Localized Surface Plasmon Resonance-Based Nanosensor for Rapid Detection of Glyphosate in Food Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Instruments and Software
2.3. Synthesis and Characterization of Gold Nanoparticles
2.4. Functionalization of Gold Nanoparticles with Cysteamine
2.5. Functionalization of Gold Nanoparticles with Anti-Glyphosate Antibody
2.6. Glyphosate Detection Using LSPR
3. Results and Discussion
3.1. Characterization of Gold Nanoparticles
3.2. Functionalization of Gold Nanoparticles Using Cysteamine
3.3. Conjugation of Gold Nanoparticles with Antibodies
3.4. Glyphosate Detection Using LSPR
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, Y.; Zhang, F.; Tong, C.; Liu, W. Determination of glyphosate by ion chromatography. J. Chromatogr. A 1999, 850, 297–301. [Google Scholar] [CrossRef] [PubMed]
- Boocock, M.R.; Coggins, J.R. Kinetics of 5-enolpyruvylshikimate-3-phosphate synthase inhibition by glyphosate. FEBS Lett. 1983, 154, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Belbin, F.E.; Hall, G.J.; Jackson, A.B.; Schanschieff, F.E.; Archibald, G.; Formstone, C.; Dodd, A.N. Plant circadian rhythms regulate the effectiveness of a glyphosate-based herbicide. Nat. Commun. 2019, 10, 3704. [Google Scholar] [CrossRef] [PubMed]
- Beckie, H.J.; Flower, K.C.; Ashworth, M.B. Farming without Glyphosate? Plants 2020, 9, 96. [Google Scholar] [CrossRef] [PubMed]
- Greim, H.; Saltmiras, D.; Mostert, V.; Strupp, C. Evaluation of carcinogenic potential of the herbicide glyphosate, drawing on tumor incidence data from fourteen chronic/carcinogenicity rodent studies. Crit. Rev. Toxicol. 2015, 45, 185–208. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Zhang, Q.; Liu, X.; Gao, M.; Li, X.; Wang, Y.; Chang, Y.; Zhang, X.; Huo, Z.; Zhang, L.; et al. Human serum lipidomics analysis revealed glyphosate may lead to lipid metabolism disorders and health risks. Environ. Int. 2023, 171, 107682. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, X.; Gao, M.; Li, X.; Wang, Y.; Chang, Y.; Zhang, X.; Huo, Z.; Zhang, L.; Shan, J.; et al. The study of human serum metabolome on the health effects of glyphosate and early warning of potential damage. Chemosphere 2022, 298, 134308. [Google Scholar] [CrossRef]
- Barnor, K.; Caton, J.; Miljkovic, D. The role of funding on research and science: The impact of glyphosate herbicides on health and the environment. J. Policy Model. 2023, 45, 103–120. [Google Scholar] [CrossRef]
- Kanissery, R.; Gairhe, B.; Kadyampakeni, D.; Batuman, O.; Alferez, F. Glyphosate: Its environmental persistence and impact on crop health and nutrition. Plants 2019, 8, 499. [Google Scholar] [CrossRef]
- Gandhi, K.; Khan, S.; Patrikar, M.; Markad, A.; Kumar, N.; Choudhari, A.; Sagar, P.; Indurkar, S. Exposure risk and environmental impacts of glyphosate: Highlights on the toxicity of herbicide co-formulants. Environ. Chall. 2021, 4, 100149. [Google Scholar] [CrossRef]
- Metfaul, I.M.; Venkateswarlu, K.; Annamalai, P.; Parven, A.; Megharaj, M. Glyphosate use in urban landscape soils: Fate, distribuition, and potencial human and environmental health risks. J. Environ. Manag. 2021, 292, 112786. [Google Scholar] [CrossRef]
- Xu, J.; Smith, S.; Smith, G.; Wang, W.; Li, Y. Glyphosate contamination in grains and foods: An overview. Food Cont. 2019, 106, 106710. [Google Scholar] [CrossRef]
- Ghisi, N.D.C.; Zuanazzi, N.R.; Fabrin, T.M.C.; Oliveira, E.C. Glyphosate and its toxicology: A scientometric review. Sci. Total Environ. 2020, 733, 139359. [Google Scholar] [CrossRef] [PubMed]
- Rani, L.; Thapa, K.; Kanojia, N.; Sharma, N.; Singh, S.; Grewal, A.S.; Srivastav, A.L.; Kaushal, J. An extensive review on the consequences of chemical pesticides on human health and environment. J. Clean. Prod. 2021, 283, 124657. [Google Scholar] [CrossRef]
- Bai, G.; Jiang, X.; Qin, J.; Zou, Y.; Zhang, W.; Teng, T.; Shi, B.; Sun, H. Perinatal exposure to glyphosate-based herbicides impairs progeny health and placental angiogenesis by disturbing mitochondrial function. Environ. Int. 2022, 170, 107579. [Google Scholar] [CrossRef] [PubMed]
- Kocadal, K.; Alkas, F.B.; Battal, D.; Saygi, S. A review on advances and perspectives of glyphosate determination: Challenges and opportunities. Arch. Environ. Prot. 2022, 48, 89–98. [Google Scholar] [CrossRef]
- Ma, R.; Fu, L.; Long, N.; Guo, H.; Hou, Y.; Li, Y.; Li, P.; Wang, J.; Zhou, L.; Kong, W. Gold nanoclusters and silica-coated carbon dots-assisted ratiometric fluorescent nanosensors for ultrasensitive detection of glyphosate. ACS Sustain. Chem. Eng. 2023, 11, 5093–5104. [Google Scholar] [CrossRef]
- Anker, J.N.; Hall, W.P.; Lyandres, O.; Shah, N.C.; Zhao, J.; Van Duyne, R.P. Biosensing with plasmonic nanosensors. Nat. Mater. 2008, 7, 442–453. [Google Scholar] [CrossRef]
- He, Y. Novel and high-performance LSPR biochemical fiber sensor. Sens. Actuators B Chem. 2015, 206, 212–219. [Google Scholar] [CrossRef]
- He, M.; Yu, Y.; Wang, J. Biomolecule-tailored assembly and morphology of gold nanoparticles for LSPR applications. Nano Today 2020, 35, 101005. [Google Scholar] [CrossRef]
- Ma, X.; Sun, H.; Wang, Y.; Wu, X.; Zhang, J. Electronic and optical properties of strained noble metals: Implications for applications based on LSPR. Nano Energy 2018, 53, 932–939. [Google Scholar] [CrossRef]
- Dormeny, A.A.; Sohi, P.A.; Kahrizi, M. Design and simulation of a refractive index sensor based on SPR and LSPR using gold nanostructures. Results Phys. 2020, 16, 102869. [Google Scholar] [CrossRef]
- Rej, S.; Santiago, E.Y.; Baturina, O.; Zhang, Y.; Burger, S.; Kment, S.; Govorov, A.O.; Naldoni, A. Colloidal titanium nitride nanobars for broadband inexpensive plasmonics and photochemistry from visible to mid-IR wavelengths. Nano Energy 2022, 104, 107989. [Google Scholar] [CrossRef]
- Pereira, R.H.A.; Keijok, W.J.; Prado, A.R.; Oliveira, J.P.; Guimarães, M.C.C. Rapid and sensitive detection of ochratoxin A using antibody-conjugated gold nanoparticles based on Localized Surface Plasmon Resonance. Toxicon 2021, 199, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, F.; Rastegarzadeh, S.; Pourreza, N. A combination of dispersive liquid-liquid microextraction and surface plasmon resonance sensing of gold nanoparticles for the determination of ziram pesticide. J. Sep. Sci. 2018, 41, 1156–1163. [Google Scholar] [CrossRef] [PubMed]
- Hong, G.; Hsu, J.; Chuang, K.; Ma, C. Colorimetric detection of 1-Naphthol and Glyphosate using modified gold nanoparticles. Sustainability 2022, 14, 10793. [Google Scholar] [CrossRef]
- Mikac, L.; Rigó, I.; Skrabic, M.; Ivanda, M.; Veres, M. Comparison of glyphosate detection by surface-enhanced Raman spectroscopy using gold and silver nanoparticles at different laser excitations. Molecules 2022, 27, 5767. [Google Scholar] [CrossRef]
- Tu, Q.; Yang, T.; Qu, Y.; Gao, S.; Zhang, Z.; Zhang, Q.; Wang, Y.; Wang, J.; He, L. In situ colorimetric detection of glyphosate on plant tissues using cysteamine-modified gold nanoparticles. Analyst 2019, 144, 2017–2025. [Google Scholar] [CrossRef]
- Kimling, J.; Maier, M.; Okenve, B.; Kotaidis, V.; Ballot, H.; Plech, A. Turkevich Method for Gold Nanoparticle Synthesis Revisited. J. Phys. Chem. B 2006, 110, 15700–15707. [Google Scholar] [CrossRef]
- Sau, T.K.; Pal, A.; Jana, N.R.; Wang, Z.L.; Pal, T. Size controlled synthesis of gold nanoparticles using photochemically prepared seed particles. J. Nanoparticle Res. 2001, 3, 257–261. [Google Scholar] [CrossRef]
- Giljohann, D.A.; Seferos, D.S.; Daniel, W.L.; Massich, M.D.; Patel, P.C.; Mirkin, C.A. Gold Nanoparticles for Biology and Medicine. Angew. Chem. Int. Ed. 2010, 49, 3280–3294. [Google Scholar] [CrossRef] [PubMed]
- Munro, C.H.; Smith, W.E.; Garner, M.; Clarkson, J.; White, P.C. Characterization of the surface of a citrate-reduced colloid optimized for use as a substrate for surface-enhanced resonance Raman scattering. Langmuir 1995, 11, 3712–3720. [Google Scholar] [CrossRef]
- Atallah, C.; Charcosset, C.; Greige-Gerges, H. Challenges for cysteamine stabilization, quantification, and biological effects improvement. J. Pharm. Anal. 2020, 10, 499–516. [Google Scholar] [CrossRef]
- Li, X.; Jiang, L.; Zhan, Q.; Qian, J.; He, S. Localized surface plasmon resonance (LSPR) of polyelectrolyte-functionalized gold-nanoparticles for bio-sensing. Colloids Surf. A Physicochem. Eng. Asp. 2009, 332, 172–179. [Google Scholar] [CrossRef]
- Oliveira, J.P.; Prado, A.R.; Keijok, W.J.; Antunes, P.W.P.; Yapuchura, E.R.; Guimarães, M.C.C. Impact of conjugation strategies for targeting of antibodies in gold nanoparticles for ultrasensitive detection of 17β-estradiol. Sci. Rep. 2019, 9, 13859. [Google Scholar] [CrossRef]
- Keijok, W.J.; Pereira, R.H.A.; Alvarez, L.A.C.; Prado, A.R.; Silva, A.R.; Ribeiro, J.; Oliveira, J.P.; Guimarães, M.C.C. Controlled biosynthesis of gold nanoparticles with Coffea arabica using factorial design. Sci. Rep. 2019, 9, 16019. [Google Scholar] [CrossRef]
- Kim, H.; Kim, H.; Park, J.; Lee, S. High-performance biosensor using a sandwich assay via antibody-conjugated gold nanoparticles and fiber-optic localized surface plasmon resonance. Anal. Chim. Acta 2022, 1213, 339960. [Google Scholar] [CrossRef]
- Camilo, D.E.; Miyazaki, C.M.; Shimizu, F.M.; Ferreira, M. Improving direct immunoassay response by layer-by-layer films of gold nanoparticles–Antibody conjugate towards label-free detection. Mater. Sci. Eng. C 2019, 102, 315–323. [Google Scholar] [CrossRef]
- Naumann, D. Infrared spectroscopy in microbiology. In Encyclopedia of Anaytical Chemistry; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar] [CrossRef]
- Stuart, B.H. Biological Applications of Infrared Spectroscopy, ACOL Series; John Wiley & Sons: Hoboken, NJ, USA, 1997. [Google Scholar]
- Lin, V.J.C.; Koenig, J.L. Raman studies of bovine serum albumin. Biopolymers 1976, 15, 203–218. [Google Scholar] [CrossRef]
- Hornemann, A.; Drescher, D.; Flemig, S.; Kneipp, J. Intracellular SERS hybrid probes using BSA-reporter conjugates. Anal. Bioanal. Chem. 2013, 405, 6209–6222. [Google Scholar] [CrossRef]
- Zheng, J.; Zhang, H.; Qu, J.; Zhu, Q.; Chen, X. Visual detection of glyphosate in environmental water samples using cysteamine-stabilized gold nanoparticles as colorimetric probe. Anal. Methods 2013, 5, 917–924. [Google Scholar] [CrossRef]
- Zhang, L.; Mazouzi, Y.; Salmain, M.; Liedberg, B.; Boujday, S. Antibody-Gold Nanoparticle Bioconjugates for Biosensors: Synthesis, Characterization and Selected Applications. Biosens. Bioelectron. 2020, 165, 112370. [Google Scholar] [CrossRef] [PubMed]
- Péssi, D.D.; Kreitlow, D.; Prado Rodrigues, D.A.; Chiarelli-Neto, O. Uso de Equipamentos de Proteção Individual e Análise do glifosato em propriedades rurais do Espírito Santo. Unesc Em Rev. 2017, 1, 24–36. [Google Scholar]
Detection System | Detection Range | LOD 1 | Reference |
---|---|---|---|
L-cysteine-AuNPs | 1–23 mg·L−1 | 270 µg·L−1 | [26] |
Cysteamine-AgNPs | - | 1700 µg·L−1 | [27] |
Cysteamine-AuNPs | 0.001–1000 mg·L−1 | - | [28] |
Cysteamine-AuNPs | 0.084–1.183 mg·L−1 | 10 µg·L−1 | [43] |
Cysteamine-AuNPs | 0.180–3 mg·L−1 | 42 µg·L−1 | This study |
Anti-glyphosate-AuNPs | 0.0003–0.02 mg·L−1 | 0.15 µg·L−1 | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Côco, A.S.; Campos, F.V.; Díaz, C.A.R.; Guimarães, M.C.C.; Prado, A.R.; de Oliveira, J.P. Localized Surface Plasmon Resonance-Based Nanosensor for Rapid Detection of Glyphosate in Food Samples. Biosensors 2023, 13, 512. https://doi.org/10.3390/bios13050512
Côco AS, Campos FV, Díaz CAR, Guimarães MCC, Prado AR, de Oliveira JP. Localized Surface Plasmon Resonance-Based Nanosensor for Rapid Detection of Glyphosate in Food Samples. Biosensors. 2023; 13(5):512. https://doi.org/10.3390/bios13050512
Chicago/Turabian StyleCôco, Ariany Soares, Fabiana Vasconcelos Campos, Camilo Arturo Rodríguez Díaz, Marco César Cunegundes Guimarães, Adilson Ribeiro Prado, and Jairo Pinto de Oliveira. 2023. "Localized Surface Plasmon Resonance-Based Nanosensor for Rapid Detection of Glyphosate in Food Samples" Biosensors 13, no. 5: 512. https://doi.org/10.3390/bios13050512
APA StyleCôco, A. S., Campos, F. V., Díaz, C. A. R., Guimarães, M. C. C., Prado, A. R., & de Oliveira, J. P. (2023). Localized Surface Plasmon Resonance-Based Nanosensor for Rapid Detection of Glyphosate in Food Samples. Biosensors, 13(5), 512. https://doi.org/10.3390/bios13050512