Electrochemical Biosensors for Express Analysis of the Integral Toxicity of Polymer Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Cultivation of Microorganisms
2.3. Formation of Working Electrodes
2.4. Electrochemical Measurements
2.5. Sampling and Sample Preparation for Biotesting Methods
2.6. Extraction of Samples for Chromatography
2.7. Chromatography Analysis of Samples
2.8. Determination of Toxicity Using the “Ekolum” Test System
2.9. Standard Biotest Method Based on the Test Object L. minor
2.10. Bioassay Using Bovine Sperm
3. Results and Discussion
3.1. Development of Electrochemical Biosensors with Different Types of Signal Recording for Assessing Integral Toxicity
3.2. Main Characteristics of Biosensors for Determining Toxicity
3.3. Quantitative Assessment of the Toxic Effects of Pollutants on the Bacteria G. oxydans as Part of Biosensors with Different Types of Signal Recording
3.4. Toxicity Analysis of Polymer Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sree, C.G.; Buddolla, V.; Lakshmi, B.A.; Kim, Y.-J. Phthalate Toxicity Mechanisms: An Update. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2023, 263, 109498. [Google Scholar] [CrossRef]
- Al-Tohamy, R.; Ali, S.S.; Li, F.; Okasha, K.M.; Mahmoud, Y.A.-G.; Elsamahy, T.; Jiao, H.; Fu, Y.; Sun, J. A Critical Review on the Treatment of Dye-Containing Wastewater: Ecotoxicological and Health Concerns of Textile Dyes and Possible Remediation Approaches for Environmental Safety. Ecotoxicol. Environ. Saf. 2022, 231, 113160. [Google Scholar] [CrossRef] [PubMed]
- Mitra, S.; Chakraborty, A.J.; Tareq, A.M.; Emran, T.B.; Nainu, F.; Khusro, A.; Idris, A.M.; Khandaker, M.U.; Osman, H.; Alhumaydhi, F.A.; et al. Impact of Heavy Metals on the Environment and Human Health: Novel Therapeutic Insights to Counter the Toxicity. J. King Saud Univ. Sci. 2022, 34, 101865. [Google Scholar] [CrossRef]
- Campanale, C.; Massarelli, C.; Savino, L.; Locaputo, V.; Uricchio, V.F. A Detailed Review Study on Potential Effects of Microplastics and Additives of Concern on Human Health. Int. J. Envirn. Res. Public Health 2020, 17, 1212. [Google Scholar] [CrossRef] [PubMed]
- Turner, A.; Filella, M. Hazardous Metal Additives in Plastics and Their Environmental Impacts. Environ. Int. 2021, 156, 106622. [Google Scholar] [CrossRef]
- Khanmohammadi, A.; Jalili Ghazizadeh, A.; Hashemi, P.; Afkhami, A.; Arduini, F.; Bagheri, H. An Overview to Electrochemical Biosensors and Sensors for the Detection of Environmental Contaminants. J. Iran. Chem. Soc. 2020, 17, 2429–2447. [Google Scholar] [CrossRef]
- Singh, S.; Singh, N.; Kumar, V.; Datta, S.; Wani, A.B.; Singh, D.; Singh, K.; Singh, J. Toxicity, Monitoring and Biodegradation of the Fungicide Carbendazim. Environ. Chem. Lett. 2016, 14, 317–329. [Google Scholar] [CrossRef]
- Bilal, M.; Iqbal, H.M.N. Microbial-Derived Biosensors for Monitoring Environmental Contaminants: Recent Advances and Future Outlook. Process Saf. Environ. Prot. 2019, 124, 8–17. [Google Scholar] [CrossRef]
- Arlyapov, V.A.; Plekhanova, Y.V.; Kamanina, O.A.; Nakamura, H.; Reshetilov, A.N. Microbial Biosensors for Rapid Determination of Biochemical Oxygen Demand: Approaches, Tendencies and Development Prospects. Biosensors 2022, 12, 842. [Google Scholar] [CrossRef]
- Fernández-Piñas, F.; Rodea-Palomares, I.; Leganés, F.; González-Pleiter, M.; Angeles Muñoz-Martín, M. Evaluation of the Ecotoxicity of Pollutants with Bioluminescent Microorganisms. In Bioluminescence: Fundamentals and Applications in Biotechnology—Volume 2; Thouand, G., Marks, R., Eds.; Advances in Biochemical Engineering/Biotechnology; Springer: Berlin/Heidelberg, Germany, 2014; Volume 145, pp. 65–135. ISBN 978-3-662-43618-9. [Google Scholar]
- Yu, D.; Li, R.; Rong, K.; Fang, Y.; Liu, L.; Yu, H.; Dong, S. A Novel, Environmentally Friendly Dual-Signal Water Toxicity Biosensor Developed through the Continuous Release of Fe3+. Biosens. Bioelectron. 2023, 220, 114864. [Google Scholar] [CrossRef]
- Cui, Y.; Lai, B.; Tang, X. Microbial Fuel Cell-Based Biosensors. Biosensors 2019, 9, 92. [Google Scholar] [CrossRef] [PubMed]
- Fang, D.; Gao, G.; Yang, Y.; Wang, Y.; Gao, L.; Zhi, J. Redox Mediator-Based Microbial Biosensors for Acute Water Toxicity Assessment: A Critical Review. ChemElectroChem 2020, 7, 2513–2526. [Google Scholar] [CrossRef]
- Yudina, N.Y.; Zaitsev, M.G.; Arlyapov, V.A.; Alferov, V.A.; Ponamoreva, O.N.; Reshetilov, A.N. A Biosensor for Express Assessment of Integral Toxicity of Polymer- and Textile-Based Products. Biotechnology 2021, 37, 119–128. [Google Scholar] [CrossRef]
- Buckova, M.; Licbinsky, R.; Jandova, V.; Krejci, J.; Pospichalova, J.; Huzlik, J. Fast Ecotoxicity Detection Using Biosensors. Water Air Soil Pollut. 2017, 228, 166. [Google Scholar] [CrossRef]
- Kharkova, A.S.; Arlyapov, V.A.; Turovskaya, A.D.; Shvets, V.I.; Reshetilov, A.N. A Mediator Microbial Biosensor for Assaying General Toxicity. Enzym. Microb. Technol. 2020, 132, 109435. [Google Scholar] [CrossRef]
- Gao, G.; Fang, D.; Yu, Y.; Wu, L.; Wang, Y.; Zhi, J. A Double-Mediator Based Whole Cell Electrochemical Biosensor for Acute Biotoxicity Assessment of Wastewater. Talanta 2017, 167, 208–216. [Google Scholar] [CrossRef]
- Fang, D.; Gao, G.; Shen, J.; Yu, Y.; Zhi, J. A Reagentless Electrochemical Biosensor Based on Thionine Wrapped E. coli and Chitosan-Entrapped Carbon Nanodots Film Modified Glassy Carbon Electrode for Wastewater Toxicity Assessment. Electrochim. Acta 2016, 222, 303–311. [Google Scholar] [CrossRef]
- Yu, D.; Bai, L.; Zhai, J.; Wang, Y.; Dong, S. Toxicity Detection in Water Containing Heavy Metal Ions with a Self-Powered Microbial Fuel Cell-Based Biosensor. Talanta 2017, 168, 210–216. [Google Scholar] [CrossRef]
- Labro, J.; Craig, T.; Wood, S.A.; Packer, M.A. Demonstration of the Use of a Photosynthetic Microbial Fuel Cell as an Environmental Biosensor. Int. J. Nanotechnol. 2017, 14, 213. [Google Scholar] [CrossRef]
- Zeng, L.; Li, X.; Shi, Y.; Qi, Y.; Huang, D.; Tadé, M.; Wang, S.; Liu, S. FePO4 Based Single Chamber Air-Cathode Microbial Fuel Cell for Online Monitoring Levofloxacin. Biosens. Bioelectron. 2017, 91, 367–373. [Google Scholar] [CrossRef]
- Zhou, T.; Han, H.; Liu, P.; Xiong, J.; Tian, F.; Li, X. Microbial Fuels Cell-Based Biosensor for Toxicity Detection: A Review. Sensors 2017, 17, 2230. [Google Scholar] [CrossRef] [PubMed]
- Qin, Z.; Yu, S.; Chen, J.; Zhou, J. Dehydrogenases of Acetic Acid Bacteria. Biotechnol. Adv. 2022, 54, 107863. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, L.; Dierkes, G.; Ternes, T.A.; Völker, C.; Wagner, M. Benchmarking the in Vitro Toxicity and Chemical Composition of Plastic Consumer Products. Environ. Sci. Technol. 2019, 53, 11467–11477. [Google Scholar] [CrossRef] [PubMed]
- ISO 20079; Water Quality–Determination Of The Toxic Effect Of Water Constituents And Waste Water On Duckweed (Lemna Minor)–Duckweed Growth Inhibition Test. 1st ed. ISO: Geneva, Switzerland, 2005.
- Russian Standard GOST 32075; Textile Materials. Toxicity Determination Method. 1st ed. Standartinform: Moscow, Russia, 2009. (In Russian)
- Reshetilov, A.N.; Plekhanova, Y.V.; Tarasov, S.E.; Arlyapov, V.A.; Kolesov, V.V.; Gutorov, M.A.; Gotovtsev, P.M.; Vasilov, R.G. Effect of Some Carbon Nanomaterials on Ethanol Oxidation by Gluconobacter oxydans Bacterial Cells. Appl. Biochem. Microbiol. 2017, 53, 123–129. [Google Scholar] [CrossRef]
- Plekhanova, Y.; Tarasov, S.; Bykov, A.; Prisyazhnaya, N.; Kolesov, V.; Sigaev, V.; Signore, M.; Reshetilov, A. Multiwalled Carbon Nanotubes and the Electrocatalytic Activity of Gluconobacter oxydans as the Basis of a Biosensor. Biosensors 2019, 9, 137. [Google Scholar] [CrossRef]
- Alferov, S.V.; Arlyapov, V.A.; Alferov, V.A.; Reshetilov, A.N. Biofuel Cell Based on Bacteria of the Genus Gluconobacter as a Sensor for Express Analysis of Biochemical Oxygen Demand. Appl. Biochem. Microbiol. 2018, 54, 689–694. [Google Scholar] [CrossRef]
- Tarasov, S.; Plekhanova, Y.; Kashin, V.; Gotovtsev, P.; Signore, M.; Francioso, L.; Kolesov, V.; Reshetilov, A. Gluconobacter Oxydans-Based MFC with PEDOT:PSS/Graphene/Nafion Bioanode for Wastewater Treatment. Biosensors 2022, 12, 699. [Google Scholar] [CrossRef]
- Reshetilov, A.; Alferov, S.; Tomashevskaya, L.; Ponamoreva, O. Testing of Bacteria Gluconobacter oxydans and Electron Transport Mediators Composition for Application in Biofuel Cell. Electroanalysis 2006, 18, 2030–2034. [Google Scholar] [CrossRef]
- Alferov, S.V.; Voevodskaya, O.A.; Nhuen, V.T.; Arlyapov, V.A.; Ponamoreva, O.N.; Reshetilov, A.N. Effectiveness of electronic transport mediators in the processes of electrocatalytic oxidation of substrates by enzyme systems of microorganisms. Sens. Syst. 2010, 25, 346–351. [Google Scholar]
- Mohseni, M.; Abbaszadeh, J.; Maghool, S.-S.; Chaichi, M.-J. Heavy Metals Detection Using Biosensor Cells of a Novel Marine Luminescent Bacterium Vibrio Sp. MM1 Isolated from the Caspian Sea. Ecotoxicol. Environ. Saf. 2018, 148, 555–560. [Google Scholar] [CrossRef]
- Okamoto, A.; Yamamuro, M.; Tatarazako, N. Acute Toxicity of 50 Metals to Daphnia magna. J. Appl. Toxicol. 2015, 35, 824–830. [Google Scholar] [CrossRef]
- Naumann, B.; Eberius, M.; Appenroth, K.-J. Growth Rate Based Dose–Response Relationships and EC-Values of Ten Heavy Metals Using the Duckweed Growth Inhibition Test (ISO 20079) with Lemna minor L. Clone St. J. Plant Physiol. 2007, 164, 1656–1664. [Google Scholar] [CrossRef]
- Bošnir, J.; Puntarić, D.; Cvetković, Ž.; Pollak, L.; Barušić, L.; Klarić, I.; Miškulin, M.; Puntarić, I.; Puntarić, E.; Milošević, M. Effects of Magnesium, Chromium, Iron and Zinc from Food Supplements on Selected Aquatic Organisms. Coll. Antropol. 2013, 37, 965–971. [Google Scholar]
- Yang, Y.; Fang, D.; Liu, Y.; Liu, R.; Wang, X.; Yu, Y.; Zhi, J. Problems Analysis and New Fabrication Strategies of Mediated Electrochemical Biosensors for Wastewater Toxicity Assessment. Biosens. Bioelectron. 2018, 108, 82–88. [Google Scholar] [CrossRef]
- Lee, J.S.; Kim, D.S.; Jeon, H.J.; Park, B.S.; Yang, H.J.; Hyun, M.S.; Kim, M. Microbial Fuel Cell as a Biosensor to Monitor Various Toxic Metal Substances in Water. In Proceedings of the 2015 9th International Conference on Sensing Technology (ICST), Auckland, New Zealand, 8–10 December 2015; 2015; pp. 416–419. [Google Scholar]
- Farré, M.; Barceló, D. Toxicity Testing of Wastewater and Sewage Sludge by Biosensors, Bioassays and Chemical Analysis. TrAC Trends Anal. Chem. 2003, 22, 299–310. [Google Scholar] [CrossRef]
- Johnson, B.T. Microtox® Toxicity Test System—New Developments and Applications. In Microscale Testing in Aquatic Toxicology; CRC Press: Boca Raton, FL, USA, 2018; pp. 201–218. ISBN 978-0-203-74719-3. [Google Scholar]
- Codina, J.C.; Ascensión Muñoz, M.; Cazorla, F.M.; Pérez-García, A.; Moriñigo, M.A.; De Vicente, A. The Inhibition of Methanogenic Activity from Anaerobic Domestic Sludges as a Simple Toxicity Bioassay. Water Res. 1998, 32, 1338–1342. [Google Scholar] [CrossRef]
- Salazar-Beltrán, D.; Hinojosa-Reyes, L.; Palomino-Cabello, C.; Turnes-Palomino, G.; Hernández-Ramírez, A.; Guzmán-Mar, J.L. Determination of Phthalate Acid Esters Plasticizers in Polyethylene Terephthalate Bottles and Its Correlation with Some Physicochemical Properties. Polym. Test. 2018, 68, 87–94. [Google Scholar] [CrossRef]
- Tripathy, V.; Saha, A.; Kumar, J. Detection of Pesticides in Popular Medicinal Herbs: A Modified QuEChERS and Gas Chromatography–Mass Spectrometry Based Approach. J. Food Sci. Technol. 2017, 54, 458–468. [Google Scholar] [CrossRef]
- Lebedev, A.T. Mass Spectrometry in Organic Chemistry, 2nd ed.; TECHNOSPHERE: Moscow, Russia, 2015; ISBN 5-94774-052-4. [Google Scholar]
- Ventrice, P.; Ventrice, D.; Russo, E.; De Sarro, G. Phthalates: European Regulation, Chemistry, Pharmacokinetic and Related Toxicity. Environ. Toxicol. Pharmacol. 2013, 36, 88–96. [Google Scholar] [CrossRef]
- Schupp, T.; Plehiers, P.M. Absorption, Distribution, Metabolism, and Excretion of Methylene Diphenyl Diisocyanate and Toluene Diisocyanate: Many Similarities and Few Differences. Toxicol. Ind. Health 2022, 38, 500–528. [Google Scholar] [CrossRef]
- Cong, B.; Liu, C.; Wang, L.; Chai, Y. The Impact on Antioxidant Enzyme Activity and Related Gene Expression Following Adult Zebrafish (Danio rerio) Exposure to Dimethyl Phthalate. Animals 2020, 10, 717. [Google Scholar] [CrossRef] [PubMed]
- Pietrini, F.; Iannilli, V.; Passatore, L.; Carloni, S.; Sciacca, G.; Cerasa, M.; Zacchini, M. Ecotoxicological and Genotoxic Effects of Dimethyl Phthalate (DMP) on Lemna minor L. and Spirodela polyrhiza (L.) Schleid. Plants under a Short-Term Laboratory Assay. Sci. Total Environ. 2022, 806, 150972. [Google Scholar] [CrossRef] [PubMed]
- Hamada, H.; Liljelind, I.; Bruze, M.; Engfeldt, M.; Isaksson, M.; Jönsson, B.; Tinnerberg, H.; Lindh, C.; Axelsson, S.; Zimerson, E. Assessment of Dermal Uptake of Diphenylmethane-4,4′-Diisocyanate Using Tape Stripping and Biological Monitoring. Eur. J. Dermatol. 2018, 28, 143–148. [Google Scholar] [CrossRef] [PubMed]
Characteristics/Biosensor Type | Biosensor Based on Oxygen Electrode | Mediator- Type Biosensor | Biosensor Based on MFC | |
---|---|---|---|---|
K′, mmol/dm3 | 1.8 ± 0.2 | 16 ± 1 | – 1 | |
Vmax | 0.34 ± 0.01 mgO2/(dm3 × s) | 1.18 ± 0.04 µA | – | |
Sensitivity factor, 10−3 | 119 ± 3 mgO2/(mmol × s) | 45 ± 2 µA × dm3/mmol | – | |
The lower limit of glucose detection, mmol/dm3 | 0.01 | 0.06 | – | |
Operational stability 2, % | in the absence of toxicant | 6.8 | 5.6 | 12.1 |
in the presence of Zn2+ (EC50) | 7.4 | 6.5 | 14.5 | |
Long-term stability 3, days | in the absence of toxicant | 31 | 25 | |
in the presence of Zn2+ (EC50) | 18 | 14 | ||
Single analysis time, min | 6–8 | 5–7 | 60–80 |
Test Object and Type of Biosensor/Toxicant | EC50, mg/dm3 | Analogue | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Salicylic Acid | TCA | Phenol | 2,4-Dinitrophenol | Cd2+ | Fe3+ | Cr3+ | Zn2+ | Mn2+ | ||
Biosensor based on oxygen electrode/G. oxydans | >200 | >200 | >200 [14] | 2.9 | >200 [14] | 16.5 | 13.9 | 7.2 | 12 | This study |
Mediator biosensor (ferrocene)/G. oxydans | 19.0 | 15.7 | 17.5 | 6.8 | 1.6 | 7.8 | 0.8 | 2.4 | 0.3 | This study |
Biosensor based on MFC (2,6-DCPIP)/suspension G. oxydans | – 1 | – | 24.2 | 0.9 | 1.2 | – | – | 4.5 | 1.6 | This study |
Mediator biosensor (ferrocene)/P. yeei | ND 2 | ND | 9.9 | ND | 18.2 | ND | ND | 47.5 | ND | [16] |
Biosensor based on oxygen electrode/immobilized E. coli | ND | ND | 112 | ND | 11.2 | ND | ND | ND | ND | [14] |
Mediator biosensor (menadione and potassium hexacyanoferrate (III))/S.cerevisiae, E. coli | ND | ND | 44.5 | ND | 13.9 | ND | ND | ND | ND | [17] |
Mediator biosensor (potassium ferrocyanide)/E. coli suspension | ND | ND | ND | ND | 3.7 | >200 | 10.7 | 26.7 | ND | [37] |
MFC (potassium ferricyanide)/Anaerobic sludge | ND | ND | ND | ND | 2 (EC9.29) | ND | 2 (EC1.95) | 2 (EC8) | ND | [19] |
MFC HATOX-2000/Activated sludge | ND | ND | ND | ND | ND | 0.3 (EC17) | ND | 1.0 (EC27) | 1.0 (EC28) | [38] |
Tox-Alert/Vibrio fischeri | 43,100 | ND | 7990 | 34,690 | ND | ND | ND | ND | ND | [39] |
Microtox/Vibrio fischeri | ND | ND | 15.1 | ND | 40.8 | ND | ND | 14.5 | ND | [40,41] |
Vibrio sp. MM1 | ND | ND | ND | ND | 14.54 | ND | ND | 0.97 | ND | [33] |
Daphnia magna | ND | ND | ND | ND | 0.0036 | 0.002 | 0.13 | 0.72 | 0.0093 | [34] |
Lemna minor | ND | ND | ND | ND | 0.33 | 186.8 | 11.1; 240,4 | 0.9;131 | ND | [35,36] |
No. | Sample | Material | Identified Substances Using GC-MS Method | |
---|---|---|---|---|
CAS Number | Name | |||
1 | Case for phone | Silicone | 1999-85-5 | α,α′-dihydroxy-1,3-diisopropylbenzene |
54549-72-3 | 4-(1-hydroxy-1-methylethyl)acetophenone | |||
101-68-8 | diphenylmethane-4,4′-diisocyanate | |||
115-86-6 | triphenyl phosphate | |||
24938-37-2 | polyethylene adipate | |||
117-81-7 | bis (2-ethylhexyl) phthalate | |||
2 | Dousing gloves Bottle for water | Polyvinylchloride, polyurethane, textiles | 101-68-8 | diphenylmethane-4,4′-diisocyanate |
24938-37-2 | polyethylene adipate | |||
3 | Food container | Polyethyleneterephthalate | 117-81-7 | bis (2-ethylhexyl) phthalate |
4 | Medical gloves | Polypropylene | 28813-61-8 | 2-nonadecanone 2,4-dinitrophenylhydrazine |
117-81-7 | bis (2-ethylhexyl) phthalate | |||
5 | Dousing gloves Bottle for water | Latex | 54549-72-3 | 4-(1-hydroxy-1-methylethyl)acetophenone |
131-11-3 | dimethyl phthalate | |||
6 | Food container | Polypropylene, silicone | 131-11-3 | dimethyl phthalate |
No | Sample/Biotest Method | Toxicity Index T, % | Lesser Duckweed L. minor 3/Yield Inhibition Index Iy, % | Cattle Sperm (AT-05 Device) 4/Motility Index It, % | |||
---|---|---|---|---|---|---|---|
Biosensor Based on Oxygen Electrode 1 | Mediator Biosensor 1 | Biosensor Based on MFC 1 | Biosensor “Ecolum” (Device Biotox-10M) 2 | ||||
1 | Casef or phone | 64 ± 6 | 77 ± 1 | 72 ± 10 | 43 ± 5 | 4 ± 1 | 65.2 |
2 | Dousing gloves | 63 ± 3 | 82.72 ± 0.07 | 85 ± 8 | 100 ± 1 | 22 ± 4 | 43.6 |
3 | Bottle for water | 34 ± 3 | 74.51 ± 0.04 | 61 ± 7 | 0 | 10 ± 2 | 108.4 |
4 | Food container | 42 ± 4 | 72.1 ± 0.4 | 58 ± 7 | 0 | 8 ± 2 | 99.5 |
5 | Medical gloves | 38 ± 3 | 47 ± 4 | 44 ± 6 | 75 ± 10 | 2.4 ± 0.8 | 100.7 |
6 | Baby bottle with pacifier | 0 | 7 ± 1 | 10 ± 4 | 0 | 0 | 105.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yudina, N.Y.; Kozlova, T.N.; Bogachikhin, D.A.; Kosarenina, M.M.; Arlyapov, V.A.; Alferov, S.V. Electrochemical Biosensors for Express Analysis of the Integral Toxicity of Polymer Materials. Biosensors 2023, 13, 1011. https://doi.org/10.3390/bios13121011
Yudina NY, Kozlova TN, Bogachikhin DA, Kosarenina MM, Arlyapov VA, Alferov SV. Electrochemical Biosensors for Express Analysis of the Integral Toxicity of Polymer Materials. Biosensors. 2023; 13(12):1011. https://doi.org/10.3390/bios13121011
Chicago/Turabian StyleYudina, Natalia Yu., Tatyana N. Kozlova, Daniil A. Bogachikhin, Maria M. Kosarenina, Vyacheslav A. Arlyapov, and Sergey V. Alferov. 2023. "Electrochemical Biosensors for Express Analysis of the Integral Toxicity of Polymer Materials" Biosensors 13, no. 12: 1011. https://doi.org/10.3390/bios13121011
APA StyleYudina, N. Y., Kozlova, T. N., Bogachikhin, D. A., Kosarenina, M. M., Arlyapov, V. A., & Alferov, S. V. (2023). Electrochemical Biosensors for Express Analysis of the Integral Toxicity of Polymer Materials. Biosensors, 13(12), 1011. https://doi.org/10.3390/bios13121011