MoS2/S@g-CN Composite Electrode for L-Tryptophan Sensing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis of MoS2/S@g-C3N4
2.3. Instrumental Characterization
2.4. Fabrication of L-Tryptophan Sensor
3. Results and Discussion
3.1. Characterization
- K = Scherrer constant (0.98);
- λ = wavelength (1.54 Å);
- β = full width at half maximum (FWHM).
3.2. Sensing Behavior of MoS2/S@g-C3N4-Modified Electrode
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deng, P.; Xu, Z.; Feng, Y. Acetylene black paste electrode modified with graphene as the voltammetric sensor for selective determination of tryptophan in the presence of high concentrations of tyrosine. Mater. Sci. Eng. C 2014, 35, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Elhag, S.; Ibupoto, Z.H.; Liu, X.; Nur, O.; Willander, M. Dopamine wide range detection sensor based on modified Co3O4 nanowires electrode. Sens. Actuators B Chem. 2014, 203, 543–549. [Google Scholar] [CrossRef]
- Shao, Y.; Wang, J.; Engelhard, M.; Wang, C.; Lin, Y. Facile and controllable electrochemical reduction of graphene oxide and its applications. J. Mater. Chem. 2010, 20, 743–748. [Google Scholar] [CrossRef]
- He, Q.; Tian, Y.; Wu, Y.; Liu, J.; Li, G.; Deng, P.; Chen, D. Electrochemical Sensor for Rapid and Sensitive Detection of Tryptophan by a Cu2O Nanoparticles-Coated Reduced Graphene Oxide Nanocomposite. Biomolecules 2019, 9, 176. [Google Scholar] [CrossRef]
- Ensafi, A.A.; Maleh, H.K.; Mallakpour, S. N-(3,4-Dihydroxyphenethyl)-3,5-dinitrobenzamide-Modified Multiwall Carbon Nanotubes Paste Electrode as a Novel Sensor for Simultaneous Determination of Penicillamine, Uric acid, and Tryptophan. Electroanalysis 2011, 23, 1478–1487. [Google Scholar] [CrossRef]
- Edelhoch, H. Spectroscopic Determination of Tryptophan and Tyrosine in Proteins. Biochemistry 1967, 6, 1948–1954. [Google Scholar] [CrossRef]
- Li, J.; Lin, X. Simultaneous Determination of Dopamine and Serotonin on Gold Nanocluster/Overoxidized-Polypyrrole Composite Modified Glassy Carbon Electrode. Sens. Actuators B Chem. 2007, 124, 486–493. [Google Scholar] [CrossRef]
- Zhao, J. Simultaneous determination of plasma creatinine, uric acid, kynurenine and tryptophan by high-performance liquid chromatography: Method validation and in application to the assessment of renal function. Biomed. Chromatogr. 2014, 29, 410–415. [Google Scholar] [CrossRef]
- Yıldız, C.; Eskiköy, B.D.; Yazan, Z. Electrochemical Low-Level Detection of L-Tryptophan in Human Urine Samples: Use of Pencil Graphite Leads as Electrodes for a Fast and Cost-Effective Voltammetric Method. Monatshefte Chem.—Chem. Mon. 2020, 151, 871–879. [Google Scholar] [CrossRef]
- Özcan, A.; Şahin, Y. A novel approach for the selective determination of tryptophan in blood serum in the presence of tyrosine based on the electrochemical reduction of oxidation product of tryptophan formed in situ on graphite electrode. Biosen. Bioelectron. 2012, 31, 26–31. [Google Scholar] [CrossRef]
- Dario, M.F.; Freire, T.B.; de Oliveira Pinto, C.A.S.; Prado, M.S.A.; Baby, A.R.; Velasco, M.V.R. Tryptophan and kynurenine determination in human hair by liquid chromatography. J. Chromatogr. B 2017, 1065–1066, 59–62. [Google Scholar] [CrossRef] [PubMed]
- Brett, C.M.A. Electrochemical sensors for environmental monitoring: Strategy and examples. Pure Appl. Chem. 2001, 73, 1969–1977. [Google Scholar] [CrossRef]
- Tasić, Ž.Z.; Mihajlović, M.B.P.; Radovanović, M.B.; Simonović, A.T.; Medić, D.V.; Antonijević, M.M. Electrochemical Determination of L-Tryptophan in Food Samples on Graphite Electrode Prepared from Waste Batteries. Sci. Rep. 2022, 12, 5469. [Google Scholar] [CrossRef] [PubMed]
- Cour, R.L.; Jorgensen, H.; Schjoerring, J.K. Improvement of Tryptophan Analysis by Liquid Chromatography-Single Quadrupole Mass Spectrometry through the Evaluation of Multiple Parameters. Front. Chem. 2019, 7, 797. [Google Scholar] [CrossRef] [PubMed]
- Kalvoda, R. Review of adsorptive stripping voltammetry—Assessment and prospects. Fresenius J. Anal. Chem. 1994, 349, 565–570. [Google Scholar] [CrossRef]
- Fan, Y.; Zhang, S.; Kong, J.; Miao, J. Study on the Interaction between an Ionic Liquid and L-Tryptophan by Fluorescence Spectroscopic Technique. Microchem. J. 2011, 99, 439–442. [Google Scholar] [CrossRef]
- Sun, L.; Li, H.; Li, M.; Li, C.; Li, P.; Yang, B. Simultaneous Determination of Ascorbic Acid, Dopamine, Uric Acid, Tryptophan, and Nitrite on a Novel Carbon Electrode. J. Electroanal. Chem. 2016, 783, 167–175. [Google Scholar] [CrossRef]
- Ghoreishi, S.M.; Behpour, M.; Ghoreishi, F.S.; Mousavi, S. Voltammetric Determination of Tryptophan in the Presence of Uric Acid and Dopamine Using Carbon Paste Electrode Modified with Multi-Walled Carbon Nanotubes. Arab. J. Chem. 2017, 10, S1546–S1552. [Google Scholar] [CrossRef]
- Ganjali, M.R.; Beitollahi, H.; Zaimbashi, R.; Tajik, S.; Rezapour, M.; Larijani, B. Voltammetric Determination of Dopamine Using Glassy Carbon Electrode Modified with ZnO/Al2O3 Nanocomposite. Int. J. Electrochem. Sci. 2018, 13, 2519–2529. [Google Scholar] [CrossRef] [PubMed]
- Tığ, G.A. Development of Electrochemical Sensor for Detection of Ascorbic Acid, Dopamine, Uric Acid and L-Tryptophan Based on Ag Nanoparticles and Poly(l-Arginine)-Graphene Oxide Composite. J. Electroanal. Chem. 2017, 807, 19–28. [Google Scholar] [CrossRef]
- Shahrokhian, S.; Ghalkhani, M. Simultaneous Voltammetric Detection of Ascorbic Acid and Uric Acid at a Carbon-Paste Modified Electrode Incorporating Thionine–Nafion Ion-Pair as an Electron Mediator. Electrochim. Acta 2006, 51, 2599–2606. [Google Scholar] [CrossRef]
- Sajid, M.; Baig, N.; Alhooshani, K. Chemically Modified Electrodes for Electrochemical Detection of Dopamine: Challenges and Opportunities. TrAC Trends. Anal. Chem. 2019, 118, 368–385. [Google Scholar] [CrossRef]
- Sabar, M.; Amara, U.; Riaz, S.; Hayat, A.; Nasir, M.; Nawaz, M.H. Fabrication of MoS2 Enwrapped Carbon Cloth as Electrochemical Probe for Non-Enzymatic Detection of Dopamine. Mater. Lett. 2022, 308, 131233. [Google Scholar] [CrossRef]
- Wu, P.; Huang, Y.; Zhao, X.; Lin, D.; Xie, L.; Li, Z.; Zhu, Z.; Zhao, H.; Lan, M. MnFe2O4/MoS2 Nanocomposite as Oxidase-like for Electrochemical Simultaneous Detection of Ascorbic Acid, Dopamine and Uric Acid. Microchem. J. 2022, 181, 107780. [Google Scholar] [CrossRef]
- Rubio-Govea, R.; Hickey, D.P.; García-Morales, R.; Rodriguez-Delgado, M.; Domínguez-Rovira, M.A.; Minteer, S.D.; Ornelas-Soto, N.; García-García, A. MoS2 Nanostructured Materials for Electrode Modification in the Development of a Laccase Based Amperometric Biosensor for Non-Invasive Dopamine Detection. Microchem. J. 2020, 155, 104792. [Google Scholar] [CrossRef]
- Singh, S.; Naithani, A.; Kandari, K.; Roy, S.; Sain, S.; Roy, S.S.; Wadhwa, S.; Tauseef, S.M.; Mathur, A. Oxygenated Graphitic Carbon Nitride Based Electrochemical Sensor for Dibenzofuran Detection. Diam. Relat. Mater. 2023, 139, 110276. [Google Scholar] [CrossRef]
- Jilani, F.; Husnain, M.; Nawaz, F.; Mohsin, M.A.; Iqbal, N.; Iqbal, J.; El-Fattah, A.A. A Facile Synthesis of WO3/g-C3N4 Composite for Chemical Sensing of Dopamine and Hydrazine. Mater. Lett. 2023, 343, 134391. [Google Scholar] [CrossRef]
- Wang, L.; Fan, Z.; Yue, F.; Zhang, S.; Qin, S.; Luo, C.; Pang, L.; Zhao, J.; Du, J.; Jin, B.; et al. Flower-like 3D MoS2 microsphere/2D C3N4 nanosheet composite for highly sensitive electrochemical sensing of nitrite. Food Chem. 2024, 430, 137027. [Google Scholar] [CrossRef]
- Nehru, R.; Chen, C.W.; Dong, C.D. In-situ growth of MoS2 nanosheets on g-C3N4 nanotube: A novel electrochemical sensing platform for vanillin determination in food samples. Carbon 2023, 208, 410–420. [Google Scholar] [CrossRef]
- Saka, C. Surface Modification of Graphitic Carbon Nitride Nanoparticles with B, O and S Doping/Carbon Vacancy for Efficient Dehydrogenation of Sodium Borohydride in Methanol. Int. J. Hydrogen Energy 2023, 48, 13123–13138. [Google Scholar] [CrossRef]
- Kesavan, G.; Chen, S.M. Sonochemically Exfoliated Graphitic-Carbon Nitride for the Electrochemical Detection of Flutamide in Environmental Samples. Diam. Relat. Mater. 2020, 108, 107975. [Google Scholar] [CrossRef]
- Lin, Y.R.; Dizon, G.V.C.; Yamada, K.; Liu, C.Y.; Venault, A.; Lin, H.Y.; Yoshida, M.; Hu, C. Sulfur-Doped g-C3N4 Nanosheets for Photocatalysis: Z-Scheme Water Splitting and Decreased Biofouling. J. Colloid Interface Sci. 2020, 567, 202–212. [Google Scholar] [CrossRef] [PubMed]
- Jourshabani, M.; Shariatinia, Z.; Badiei, A. Facile One-Pot Synthesis of Cerium Oxide/Sulfur-Doped Graphitic Carbon Nitride (g-C3N4) as Efficient Nanophotocatalysts under Visible Light Irradiation. J. Colloid Interface Sci. 2017, 507, 59–73. [Google Scholar] [CrossRef] [PubMed]
- Hakami, O. Construction of Co-Doped NiS/S-g-C3N4 Heterojunction for Boosting Degradation of Dye and Inactivation of Pathogens in Visible Light. J. Photochem. Photobiol. A Chem. 2022, 425, 113704. [Google Scholar] [CrossRef]
- Vernot, E.H.; Macewen, J.D.; Bruner, R.H.; Haun, C.C.; Kinkead, E.R.; Prentice, D.E.; Hall, A.; Schmidt, R.E.; Eason, R.L.; Hubbard, G.B. Long-Term Inhalation Toxicity of Hydrazine. Toxicol. Sci. 1985, 5, 1050–1064. [Google Scholar] [CrossRef]
- Ahmad, K.; Mohammad, A.; Rajak, R.; Mobin, S.M. Construction of TiO2 Nanosheets Modified Glassy Carbon Electrode (GCE/TiO2) for the Detection of Hydrazine. Mater. Res. Express 2016, 3, 074005. [Google Scholar] [CrossRef]
- Rajkumar, C.; Veerakumar, P.; Chen, S.M.; Thirumalraj, B.; Lin, K.C. Ultrathin Sulfur-Doped Graphitic Carbon Nitride Nanosheets as Metal-Free Catalyst for Electrochemical Sensing and Catalytic Removal of 4-Nitrophenol. ACS Sustain. Chem. Eng. 2018, 6, 16021–16031. [Google Scholar] [CrossRef]
- Seredych, M.; Łoś, S.; Giannakoudakis, D.A.; Rodríguez-Castellón, E.; Bandosz, T.J. Photoactivity of G-C3N4/S-Doped Porous Carbon Composite: Synergistic Effect of Composite Formation. ChemSusChem 2016, 9, 795–799. [Google Scholar] [CrossRef]
- Yola, M.L.; Eren, T.; Atar, N. A Molecular Imprinted Voltammetric Sensor Based on Carbon Nitride Nanotubes: Application to Determination of Melamine. J. Electrochem. Soc. 2016, 163, B588–B593. [Google Scholar] [CrossRef]
- Kıran, T.R.; Atar, N.; Yola, M.L. A Methyl Parathion Recognition Method Based on Carbon Nitride Incorporated Hexagonal Boron Nitride Nanosheets Composite Including Molecularly Imprinted Polymer. J. Electrochem. Soc. 2019, 166, H495–H501. [Google Scholar] [CrossRef]
- Casella, I.G.; Guascito, M.R.; Salvi, A.M.; Desimoni, E. Catalytic Oxidation and Flow Detection of Hydrazine Compounds at a Nafion/Ruthenium(III) Chemically Modified Electrode. Anal. Chim. Acta 1997, 354, 333–341. [Google Scholar] [CrossRef]
- Azad, U.P.; Ganesan, V. Determination of Hydrazine by PolyNi(II) Complex Modified Electrodes with a Wide Linear Calibration Range. Electrochim. Acta 2011, 56, 5766–5770. [Google Scholar] [CrossRef]
- Kimball, R.F. The Mutagenicity of Hydrazine and Some of Its Derivatives. Mutat. Res. Genet. Toxicol. 1977, 39, 111–126. [Google Scholar] [CrossRef] [PubMed]
- Ismail, A.A.; Harraz, F.A.; Faisal, M.; El-Toni, A.M.; Al-Hajry, A.; Al-Assiri, M.S. A Sensitive and Selective Amperometric Hydrazine Sensor Based on Mesoporous Au/ZnO Nanocomposites. Mater. Des. 2016, 109, 530–538. [Google Scholar] [CrossRef]
- Khan, M.M.; Ansari, S.A.; Lee, J.; Cho, M.H. Novel Ag@TiO2 Nanocomposite Synthesized by Electrochemically Active Biofilm for Nonenzymatic Hydrogen Peroxide Sensor. Mater. Sci. Eng. C 2013, 33, 4692–4699. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, K.; Mohammad, A.; Mathur, P.; Mobin, S.M. Preparation of SrTiO3 Perovskite Decorated RGO and Electrochemical Detection of Nitroaromatics. Electrochim. Acta 2016, 215, 435–446. [Google Scholar] [CrossRef]
- Khan, S.B.; Rahman, M.M.; Asiri, A.M.; Asif, S.A.; Bin; Al-Qarni, S.A.S.; Al-Sehemi, A.G.; Al-Sayari, S.A.; Al-Assiri, M.S. Fabrication of Non-Enzymatic Sensor Using Co Doped ZnO Nanoparticles as a Marker of H2O2. Phys. E Low-Dimens. Syst. Nanostruct. 2014, 62, 21–27. [Google Scholar] [CrossRef]
- She, X.; Wu, J.; Zhong, J.; Xu, H.; Yang, Y.; Vajtai, R.; Lou, J.; Liu, Y.; Du, D.; Li, H. Oxygenated Monolayer Carbon Nitride for Excellent Photocatalytic Hydrogen Evolution and External Quantum Efficiency. Nano Energy 2016, 27, 138–146. [Google Scholar] [CrossRef]
- Mert, S.; Bankoğlu, B.; Özkan, A.; Atar, N.; Yola, M.L. Electrochemical Sensing of Ractopamine by Carbon Nitride Nanotubes/Ionic Liquid Nanohybrid in Presence of Other β-Agonists. J. Mol. Liq. 2018, 254, 8–11. [Google Scholar] [CrossRef]
- Mohammad, A.; Khan, M.E.; Cho, M.H. Sulfur-Doped-Graphitic-Carbon Nitride (S-g-C3N4) for Low Cost Electrochemical Sensing of Hydrazine. J. Alloys Compd. 2020, 816, 152522. [Google Scholar] [CrossRef]
- Sivakumar, S.; Thangadurai, T.D.; Manjubaashini, N.; Nataraj, D. Two-Dimensional Z-Type MoS2/g-C3N4 Semiconductor Heterojunction Nanocomposites for Industrial Methylene Blue Dye Degradation under Daylight. Colloids Surf. A Physicochem. Eng. Asp. 2022, 654, 130090. [Google Scholar] [CrossRef]
- Li, Y.J.; Yang, L.L.; Ni, L.; Xiong, J.M.; He, J.Y.; Zhou, L.D.; Luo, L.; Zhang, Q.H.; Yuan, C.S. Constructing electrochemical sensor using molecular-imprinted polysaccharide for rapid identification and determination of l-tryptophan in diet. Food Chem. 2023, 425, 136486. [Google Scholar] [CrossRef] [PubMed]
- Ratautaite, V.; Brazys, E.; Ramanaviciene, A.; Ramanavicius, A. Electrochemical sensors based on l-tryptophan molecularly imprinted polypyrrole and polyaniline. J. Electroanal. Chem. 2022, 917, 116389. [Google Scholar] [CrossRef]
- Bagheri, S.; Chekin, F.; Hamid, S.B.A. Gel-assisted synthesis of anatase TiO2 nanoparticles and application for electrochemical determination of L-tryptophan. Russ. J. Electrochem. 2014, 50, 947–952. [Google Scholar] [CrossRef]
- Vishwanath, M.S.; Swamy, B.E.K.; Vishnumurthy, K.A. Zinc oxide modified carbon paste electrode sensor for the voltammetric detection of L-tryptophan in presence of uric acid and ascorbic acid. Inorganic Chem. Commun. 2023, 150, 110555. [Google Scholar] [CrossRef]
- Tang, S.; Liu, M.; Wang, W.; Wang, Y.; Liang, A.; Luo, A. A three-dimensional metal hydroxide activated in an alkaline electrolyte used for electrochemical simultaneous detection of 5-hydroxytryptophan and tryptophan. Microchem. J. 2023, 195, 109534. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niyitanga, T.; Pathak, A.; Chaudhary, A.; Khan, R.A.; Kim, H. MoS2/S@g-CN Composite Electrode for L-Tryptophan Sensing. Biosensors 2023, 13, 967. https://doi.org/10.3390/bios13110967
Niyitanga T, Pathak A, Chaudhary A, Khan RA, Kim H. MoS2/S@g-CN Composite Electrode for L-Tryptophan Sensing. Biosensors. 2023; 13(11):967. https://doi.org/10.3390/bios13110967
Chicago/Turabian StyleNiyitanga, Theophile, Aarti Pathak, Archana Chaudhary, Rais Ahmad Khan, and Haekyoung Kim. 2023. "MoS2/S@g-CN Composite Electrode for L-Tryptophan Sensing" Biosensors 13, no. 11: 967. https://doi.org/10.3390/bios13110967
APA StyleNiyitanga, T., Pathak, A., Chaudhary, A., Khan, R. A., & Kim, H. (2023). MoS2/S@g-CN Composite Electrode for L-Tryptophan Sensing. Biosensors, 13(11), 967. https://doi.org/10.3390/bios13110967