Collision Enhanced Raman Scattering (CERS): An Ultra-High Efficient Raman Enhancement Technique for Hollow Core Photonic Crystal Fiber Based Raman Spectroscopy Gas Analyzer
Abstract
:1. Introduction
2. Materials and Methods
2.1. FERS System Description
2.2. Gas Raman Measurements
- A.
- H2 Raman measurements without CERS
- B.
- H2 Raman measurements with the CERS technique
- C.
- VOC Raman enhancement with CERS
2.3. Raman Spectral Analysis
3. Results
3.1. H2 Raman Measurements without CERS
3.2. H2 Raman Measurements with CERS Technique
3.3. Raman Enhancement of a VOC with CERS
4. Discussion
5. Conclusions
6. Patent
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Okita, Y.; Katagiri, T.; Matsuura, Y. A Raman cell based on hollow optical fibers for breath analysis. In Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications X, Proceedings of the SPIE BiOS, San Francisco, CA, USA, 23–28 January 2010; SPIE: Bellingham, WA, USA, 2010; p. 755908. [Google Scholar]
- Chow, K.K.; Short, M.; Lam, S.; McWilliams, A.; Zeng, H. A Raman cell based on hollow core photonic crystal fiber for human breath analysis. Med. Phys. 2014, 41, 092701. [Google Scholar] [CrossRef]
- Orange, D.; Knittle, E.; Farber, D.; Williams, Q. Raman spectroscopy of crude oils and hydrocarbon fluid inclusions: A feasibility study. Geochem. Soc. Spec. Publ. 1996, 5, 65–81. [Google Scholar]
- Eichmann, S.C.; Kiefer, J.; Benz, J.; Kempf, T.; Leipertz, A.; Seeger, T. Determination of gas composition in a biogas plant using a Raman-based sensorsystem. Meas. Sci. Technol. 2014, 25, 075503. [Google Scholar] [CrossRef]
- Wang, D.; He, P.; Wang, Z.; Li, G.; Majed, N.; Gu, A.Z. Advances in single cell Raman spectroscopy technologies for biological and environmental applications. Curr. Opin. Biotechnol. 2020, 64, 218–229. [Google Scholar] [CrossRef]
- Knebl, A.; Domes, R.; Yan, D.; Popp, J.; Trumbore, S.; Frosch, T. Fiber-Enhanced Raman Gas Spectroscopy for 18 O− 13 C-Labeling Experiments. Anal. Chem. 2019, 91, 7569. [Google Scholar] [CrossRef]
- Boyd, R.W. (Ed.) Chapter 10—Stimulated Raman Scattering and Stimulated Rayleigh-Wing Scattering. In Nonlinear Optics, 3rd ed.; Academic Press: Burlington, MA, USA, 2008; pp. 473–509. [Google Scholar]
- Selden, A.C. Raman Spectroscopy of Gases and Liquids; Springer: Berlin/Heidelberg, Germany, 1979; Volume 26, pp. 1239–1240. [Google Scholar]
- Salter, R.; Chu, J.; Hippler, M. Cavity-enhanced Raman spectroscopy with optical feedback cw diode lasers for gas phase analysis and spectroscopy. Analyst 2012, 137, 4669–4676. [Google Scholar] [CrossRef]
- Niklas, C.; Wackerbarth, H.; Ctistis, G. A Short Review of Cavity-Enhanced Raman Spectroscopy for Gas Analysis. Sensors 2021, 21, 1698. [Google Scholar] [CrossRef]
- Wang, P.; Chen, W.; Wang, J.; Lu, Y.; Tang, Z.; Tan, Y. Cavity-Enhanced Raman Spectroscopy for Detection of Trace Gaseous Impurities in Hydrogen for Fuel Cells. Anal. Chem. 2023, 95, 6894–6904. [Google Scholar] [CrossRef]
- Wang, J.; Wang, P.; Chen, W.; Wan, F.; Lu, Y.; Tang, Z.; Dong, A.; Lei, Z.; Zhang, Z. Highly sensitive multi-pass cavity enhanced Raman spectroscopy with novel polarization filtering for quantitative measurement of SF6 decomposed components in gas-insulated power equipment. Sens. Actuators B Chem. 2023, 380, 133350. [Google Scholar] [CrossRef]
- Prince, R.C.; Frontiera, R.R.; Potma, E.O. Stimulated Raman Scattering: From Bulk to Nano. Chem. Rev. 2017, 117, 5070–5094. [Google Scholar] [CrossRef]
- Tolles, W.M.; Nibler, J.W.; McDonald, J.R.; Harvey, A.B. A Review of the Theory and Application of Coherent Anti-Stokes Raman Spectroscopy (CARS). Appl. Spectrosc. 1977, 31, 253–271. [Google Scholar] [CrossRef]
- Roy, S.; Gord, J.R.; Patnaik, A.K. Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows. Prog. Energy Combust. Sci. 2010, 36, 280–306. [Google Scholar] [CrossRef]
- Hanf, S.; Keiner, R.; Yan, D.; Popp, J.; Frosch, T. Fiber-Enhanced Raman Multigas Spectroscopy: A Versatile Tool for Environmental Gas Sensing and Breath Analysis. Anal. Chem. 2014, 86, 5278–5285. [Google Scholar] [CrossRef]
- Cregan, R.F.; Mangan, B.J.; Knight, J.C.; Birks, T.A.; Russell, P.S.J.; Roberts, P.J.; Allan, D.C. Single-Mode Photonic Band Gap Guidance of Light in Air. Science 1999, 285, 1537–1539. [Google Scholar] [CrossRef]
- Humbert, G.; Knight, J.C.; Bouwmans, G.; Russell, P.S.J.; Williams, D.P.; Roberts, P.J.; Mangan, B.J. Hollow core photonic crystal fibers for beam delivery. Opt. Express 2004, 12, 1477. [Google Scholar] [CrossRef]
- Belardi, W.; Knight, J.C. Hollow antiresonant fibers with reduced attenuation. Opt. Lett. 2014, 39, 1853–1856. [Google Scholar] [CrossRef]
- Habib, M.S.; Antonio-Lopez, J.E.; Markos, C.; Schülzgen, A.; Amezcua-Correa, R. Single-mode, low loss hollow-core anti-resonant fiber designs. Opt. Express 2019, 27, 3824–3836. [Google Scholar] [CrossRef]
- Bögözi, T.; Popp, J.; Frosch, T. Fiber-enhanced Raman multi-gas spectroscopy: What is the potential of its application to breath analysis? Bioanalysis 2015, 7, 281–284. [Google Scholar] [CrossRef]
- Knebl, A.; Yan, D.; Popp, J.; Frosch, T. Fiber enhanced Raman gas spectroscopy. TrAC Trends Anal. Chem. 2018, 103, 230–238. [Google Scholar] [CrossRef]
- Buric, M.P.; Chen, K.P.; Falk, J.; Woodruff, S.D. Enhanced spontaneous Raman scattering and gas composition analysis using a photonic crystal fiber. Appl. Opt. 2008, 47, 4255–4261. [Google Scholar] [CrossRef]
- Buric, M.P.; Chen, K.P.; Falk, J.; Woodruff, S.D. Improved sensitivity gas detection by spontaneous Raman scattering. Appl. Opt. 2009, 48, 4424. [Google Scholar] [CrossRef]
- Sieburg, A.; Knebl, A.; Jacob, J.M.; Frosch, T. Characterization of fuel gases with fiber-enhanced Raman spectroscopy. Anal. Bioanal. Chem. 2019, 411, 7399–7408. [Google Scholar] [CrossRef]
- Hanf, S.; Bögözi, T.; Keiner, R.; Frosch, T.; Rgen Popp, J. Fast and Highly Sensitive Fiber-Enhanced Raman Spectroscopic Monitoring of Molecular H2 and CH4 for Point-of-Care Diagnosis of Malabsorption Disorders in Exhaled Human Breath. Anal. Chem. 2015, 87, 45. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Peng, X.; Alharbi, M.; Dutin, C.F.; Bradley, T.D.; Gérôme, F.; Mielke, M.; Booth, T.; Benabid, F. Design and fabrication of hollow-core photonic crystal fibers for high-power ultrashort pulse transportation and pulse compression. Opt. Lett. 2012, 37, 3111. [Google Scholar] [CrossRef]
- Gayraud, N.; Komaszewski, Ł.W.; Stone, J.M.; Knight, J.; Reid, D.T.; Hand, D.P.; MacPherson, W.N. Mid-infrared gas sensing using a photonic bandgap fiber. Appl. Opt. 2008, 47, 1269–1277. [Google Scholar] [CrossRef]
- Miekisch, W.; Kischkel, S.; Sawacki, A.; Liebau, T.; Mieth, M.; Schubert, J.K. Impact of sampling procedures on the results of breath analysis. J. Breath Res. 2008, 2, 026007. [Google Scholar] [CrossRef]
- Benabid, F.; Knight, J.C.; Antonopoulos, G.; Russell, P.S.J.; Russell, J. Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber. Science 2002, 298, 399–402. [Google Scholar] [CrossRef]
- Benabid, F.; Bouwmans, G.; Knight, J.C.; Russell, P.S.J.; Couny, F. Ultrahigh Efficiency Laser Wavelength Conversion in a Gas-Filled Hollow Core Photonic Crystal Fiber by Pure Stimulated Rotational Raman Scattering in Molecular Hydrogen. Phys. Rev. Lett. 2004, 93, 123903. [Google Scholar] [CrossRef]
- Benabid, F.; Couny, F.; Knight, J.C.; Birks, T.A.; Russell, P.S.J. Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres. Nature 2005, 434, 488–491. [Google Scholar] [CrossRef]
- Benabid, F.; Antonopoulos, G.; Knight, J.C.; Russell, P.S.J. Stokes Amplification Regimes in Quasi-cw Pumped Hydrogen-Filled Hollow-Core Photonic Crystal Fiber. Phys. Rev. Lett. 2005, 95, 213903. [Google Scholar] [CrossRef]
- Shirmohammad, M.; Short, M.A.; Zeng, H. A New Gas Analysis Method Based on Single-Beam Excitation Stimulated Raman Scattering in Hollow Core Photonic Crystal Fiber Enhanced Raman Spectroscopy. Bioengineering 2023, 10, 1161. [Google Scholar]
- Fenner, W.R.; Hyatt, H.A.; Kellam, J.M.; Porto, S.P.S. Raman cross section of some simple gases. J. Opt. Soc. Am. 1973, 63, 73–77. [Google Scholar] [CrossRef]
- Phillips, M.; Herrera, J.; Krishnan, S.; Zain, M.; Greenberg, J.; Cataneo, R.N. Variation in Volatile Organic Compounds in the Breath of Normal Humans. J. Chromatogr. B Biomed. Sci. Appl. 1999, 729, 75–88. [Google Scholar]
- De Lacy Costello, B.; Amann, A.; Al-Kateb, H.; Flynn, C.; Filipiak, W.; Khalid, T.; Osborne, D.; Ratcliffe, N.M. A review of the volatiles from the healthy human body. J. Breath Res. 2014, 8, 014001. [Google Scholar] [CrossRef]
- Saalberg, Y.; Wolff, M. VOC breath biomarkers in lung cancer. Clin. Chim. Acta 2016, 459, 5–9. [Google Scholar] [CrossRef]
- Filipiak, W.; Filipiak, A.; Sponring, A.; Schmid, T.; Zelger, B.; Ager, C.; Klodzinska, E.; Denz, H.; Pizzini, A.; Lucciarini, P.; et al. Comparative analyses of volatile organic compounds (VOCs) from patients, tumors and transformed cell lines for the validation of lung cancer-derived breath markers. J. Breath Res. 2014, 8, 027111. [Google Scholar] [CrossRef]
- Tsou, P.-H.; Lin, Z.-L.; Pan, Y.-C.; Yang, H.-C.; Chang, C.-J.; Liang, S.-K.; Wen, Y.-F.; Chang, C.-H.; Chang, L.-Y.; Yu, K.-L.; et al. Exploring Volatile Organic Compounds in Breath for High-Accuracy Prediction of Lung Cancer. Cancers 2021, 13, 1431. [Google Scholar] [CrossRef]
- Maiti, K.S.; Lewton, M.; Fill, E.; Apolonski, A. Sensitive spectroscopic breath analysis by water condensation. J. Breath Res. 2018, 12, 046003. [Google Scholar] [CrossRef]
- Luches, A.; Nassisi, V.; Perrone, M.R. Stimulated Raman scattering in H2–Ar mixtures. Opt. Lett. 1987, 12, 33–35. [Google Scholar] [CrossRef]
- Moore, C.B.; Wood, R.E.; Hu, B.L.; Yardley, J.T. Vibrational energy transfer in CO2 lasers. J. Chem. Phys. 1967, 46, 4222–4231. [Google Scholar] [CrossRef]
- Yardley, J. Introduction to Molecular Energy Transfer; Elsevier: Amsterdam, The Netherlands, 1980. [Google Scholar]
- Konefal, Z.; Ignaciuk, M. Stimulated collision induced processes in sodium vapor in the presence of helium. Appl. Phys. B Photophys. Laser Chem. 1990, 51, 285–291. [Google Scholar] [CrossRef]
- Konefal, Z.; Ignaciuk, M. Observation of collision-induced amplified emission in Na-noble gas system. Z. Für Phys. At. Mol. Clust. 1993, 27, 49–54. [Google Scholar]
- Konefal, Z.; Ignaciuk, M. Stimulated processes in sodium vapour in the presence of molecular buffer gas systems. Opt. Quantum Electron. 1996, 28, 169–180. [Google Scholar]
- Xu, B.; Yue, G.-M.; Zhang, Y.-C.; Hu, H.-L.; Zhou, J.; Hu, S.-X. Generation of UV laser light by stimulated Raman scattering in D2, D2/Ar and D2/He using a pulsed Nd:YAG laser at 355nm. Chin. Phys. 2003, 12, 1021. [Google Scholar] [CrossRef]
- Simeonov, V.; Mitev, V.; van den Bergh, H.; Calpini, B. Raman frequency shifting in a CH4:H2:Ar mixture pumped by the fourth harmonic of a Nd:YAG laser. Appl. Opt. 1998, 37, 7112–7115. [Google Scholar] [CrossRef]
- Hosseini, P.; Abdolvand, A.; Stj Russell, P. Generation of spectral clusters in a mixture of noble and Raman-active gases. Opt. Lett. 2016, 41, 5543–5546. [Google Scholar] [CrossRef]
- Hosseini, P.; Novoa, D.; Abdolvand, A.; St Russell, P.J. Enhanced Control of Transient Raman Scattering Using Buffered Hydrogen in Hollow-Core Photonic Crystal Fibers. Phys. Rev. Lett. 2017, 119, 253903. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shirmohammad, M.; Short, M.A.; Zeng, H. Collision Enhanced Raman Scattering (CERS): An Ultra-High Efficient Raman Enhancement Technique for Hollow Core Photonic Crystal Fiber Based Raman Spectroscopy Gas Analyzer. Biosensors 2023, 13, 979. https://doi.org/10.3390/bios13110979
Shirmohammad M, Short MA, Zeng H. Collision Enhanced Raman Scattering (CERS): An Ultra-High Efficient Raman Enhancement Technique for Hollow Core Photonic Crystal Fiber Based Raman Spectroscopy Gas Analyzer. Biosensors. 2023; 13(11):979. https://doi.org/10.3390/bios13110979
Chicago/Turabian StyleShirmohammad, Maryam, Michael A. Short, and Haishan Zeng. 2023. "Collision Enhanced Raman Scattering (CERS): An Ultra-High Efficient Raman Enhancement Technique for Hollow Core Photonic Crystal Fiber Based Raman Spectroscopy Gas Analyzer" Biosensors 13, no. 11: 979. https://doi.org/10.3390/bios13110979
APA StyleShirmohammad, M., Short, M. A., & Zeng, H. (2023). Collision Enhanced Raman Scattering (CERS): An Ultra-High Efficient Raman Enhancement Technique for Hollow Core Photonic Crystal Fiber Based Raman Spectroscopy Gas Analyzer. Biosensors, 13(11), 979. https://doi.org/10.3390/bios13110979