells. J. Power Sources 2019, 410–411, 171–178. [Google Scholar] [CrossRef]
- Koffi, N.J.; Okabe, S. High Voltage Generation from Wastewater by Microbial Fuel Cells Equipped with a Newly Designed Low Voltage Booster Multiplier (LVBM). Sci. Rep. 2020, 10, 18985. [Google Scholar] [CrossRef]
- Papaharalabos, G.; Stinchcombe, A.; Horsfield, I.; Melhuish, C.; Greenman, J.; Ieropoulos, I. Autonomous Energy Harvesting and Prevention of Cell Reversal in MFC Stacks. J. Electrochem. Soc. 2017, 164, H3047–H3051. [Google Scholar] [CrossRef]
- Prathiba, S.; Kumar, P.S.; Vo, D.-V.N. Recent Advancements in Microbial Fuel Cells: A Review on Its Electron Transfer Mechanisms, Microbial Community, Types of Substrates and Design for Bio-Electrochemical Treatment. Chemosphere 2022, 286, 131856. [Google Scholar] [CrossRef] [PubMed]
- Ramanavicius, A.; Kausaite-Minkstimiene, A.; Morkvenaite-Vilkonciene, I.; Genys, P.; Mikhailova, R.; Semashko, T.; Voronovic, J.; Ramanaviciene, A. Biofuel Cell Based on Glucose Oxidase from Penicillium Funiculosum 46.1 and Horseradish Peroxidase. Chem. Eng. J. 2015, 264, 165–173. [Google Scholar] [CrossRef]
- Bruzaite, I.; Rozene, J.; Morkvenaite-Vilkonciene, I.; Ramanavicius, A. Towards Microorganism-Based Biofuel Cells: The Viability of Saccharomyces Cerevisiae Modified by Multiwalled Carbon Nanotubes. Nanomaterials 2020, 10, 954. [Google Scholar] [CrossRef] [PubMed]
- Rozene, J.; Morkvenaite-Vilkonciene, I.; Bruzaite, I.; Dzedzickis, A.; Ramanavicius, A. Yeast-Based Microbial Biofuel Cell Mediated by 9,10-Phenantrenequinone. Electrochim. Acta 2021, 373, 137918. [Google Scholar] [CrossRef]
- El-Naggar, M.Y.; Wanger, G.; Leung, K.M.; Yuzvinsky, T.D.; Southam, G.; Yang, J.; Lau, W.M.; Nealson, K.H.; Gorby, Y.A. Electrical Transport along Bacterial Nanowires from Shewanella Oneidensis MR-1. Proc. Natl. Acad. Sci. USA 2010, 107, 18127–18131. [Google Scholar] [CrossRef] [Green Version]
- Reguera, G. Harnessing the Power of Microbial Nanowires. Microb. Biotechnol. 2018, 11, 979–994. [Google Scholar] [CrossRef]
- Kisieliute, A.; Popov, A.; Apetrei, R.-M.; Cârâc, G.; Morkvenaite-Vilkonciene, I.; Ramanaviciene, A.; Ramanavicius, A. Towards Microbial Biofuel Cells: Improvement of Charge Transfer by Self-Modification of Microoganisms with Conducting Polymer—Polypyrrole. Chem. Eng. J. 2019, 356, 1014–1021. [Google Scholar] [CrossRef]
- Apetrei, R.-M.; Carac, G.; Ramanaviciene, A.; Bahrim, G.; Tanase, C.; Ramanavicius, A. Cell-Assisted Synthesis of Conducting Polymer—Polypyrrole—For the Improvement of Electric Charge Transfer through Fungal Cell Wall. Colloids Surf. B Biointerfaces 2019, 175, 671–679. [Google Scholar] [CrossRef]
- Anson, C.W.; Stahl, S.S. Mediated Fuel Cells: Soluble Redox Mediators and Their Applications to Electrochemical Reduction of O2 and Oxidation of H2, Alcohols, Biomass, and Complex Fuels. Chem. Rev. 2020, 120, 3749–3786. [Google Scholar] [CrossRef]
- Ramanavicius, S.; Ramanavicius, A. Progress and Insights in the Application of MXenes as New 2D Nano-Materials Suitable for Biosensors and Biofuel Cell Design. Int. J. Mol. Sci. 2020, 21, 9224. [Google Scholar] [CrossRef]
- Aiyer, K.S. How Does Electron Transfer Occur in Microbial Fuel Cells? World J. Microbiol. Biotechnol. 2020, 36, 19. [Google Scholar] [CrossRef] [PubMed]
- Gorby, Y.A.; Yanina, S.; McLean, J.S.; Rosso, K.M.; Moyles, D.; Dohnalkova, A.; Beveridge, T.J.; Chang, I.S.; Kim, B.H.; Kim, K.S.; et al. Electrically Conductive Bacterial Nanowires Produced by Shewanella Oneidensis Strain MR-1 and Other Microorganisms. Proc. Natl. Acad. Sci. USA 2006, 103, 11358–11363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bond, D.R.; Lovley, D.R. Electricity Production by Geobacter Sulfurreducens Attached to Electrodes. Appl. Environ. Microbiol. 2003, 69, 1548–1555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pham, C.A.; Jung, S.J.; Phung, N.T.; Lee, J.; Chang, I.S.; Kim, B.H.; Yi, H.; Chun, J. A Novel Electrochemically Active and Fe(III)-Reducing Bacterium Phylogenetically Related to Aeromonas Hydrophila, Isolated from a Microbial Fuel Cell. FEMS Microbiol. Lett. 2003, 223, 129–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaudhuri, S.K.; Lovley, D.R. Electricity Generation by Direct Oxidation of Glucose in Mediatorless Microbial Fuel Cells. Nat. Biotechnol. 2003, 21, 1229–1232. [Google Scholar] [CrossRef]
- Rahimnejad, M.; Najafpour, G.D.; Ghoreyshi, A.A.; Shakeri, M.; Zare, H. Methylene Blue as Electron Promoters in Microbial Fuel Cell. Int. J. Hydrogen Energy 2011, 36, 13335–13341. [Google Scholar] [CrossRef]
- Petroniene, J.; Morkvenaite-Vilkonciene, I.; Miksiunas, R.; Bironaite, D.; Ramanaviciene, A.; Mikoliunaite, L.; Kisieliute, A.; Rucinskas, K.; Janusauskas, V.; Plikusiene, I.; et al. Evaluation of Redox Activity of Human Myocardium-derived Mesenchymal Stem Cells by Scanning Electrochemical Microscopy. Electroanalysis 2020, 32, 1337–1345. [Google Scholar] [CrossRef]
- Petroniene, J.; Morkvenaite-Vilkonciene, I.; Miksiunas, R.; Bironaite, D.; Ramanaviciene, A.; Rucinskas, K.; Janusauskas, V.; Ramanavicius, A. Scanning Electrochemical Microscopy for the Investigation of Redox Potential of Human Myocardium-Derived Mesenchymal Stem Cells Grown at 2D and 3D Conditions. Electrochimica Acta 2020, 360, 136956. [Google Scholar] [CrossRef]
- Wu, S.; Xiao, Y.; Song, P.; Wang, C.; Yang, Z.; Slade, R.C.T.; Zhao, F. Riboflavin-Mediated Extracellular Electron Transfer Process Involving Pachysolen Tannophilus. Electrochim. Acta 2016, 210, 117–121. [Google Scholar] [CrossRef]
- Jong, B.C.; Kim, B.H.; Chang, I.S.; Liew, P.W.Y.; Choo, Y.F.; Kang, G.S. Enrichment, Performance, and Microbial Diversity of a Thermophilic Mediatorless Microbial Fuel Cell. Environ. Sci. Technol. 2006, 40, 6449–6454. [Google Scholar] [CrossRef]
- Oliveira, V.B.; Simões, M.; Melo, L.F.; Pinto, A.M.F.R. Overview on the Developments of Microbial Fuel Cells. Biochem. Eng. J. 2013, 73, 53–64. [Google Scholar] [CrossRef]
- Juang, D.F.; Yang, P.C.; Lee, C.H.; Hsueh, S.C.; Kuo, T.H. Electrogenic Capabilities of Gram Negative and Gram Positive Bacteria in Microbial Fuel Cell Combined with Biological Wastewater Treatment. Int. J. Environ. Sci. Technol. 2011, 8, 781–792. [Google Scholar] [CrossRef] [Green Version]
- Jaszek, M.; Janczarek, M.; Kuczyński, K.; Piersiak, T.; Grzywnowicz, K. The Response of the Rhizobium Leguminosarum Bv. Trifolii Wild-Type and Exopolysaccharide-Deficient Mutants to Oxidative Stress. Plant Soil 2014, 376, 75–94. [Google Scholar] [CrossRef] [Green Version]
- Shiigi, H.; Kinoshita, T.; Fukuda, M.; Le, D.Q.; Nishino, T.; Nagaoka, T. Nanoantennas as Biomarkers for Bacterial Detection. Anal. Chem. 2015, 87, 4042–4046. [Google Scholar] [CrossRef] [PubMed]
- Žalnėravičius, R.; Paškevičius, A.; Samukaitė-Bubnienė, U.; Ramanavičius, S.; Vilkienė, M.; Mockevičienė, I.; Ramanavičius, A. Microbial fuel cell based on nitrogen-fixing Rhizobium anhuiense bacteria. Biosensors 2022, 12, 113. [Google Scholar] [CrossRef]
- Ranganayaki, S.; Mohan, C. Effect of Sodium Molybdate on Microbial Fixation of Nitrogen. Z. Allg. Mikrobiol. 1981, 21, 607–610. [Google Scholar] [CrossRef]
- Sijilmassi, B.; Filali-Maltouf, A.; Boulahyaoui, H.; Kricha, A.; Boubekri, K.; Udupa, S.; Kumar, S.; Amri, A. Assessment of Genetic Diversity and Symbiotic Efficiency of Selected Rhizobia Strains Nodulating Lentil (Lens culinaris Medik.). Plants 2020, 10, 15. [Google Scholar] [CrossRef] [PubMed]
- Wilson, W.W.; Wade, M.M.; Holman, S.C.; Champlin, F.R. Status of Methods for Assessing Bacterial Cell Surface Charge Properties Based on Zeta Potential Measurements. J. Microbiol. Methods 2001, 43, 153–164. [Google Scholar] [CrossRef]
- Fang, D.; Gao, G.; Yang, Y.; Wang, Y.; Gao, L.; Zhi, J. Redox Mediator-Based Microbial Biosensors for Acute Water Toxicity Assessment: A Critical Review. ChemElectroChem 2020, 7, 2513–2526. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, T.; Zhu, X.; Zhang, F.; Ye, D.; Liao, Q.; Li, Y. Boosting Power Density of Microbial Fuel Cells with 3D Nitrogen-Doped Graphene Aerogel Electrode. Adv. Sci. 2016, 3, 1600097. [Google Scholar] [CrossRef]
- Rozene, J.; Morkvenaite-Vilkonciene, I.; Bruzaite, I.; Zinovicius, A.; Ramanavicius, A. Baker’s Yeast-Based Microbial Fuel Cell Mediated by 2-Methyl-1,4-Naphthoquinone. Membranes 2021, 182, 11. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Han, H.; Shen, J. Effects of cathodic electron acceptors and potassium ferricyanide concentrations on the performance of microbial fuel cell. Int. J. Hydrogen Energy 2012, 37, 12980–12986. [Google Scholar] [CrossRef]
- Zinovicius, A.; Rozene, J.; Merkelis, T.; Bruzaite, I.; Ramanavicius, A.; Morkvenaite-Vilkonciene, I. Evaluation of a yeast–Polypyrrole biocomposite used in microbial fuel cells. Sensors 2022, 22, 327. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reinikovaite, V.; Zukauskas, S.; Zalneravicius, R.; Ratautaite, V.; Ramanavicius, S.; Bucinskas, V.; Vilkiene, M.; Ramanavicius, A.; Samukaite-Bubniene, U. Assessment of Rhizobium anhuiense Bacteria as a Potential Biocatalyst for Microbial Biofuel Cell Design. Biosensors 2023, 13, 66. https://doi.org/10.3390/bios13010066
Reinikovaite V, Zukauskas S, Zalneravicius R, Ratautaite V, Ramanavicius S, Bucinskas V, Vilkiene M, Ramanavicius A, Samukaite-Bubniene U. Assessment of Rhizobium anhuiense Bacteria as a Potential Biocatalyst for Microbial Biofuel Cell Design. Biosensors. 2023; 13(1):66. https://doi.org/10.3390/bios13010066
Chicago/Turabian StyleReinikovaite, Viktorija, Sarunas Zukauskas, Rokas Zalneravicius, Vilma Ratautaite, Simonas Ramanavicius, Vytautas Bucinskas, Monika Vilkiene, Arunas Ramanavicius, and Urte Samukaite-Bubniene. 2023. "Assessment of Rhizobium anhuiense Bacteria as a Potential Biocatalyst for Microbial Biofuel Cell Design" Biosensors 13, no. 1: 66. https://doi.org/10.3390/bios13010066
APA StyleReinikovaite, V., Zukauskas, S., Zalneravicius, R., Ratautaite, V., Ramanavicius, S., Bucinskas, V., Vilkiene, M., Ramanavicius, A., & Samukaite-Bubniene, U. (2023). Assessment of Rhizobium anhuiense Bacteria as a Potential Biocatalyst for Microbial Biofuel Cell Design. Biosensors, 13(1), 66. https://doi.org/10.3390/bios13010066