A Hand-Held Platform for Boar Sperm Viability Diagnosis Based on Smartphone
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microfluidic Chip Design
2.2. Microscopic System Design
2.3. Work Process
2.4. Sample Preparation and Data Acquisition
2.5. Sperm-Counting Algorithm
2.6. Sperm Viability Diagnosis Algorithm
2.6.1. Sperm Movement Target Detection
2.6.2. Sperm Target Tracking
- Initialize the Kalman filter;
- Detect the sperm target in the first frame and record the centroid coordinates;
- Input the sperm target parameters (position, size, velocity) into the Kalman filter to predict the sperm position in the next frame;
- Detect the sperm target in the i-th frame and record the centroid coordinates;
- Use the Hungarian algorithm to associate the predicted sperm location with the detected sperm location, update the trajectory set and Kalman filter;
- Repeat steps 3, 4, and 5 until the last frame.
2.7. Calculation of Sperm Motility Parameters
3. Results and Discussion
3.1. Sperm Image Video Collection
3.2. Sperm Image Analysis and Quantity Statistics
3.3. Sperm Trajectory Tracking
3.4. Sperm Motility Parameters Analysis
3.5. Microfluidic Chip Simulation and Verification
3.6. Sperm Motility Parameters Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sur, J.H. How far can African swine fever spread? J. Vet. Sci. 2019, 20, 41. [Google Scholar] [CrossRef] [PubMed]
- Goonewardene, K.B.; Chung, C.J.; Goolia, M.; Blakemore, L.; Fabian, A.; Mohamed, F.; Nfon, C.; Clavijo, A.; Dodd, K.A.; Ambagala, A. Evaluation of oral fluid as an aggregate sample for early detection of African swine fever virus using four independent pen-based experimental studies. Transbound. Emerg. Dis. 2021, 68, 2867–2877. [Google Scholar] [CrossRef] [PubMed]
- Lucca, M.S.; Gianluppi, R.; Mellagi, A.; Bortolozzo, F.P.; Wentz, I.; Ulguim, R.d.R. Effects of the classification of boars according to progressive sperm motility and the extender type on the reproductive performance of a single fixed-time insemination. Theriogenology 2021, 161, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Verstegen, J.; Iguerouada, M.; Onclin, K. Computer assisted semen analyzers in andrology research and veterinary practice. Theriogenology 2002, 57, 149–179. [Google Scholar] [CrossRef] [PubMed]
- Wilson-Leedy, J.G.; Ingermann, R.L. Development of a novel CASA system based on open-source software for characterization of zebrafish sperm motility parameters. Theriogenology 2007, 67, 661–672. [Google Scholar] [CrossRef] [PubMed]
- Kime, D.E.; Look, K.; Mcallister, B.G.; Huyskens, G.; Rurangwa, E.; Ollevier, F. Computer-assisted sperm analysis (CASA) as a tool for monitoring sperm quality in fish. Comp. Biochem. Phys. C 2001, 130, 425–433. [Google Scholar] [CrossRef]
- Amann, R.P.; Waberski, D. Computer-assisted sperm analysis (CASA): Capabilities and potential developments. Theriogenology 2014, 81, 5–17. [Google Scholar] [CrossRef]
- Kim, Y.; Chun, K. New disposable microfluidic chip without evaporation effect for semen analysis in clinics and homes. Microsyst. Technol. 2020, 26, 647–655. [Google Scholar] [CrossRef]
- Cheon, W.H.; Park, H.J.; Park, M.J.; Lim, M.Y.; Park, J.H.; Kang, B.J.; Park, N.C. Validation of a smartphone-based, computer-assisted sperm analysis system compared with laboratory-based manual microscopic semen analysis and computer-assisted semen analysis. Investig. Clin. Urol. 2019, 60, 380–387. [Google Scholar] [CrossRef]
- Morland, R.B.; Richardson, M.E.; Lamberski, N.; Long, J.A. Characterizing the reproductive physiology of the male southern black howler monkey, Alouatta caraya. J. Androl. 2001, 22, 395–403. [Google Scholar]
- Krzyzosiak, J.; Molan, P.; McGowan, L.; Vishwanath, R. Effect of sperm number and oxygenation state of the storage media on in vitro fertility of bovine sperm stored at ambient temperature. Theriogenology 2001, 55, 1401–1415. [Google Scholar] [CrossRef] [PubMed]
- Waberski, D.; Magnus, F.; Ardon, F.; Petrunkina, A.M.; Weitze, K.F.; Töpfer-Petersen, E. Binding of boar spermatozoa to oviductal epithelium in vitro in relation to sperm morphology and storage time. Reproduction 2006, 131, 311. [Google Scholar] [CrossRef] [PubMed]
- Nagra, T.S.; Sequist, L.V.; Maheswaran, S.; Bell, D.W.; Irimia, D.; Ulkus, L.; Smith, M.R.; Kwak, E.L.; Digumarthy, S.; Muzikansky, A. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 2007, 450, 1235–1239. [Google Scholar] [CrossRef] [PubMed]
- Huh, D.; Matthews, B.D.; Mammoto, A.; Montoya-Zavala, M.; Hsin, H.Y.; Ingber, D.E. Reconstituting Organ-Level Lung Functions on a Chip. Science 2020, 328, 1662. [Google Scholar] [CrossRef] [PubMed]
- Paguirigan, A.L.; Beebe, D.J. Microfluidics meet cell biology: Bridging the gap by validation and application of microscale techniques for cell biological assays. BioEssays 2008, 30, 811–821. [Google Scholar] [CrossRef] [PubMed]
- Knowlton, S.M.; Sadasivam, M.; Tasoglu, S. Microfluidics for sperm research. Trends Biotechnol. 2015, 33, 221–229. [Google Scholar] [CrossRef]
- Nosrati, R.; Vollmer, M.; Eamer, L.; Gabriel, M.C.S.; Zeidan, K.; Zini, A.; Sinton, D. Rapid selection of sperm with high DNA integrity. Lab Chip 2014, 14, 1142–1150. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, R.R.; Yin, T.; Zou, W.; Tang, Y.; Ding, J.; Yang, J. Generation of Gradients on a Microfluidic Device: Toward a High-Throughput Investigation of Spermatozoa Chemotaxis. PLoS ONE 2015, 10, e0142555. [Google Scholar] [CrossRef]
- Shreya, D.; Fatih, I.; Karaaslan, M.G.; Ogut, M.G.; Duncan, D.; Klevan, L.; Duncan, G.; Demirci, U. A confirmatory test for sperm in sexual assault samples using a microfluidic-integrated cell phone imaging system. Forensic Sci. Int. Genet. 2020, 48, 102313. [Google Scholar]
- Zheng, L.Y.; Cai, G.Z.; Wang, S.Y.; Liao, M.; Li, Y.; Lin, J. A microfluidic colorimetric biosensor for rapid detection of Escherichia coli O157:H7 using gold nanoparticle aggregation and smart phone imaging. Biosens. Bioelectron. 2019, 124, 143–149. [Google Scholar] [CrossRef]
- Ulep, T.H.; Zenhausern, R.; Gonzales, A.; Knoff, D.S.; Diaz, P.A.L.; Castro, J.E.; Yoon, J.-Y. Smartphone based on-chip fluorescence imaging and capillary flow velocity measurement for detecting ROR1+ cancer cells from buffy coat blood samples on dual-layer paper microfluidic chip. Biosens. Bioelectron. 2020, 153, 112042. [Google Scholar] [CrossRef] [PubMed]
- Broekhuijse, M.L.; Šoštarić, E.; Feitsma, H.; Gadella, B.M. Application of computer-assisted semen analysis to explain variations in pig fertility. J. Anim. Sci. 2012, 90, 779–789. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.M.; Wu, Q.M.J.; Zhang, H. Bounded generalized Gaussian mixture model. Pattern Recognit. 2014, 47, 3132–3142. [Google Scholar] [CrossRef]
- Arulampalam, M.S.; Maskell, S.; Gordon, N.; Clapp, T. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal. Process. 2002, 50, 174–188. [Google Scholar] [CrossRef]
- Jacob, G.; Tamir, T. A hierarchical clustering algorithm based on the Hungarian method. Pattern Recognit. Lett. 2008, 29, 1632–1638. [Google Scholar]
- Takao, S.; Mitsumune, T.; Hideki, M.; Natuko, N. An Evaluation of Focusing for SEM Images. Hyomen Kagaku 2005, 26, 623–628. [Google Scholar]
- Han, B.; Zong, M. Auto-Focusing Technology Based on SEM Images. Micronanoelectron. Technol. 2017, 54, 547–552. [Google Scholar]
- Valiuškaitė, V.; Raudonis, V.; Maskeliūnas, R.; Damaševičius, R.; Krilavičius, T. Deep Learning Based Evaluation of Spermatozoid Motility for Artificial Insemination. Sensors 2021, 21, 72. [Google Scholar] [CrossRef]
- Pan, X.; Gao, K.; Yang, N.; Wang, Y.; Zhang, X.; Shao, L.; Zhai, P.; Qin, F.; Zhang, X.; Li, J.; et al. A Sperm Quality Detection System Based on Microfluidic Chip and Micro-Imaging System. Front. Vet. Sci. 2022, 9, 916861. [Google Scholar] [CrossRef]
ID | Appear Frame | Disappear Frame | Ft (Frames) | Fw (Frames) | Rt (%) |
---|---|---|---|---|---|
1 | 1 | 72 | 72 | 72 | 100 |
2 | 1 | 55 | 55 | 90 | 61.11 |
3 | 1 | 44 | 45 | 45 | 100 |
5 | 1 | 90 | 90 | 90 | 100 |
9 | 5 | 31 | 27 | 42 | 64.29 |
15 | 6 | 90 | 85 | 85 | 100 |
17 | 8 | 52 | 45 | 83 | 54.22 |
24 | 9 | 29 | 11 | 62 | 17.74 |
25 | 12 | 90 | 79 | 79 | 100 |
27 | 13 | 90 | 78 | 78 | 100 |
43 | 21 | 90 | 70 | 70 | 100 |
45 | 23 | 66 | 44 | 68 | 64.70 |
56 | 25 | 61 | 37 | 37 | 100 |
63 | 25 | 90 | 66 | 66 | 100 |
74 | 28 | 90 | 63 | 63 | 100 |
87 | 28 | 90 | 63 | 63 | 100 |
89 | 54 | 90 | 36 | 36 | 100 |
ID | VCL (um s−1) | VSL (um s−1) | VAP (um s−1) | LIN (%) | STR (%) | WOB (%) | GRADE |
---|---|---|---|---|---|---|---|
1 | 13.63 | 6.02 | 8.63 | 44.17 | 69.76 | 63.32 | C |
3 | 27.42 | 14.65 | 22.57 | 53.13 | 64.91 | 82.31 | B |
5 | 19.44 | 10.51 | 13.92 | 54.06 | 75.50 | 71.60 | C |
15 | 11.95 | 6.27 | 8.17 | 52.47 | 68.37 | 76.74 | C |
25 | 15.35 | 4.99 | 7.14 | 32.51 | 69.89 | 46.51 | C |
27 | 10.19 | 3.63 | 5.94 | 35.62 | 58.29 | 61.11 | C |
43 | 5.86 | 4.62 | 5.35 | 78.83 | 94.37 | 86.36 | D |
56 | 20.65 | 12.46 | 17.79 | 60.34 | 70.04 | 86.15 | C |
63 | 13.11 | 8.05 | 9.93 | 61.40 | 81.07 | 75.74 | C |
89 | 25.39 | 10.66 | 16.28 | 39.39 | 65.48 | 64.12 | B |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Y.; Yin, H.; Zhou, C.; Zhou, W.; Huan, Z.; Ma, W. A Hand-Held Platform for Boar Sperm Viability Diagnosis Based on Smartphone. Biosensors 2023, 13, 978. https://doi.org/10.3390/bios13110978
Zheng Y, Yin H, Zhou C, Zhou W, Huan Z, Ma W. A Hand-Held Platform for Boar Sperm Viability Diagnosis Based on Smartphone. Biosensors. 2023; 13(11):978. https://doi.org/10.3390/bios13110978
Chicago/Turabian StyleZheng, Yunhong, Hang Yin, Chengxian Zhou, Wei Zhou, Zhijie Huan, and Weicheng Ma. 2023. "A Hand-Held Platform for Boar Sperm Viability Diagnosis Based on Smartphone" Biosensors 13, no. 11: 978. https://doi.org/10.3390/bios13110978
APA StyleZheng, Y., Yin, H., Zhou, C., Zhou, W., Huan, Z., & Ma, W. (2023). A Hand-Held Platform for Boar Sperm Viability Diagnosis Based on Smartphone. Biosensors, 13(11), 978. https://doi.org/10.3390/bios13110978