The Amplified DNA Logic Gates Based on Aptamer–Receptor Recognition for Cell Detection and Bioimaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Apparatus
2.3. DNA Logic-Gate-Device Synthesis
2.3.1. Synthesis of “NOT” Logic Gate
2.3.2. Synthesis of “NOR” Logic Gate
2.3.3. Synthesis of “AND” Logic Gate
2.3.4. Synthesis of “OR” Logic Gate
2.4. Fluorescence Detection in Solution
2.5. cDNA Detection
2.6. Cell Internalization Experiment
2.7. Synthesis of HMSN
2.8. Synthesis of HMSNID
2.9. UV Absorption Curves of HMSNs, DNA and HMSN-DNA
2.10. Cytotoxicity Experiments
2.11. The In Vitro Photothermal Performance of HMSNID
2.12. The In Vivo Experiment
3. Results
3.1. In Vitro Multicellular Recognition Assay
3.2. Selectivity of Logic Gates
3.3. Nucleic Acid Sequence of NOT Gate Used In Vivo
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jiang, S.; Xiao, M.; Sun, W.; Crespy, D.; Mailander, V.; Peng, X.; Fan, J.; Landfester, K. Synergistic Anticancer Therapy by Ovalbumin Encapsulation-Enabled Tandem Reactive Oxygen Species Generation. Angew. Chem. Int. Ed. Engl. 2020, 59, 20008–20016. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Zhang, J.; Chan, H.F.; Hu, H.; Lv, S.; Na, N.; Tao, Y.; Li, M. Engineering Nano-Therapeutics to Boost Adoptive Cell Therapy for Cancer Treatment. Small 2021, 5, 2001191. [Google Scholar] [CrossRef]
- Mi, Y.; Hagan, C.T.; Vincent, B.G.; Wang, A.Z. Emerging Nano-/Microapproaches for Cancer Immunotherapy. Adv. Sci. 2019, 6, 1801847. [Google Scholar] [CrossRef] [PubMed]
- Jain, P.; Kathuria, H.; Momin, M. Clinical Therapies and Nano Drug Delivery Systems for Urinary Bladder Cancer. Pharmacol. Ther. 2021, 226, 107871. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Cao, X.; Zheng, X.; Abbas, S.J.; Li, J.; Tan, W. Construction of Nanocarriers Based on Nucleic Acids and Their Applications in Nanobiology Delivery Systems. Natl. Sci. Rev. 2022, 9, nwac006. [Google Scholar] [CrossRef] [PubMed]
- Li, B.L.; Setyawati, M.I.; Chen, L.; Xie, J.; Ariga, K.; Lim, C.T.; Garaj, S.; Leong, D.T. Directing Assembly and Disassembly of 2D MoS2 Nanosheets with DNA for Drug Delivery. ACS Appl. Mater. Interfaces 2017, 9, 15286–15296. [Google Scholar] [CrossRef]
- Wu, D.; Zhang, W.; Li, T.; Li, F.; Feng, Q.; Cheng, X.; Guo, Y. In Situ Detection of miRNA-21 in MCF-7 Cell-derived Extracellular Vesicles Using the Red Blood Cell Membrane Vesicle Strategy. Chem. Commun. 2023, 59, 1987–1990. [Google Scholar] [CrossRef]
- Xing, C.; Chen, S.; Lin, Q.; Lin, Y.; Wang, M.; Wang, J.; Lu, C. An Aptamer-tethered DNA Origami Amplifier for Sensitive and Accurate Imaging of Intracellular MicroRNA. Nanoscale 2022, 14, 1327–1332. [Google Scholar] [CrossRef]
- Zhong, W.; Wu, J.; Huang, Y.; Xing, C.; Lu, C. Target-Activated, Light-Actuated Three-Dimensional DNA Walker Nanomachine for Amplified miRNA Detection. Langmuir 2022, 38, 1151–1157. [Google Scholar] [CrossRef]
- Meng, H.M.; Liu, H.; Kuai, H.; Peng, R.; Mo, L.; Zhang, X.B. Aptamer-integrated DNA Nanostructures for Biosensing, Bioimaging and Cancer Therapy. Chem. Soc. Rev. 2016, 45, 2583–2602. [Google Scholar] [CrossRef]
- Guo, Y.; Jing, D.; Liu, S.; Yuan, Q. Construction of Intelligent Moving Micro/anomotors and Their Applications in Biosensing and Disease Treatment. Theranostics. 2023, 13, 2993–3020. [Google Scholar] [CrossRef] [PubMed]
- Chu, H.; Meng, X.; Liu, B.; Liu, C.; Cheng, Y.; Sun, Z.; Wang, Y. Supramolecular-mediated Dual-functional DNA Nanocomposites for Programmable Cancer Therapy. Biomater. Sci. 2022, 10, 3569–3574. [Google Scholar] [CrossRef] [PubMed]
- Qiu, L.; Zhang, T.; Jiang, J.; Wu, C.; Zhu, G.; You, M.; Chen, X.; Zhang, L.; Cui, C.; Yu, R.; et al. Cell Membrane-anchored Biosensors for Real-time Monitoring of The Cellular Microenvironment. J. Am. Chem. Soc. 2014, 136, 13090–13093. [Google Scholar] [CrossRef]
- Okamoto, A.; Tanaka, K.; Saito, I. DNA Logic Gates. J. Am. Chem. Soc. 2004, 126, 9458–9463. [Google Scholar] [CrossRef]
- Stojanovic, M.N.; Mitchell, T.E.; Stefanovic, D. Deoxyribozyme-Based Logic Gates. J. Am. Chem. Soc. 2002, 124, 3555–3561. [Google Scholar] [CrossRef]
- Zadegan, R.M.; Jepsen, M.D.E.; Hildebrandt, L.L.; Birkedal, V.; Kjems, J. Construction of a Fuzzy and Boolean Logic Gates Based on DNA. Small 2015, 11, 1811–1817. [Google Scholar] [CrossRef]
- Jiang, Q.; Yue, S.; Yu, K.; Tian, T.; Zhang, J.; Chu, H.; Cui, Z.; Bi, S. Endogenous MicroRNA Triggered Enzyme-free DNA Logic Self-assembly for Amplified Bioimaging and Enhanced Gene Therapy Via in Situ Generation of siRNAs. J. Nanobiotechnol. 2021, 19, 288. [Google Scholar] [CrossRef] [PubMed]
- You, M.; Zhu, G.; Chen, T.; Donovan, M.J.; Tan, W. Programmable and Multiparameter DNA-based Logic Platform for Cancer Recognition and Targeted Therapy. J. Am. Chem. Soc. 2015, 137, 667–674. [Google Scholar] [CrossRef]
- Rudchenko, M.; Taylor, S.; Pallavi, P.; Dechkovskaia, A.; Khan, S.; Butler, V.P., Jr.; Rudchenko, S.; Stojanovic, M.N. Autonomous Molecular Cascades for Evaluation of Cell Surfaces. Nat. Nanotechnol. 2013, 8, 580–586. [Google Scholar] [CrossRef]
- Douglas, S.M.; Bachelet, I.; Church, G.M. A Logic-gated Nanorobot for Targeted Transport of Molecular Payloads. Science 2012, 335, 831–834. [Google Scholar] [CrossRef]
- Ma, X.; Chen, X.; Tang, Y.; Yan, R.; Miao, P. Triple-Input Molecular AND Logic Gates for Sensitive Detection of Multiple miRNAs. ACS Appl. Mater. Interfaces 2019, 11, 41157–41164. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Shen, L.; Liang, C.; Dong, Y.; Yang, J.; Xu, J. DNA Sequential Logic Gate Using Two-Ring DNA. ACS Appl. Mater. Interfaces 2016, 8, 9370–9376. [Google Scholar] [CrossRef]
- Ren, K.; Liu, Y.; Wu, J.; Zhang, Y.; Zhu, J.; Yang, M.; Ju, H. A DNA Dual Lock-and-key Strategy for Cell-subtype-specific siRNA Delivery. Nat. Commun. 2016, 7, 13580. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Tang, J.; Meng, H.-M.; Liu, Z.; Wang, L.; Geng, X.; Wu, Y.; Qu, L.; Li, Z. Recognition Triggered Assembly of Split aptamers to Initiate a Hybridization Chain Reaction for Wash-free and Amplified Detection of Exosomes. Chem. Commun. 2020, 56, 9024–9027. [Google Scholar] [CrossRef]
- Duan, Y.; Glazier, R.; Bazrafshan, A.; Hu, Y.; Rashid, S.A.; Petrich, B.G.; Ke, Y.; Salaita, K. Mechanically Triggered Hybridization Chain Reaction. Angew. Chem. Int. Ed. Engl. 2021, 60, 19974–19981. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.T.; Angerani, S.; Winssinger, N. A Minimal Hybridization Chain Reaction (HCR) System Using Peptide Nucleic Acids. Chem. Sci. 2021, 12, 8218–8223. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Zhang, Y.; Guo, P.; Xu, H.; Wang, Y.; Yang, D. GQDs/hMSN Nanoplatform: Singlet Oxygen Generation for Photodynamic Therapy. J. Dru. Deliv. Sci. Technol. 2021, 61, 102127. [Google Scholar] [CrossRef]
- Li, W.; Sun, L.; Zheng, X.; Li, F.; Zhang, W.; Li, T.; Guo, Y.; Tang, D. Multifunctional Nanoprobe Based on Fluorescence Resonance Energy Transfer for Furin Detection and Drug Delivery. Anal. Chem. 2023, 95, 9654–9662. [Google Scholar] [CrossRef]
- Wang, L.; Huo, M.; Chen, Y.; Shi, J. Coordination-Accelerated “Iron Extraction” Enables Fast Biodegradation of Mesoporous Silica-Based Hollow Nanoparticles. Adv. Healthc. Mater. 2017, 6, 1700720. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Wu, D.; Cao, X.; Guo, Y. The Amplified DNA Logic Gates Based on Aptamer–Receptor Recognition for Cell Detection and Bioimaging. Biosensors 2023, 13, 968. https://doi.org/10.3390/bios13110968
Wang Y, Wu D, Cao X, Guo Y. The Amplified DNA Logic Gates Based on Aptamer–Receptor Recognition for Cell Detection and Bioimaging. Biosensors. 2023; 13(11):968. https://doi.org/10.3390/bios13110968
Chicago/Turabian StyleWang, Yajing, Di Wu, Xiuping Cao, and Yingshu Guo. 2023. "The Amplified DNA Logic Gates Based on Aptamer–Receptor Recognition for Cell Detection and Bioimaging" Biosensors 13, no. 11: 968. https://doi.org/10.3390/bios13110968
APA StyleWang, Y., Wu, D., Cao, X., & Guo, Y. (2023). The Amplified DNA Logic Gates Based on Aptamer–Receptor Recognition for Cell Detection and Bioimaging. Biosensors, 13(11), 968. https://doi.org/10.3390/bios13110968