Early Blood Clot Detection Using Forward Scattering Light Measurements Is Not Superior to Delta Pressure Measurements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Blood Collection from Human Donors and Filling the Circuit
2.2. Pressure Measurement
2.3. Measurement of FSL
2.4. Experimental Groups
2.5. Experiment Duration and Criteria for Experiment Termination
2.6. Blood Sampling and Analysis
2.7. Statistical Analysis
3. Results
3.1. Blood Clot Formation
3.2. FSL and Pressure Measurements
3.3. Platelet Count and Beta-Thromboglobulin
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brodie, D.; Slutsky, A.S.; Combes, A. Extracorporeal Life Support for Adults with Respiratory Failure and Related Indications: A Review. JAMA 2019, 322, 557–568. [Google Scholar] [CrossRef]
- Conrad, S.A.; Broman, L.M.; Taccone, F.S.; Lorusso, R.; Malfertheiner, M.V.; Pappalardo, F.; Di Nardo, M.; Belliato, M.; Grazioli, L.; Barbaro, R.P.; et al. The Extracorporeal Life Support Organization Maastricht Treaty for Nomenclature in Extracorporeal Life Support. A Position Paper of the Extracorporeal Life Support Organization. Am. J. Respir. Crit. Care Med. 2018, 198, 447–451. [Google Scholar] [CrossRef]
- Zangrillo, A.; Biondi-Zoccai, G.; Landoni, G.; Frati, G.; Patroniti, N.; Pesenti, A.; Pappalardo, F. Extracorporeal membrane oxygenation (ECMO) in patients with H1N1 influenza infection: A systematic review and meta-analysis including 8 studies and 266 patients receiving ECMO. Crit. Care 2013, 17, R30. [Google Scholar] [CrossRef]
- Matthay, M.A.; Aldrich, J.M.; Gotts, J.E. Treatment for severe acute respiratory distress syndrome from COVID-19. Lancet Respir. Med. 2020, 8, 433–434. [Google Scholar] [CrossRef]
- Teijeiro-Paradis, R.; Gannon, W.D.; Fan, E. Complications Associated with Venovenous Extracorporeal Membrane Oxygenation-What Can Go Wrong? Crit. Care Med. 2022, 50, 1809–1818. [Google Scholar] [CrossRef]
- Combes, A.; Hajage, D.; Capellier, G.; Demoule, A.; Lavoué, S.; Guervilly, C.; Da Silva, D.; Zafrani, L.; Tirot, P.; Veber, B.; et al. Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome. N. Engl. J. Med. 2018, 378, 1965–1975. [Google Scholar] [CrossRef] [PubMed]
- Peek, G.J.; Mugford, M.; Tiruvoipati, R.; Wilson, A.; Allen, E.; Thalanany, M.M.; Hibbert, C.L.; Truesdale, A.; Clemens, F.; Cooper, N.; et al. Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): A multicentre randomised controlled trial. Lancet 2009, 374, 1351–1363. [Google Scholar] [CrossRef] [PubMed]
- Schöps, M.; Groß-Hardt, S.H.; Schmitz-Rode, T.; Steinseifer, U.; Brodie, D.; Clauser, J.C.; Karagiannidis, C. Hemolysis at low blood flow rates: In-vitro and in-silico evaluation of a centrifugal blood pump. J. Transl. Med. 2021, 19, 2. [Google Scholar] [CrossRef] [PubMed]
- Gross-Hardt, S.; Hesselmann, F.; Arens, J.; Steinseifer, U.; Vercaemst, L.; Windisch, W.; Brodie, D.; Karagiannidis, C. Low-flow assessment of current ECMO/ECCO2R rotary blood pumps and the potential effect on hemocompatibility. Crit. Care 2019, 23, 348. [Google Scholar] [CrossRef] [PubMed]
- Abrams, D.; Baldwin, M.R.; Champion, M.; Agerstrand, C.; Eisenberger, A.; Bacchetta, M.; Brodie, D. Thrombocytopenia and extracorporeal membrane oxygenation in adults with acute respiratory failure: A cohort study. Intensive Care Med. 2016, 42, 844–852. [Google Scholar] [CrossRef]
- Sklar, M.C.; Sy, E.; Lequier, L.; Fan, E.; Kanji, H.D. Anticoagulation Practices during Venovenous Extracorporeal Membrane Oxygenation for Respiratory Failure. A Systematic Review. Ann. Am. Thorac. Soc. 2016, 13, 2242–2250. [Google Scholar] [CrossRef] [PubMed]
- Parzy, G.; Daviet, F.; Persico, N.; Rambaud, R.; Scemama, U.; Adda, M.; Guervilly, C.; Hraiech, S.; Chaumoitre, K.; Roch, A.; et al. Prevalence and Risk Factors for Thrombotic Complications Following Venovenous Extracorporeal Membrane Oxygenation: A CT Scan Study. Crit. Care Med. 2020, 48, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Iannattone, P.A.; Yang, S.S.; Koolian, M.; Wong, E.G.; Lipes, J. Incidence of Venous Thromboembolism in Adults Receiving Extracorporeal Membrane Oxygenation: A Systematic Review. ASAIO J. 2022, 68, 1523–1528. [Google Scholar] [CrossRef]
- Chebbi, R. Dynamics of blood flow: Modeling of the Fåhræus-Lindqvist effect. J. Biol. Phys. 2015, 41, 313–326. [Google Scholar] [CrossRef] [PubMed]
- Lubnow, M.; Philipp, A.; Foltan, M.; Enger, T.B.; Lunz, D.; Bein, T.; Haneya, A.; Schmid, C.; Riegger, G.; Müller, T.; et al. Technical complications during veno-venous extracorporeal membrane oxygenation and their relevance predicting a system-exchange—Retrospective analysis of 265 cases. PLoS ONE 2014, 9, e112316. [Google Scholar] [CrossRef] [PubMed]
- Barbaro, R.P.; MacLaren, G.; Boonstra, P.S.; Iwashyna, T.J.; Slutsky, A.S.; Fan, E.; Bartlett, R.H.; Tonna, J.E.; Hyslop, R.; Fanning, J.J.; et al. Extracorporeal membrane oxygenation support in COVID-19: An international cohort study of the Extracorporeal Life Support Organization registry. Lancet 2020, 396, 1071–1078. [Google Scholar] [CrossRef] [PubMed]
- Sakota, D.; Murashige, T.; Kosaka, R.; Nishida, M.; Maruyama, O. Feasibility of the optical imaging of thrombus formation in a rotary blood pump by near-infrared light. Artif. Organs 2014, 38, 733–740. [Google Scholar] [CrossRef]
- Morita, N.; Sakota, D.; Oota-Ishigaki, A.; Kosaka, R.; Maruyama, O.; Nishida, M.; Kondo, K.; Takeshita, T.; Iwasaki, W. Real-time, non-invasive thrombus detection in an extracorporeal circuit using micro-optical thrombus sensors. Int. J. Artif. Organs 2021, 44, 565–573. [Google Scholar] [CrossRef]
- Türkmen, M.; Lauwigi, T.; Fechter, T.; Gries, F.; Fischbach, A.; Gries, T.; Rossaint, R.; Bleilevens, C.; Winnersbach, P. Bioimpedance Analysis as Early Predictor for Clot Formation Inside a Blood-Perfused Test Chamber: Proof of Concept Using an In Vitro Test-Circuit. Biosensors 2023, 13, 394. [Google Scholar] [CrossRef]
- Chaturvedi, A.; Vijayvergia, M.; Subramanian, H.; Le Rolland, P.; Gunn, J.W.; Shukair, S.A. Blood vessel detection, localization and estimation using a smart laparoscopic grasper: A Monte Carlo study. Biomed. Opt. Express 2018, 9, 2027–2040. [Google Scholar] [CrossRef]
- Bateson, S.; Bateson, S. A USB high resolution lock-in photometer. AIMS Electron. Electr. Eng. 2019, 3, 1–15. [Google Scholar] [CrossRef]
- Faber, D.J.; Aalders, M.C.G.; Mik, E.G.; Hooper, B.A.; Van Gemert, M.J.C.; Van Leeuwen, T.G. Oxygen saturation-dependent absorption and scattering of blood. Phys. Rev. Lett. 2004, 93, 028102. [Google Scholar] [CrossRef] [PubMed]
- Solen, K.A.; Mohammad, S.F.; Burns, G.L.; Pantalos, G.M.; Kim, J.; Peng, Y.; Pitt, W.G.; Reynolds, L.O.; Olsen, D.B. Markers of thromboembolization in a bovine ex vivo left ventricular assist device model. ASAIO J. 1994, 40, M602–M608. [Google Scholar] [CrossRef] [PubMed]
- Sankai, Y.; Tsutsui, T.; Jikuya, T.; Shigeta, O.; Ohta, M.; Mitsui, T. Method of Noninvasive and Continuous Hemolysis/Thrombogenesis Measurement by Laser Photometry during Artificial Heart Development. ASAIO J. 1997, 43, M682–M686. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, T.; Sekimoto, K.; Taga, I.; Funakubo, A.; Fukui, Y.; Takatani, S. New method for the detection of thrombus formation in cardiovascular devices: Optical sensor evaluation in a flow chamber model. ASAIO J. 2005, 51, 110–115. [Google Scholar] [CrossRef]
- Oshima, S.; Sankai, Y. Evaluation of optical propagation in blood for noninvasive detection of prethrombus blood condition. ASAIO J. 2009, 55, 550–555. [Google Scholar] [CrossRef]
- Lippi, G.; Franchini, M.; Targher, G. Arterial thrombus formation in cardiovascular disease. Nat. Rev. Cardiol. 2011, 8, 502–512. [Google Scholar] [CrossRef]
- Roggan, A.; Friebel, M.; Dörschel, K.; Hahn, A.; Müller, G. Optical Properties of Circulating Human Blood in the Wavelength Range 400–2500 nm. J. Biomed. Opt. 1999, 4, 36. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, M.; Chen, S.; Horbett, T.A.; Ratner, B.D.; Jiang, S. Blood compatibility of surfaces with superlow protein adsorption. Biomaterials 2008, 29, 4285–4291. [Google Scholar] [CrossRef] [PubMed]
- Abramyan, T.M.; Hyde-Volpe, D.L.; Stuart, S.J.; Latour, R.A. Application of advanced sampling and analysis methods to predict the structure of adsorbed protein on a material surface. Biointerphases 2017, 12, 02D409. [Google Scholar] [CrossRef]
- Vogler, E.A. Protein adsorption in three dimensions. Biomaterials 2012, 33, 1201–1237. [Google Scholar] [CrossRef] [PubMed]
- Braune, S.; Groß, M.; Walter, M.; Zhou, S.; Dietze, S.; Rutschow, S.; Lendlein, A.; Tschöpe, C.; Jung, F. Adhesion and activation of platelets from subjects with coronary artery disease and apparently healthy individuals on biomaterials. J. Biomed. Mater. Res. B Appl. Biomater. 2016, 104, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Gorbet, M.B.; Sefton, M.V. Biomaterial-associated thrombosis: Roles of coagulation factors, complement, platelets and leukocytes. Biomaterials 2004, 25, 5681–5703. [Google Scholar] [CrossRef]
- Fromell, K.; Yang, Y.; Ekdahl, K.N.; Nilsson, B.; Berglin, M.; Elwing, H. Absence of conformational change in complement factor 3 and factor XII adsorbed to acrylate polymers is related to a high degree of polymer backbone flexibility. Biointerphases 2017, 12, 02D417. [Google Scholar] [CrossRef] [PubMed]
- Jaffer, I.H.; Fredenburgh, J.C.; Hirsh, J.; Weitz, J.I. Medical device-induced thrombosis: What causes it and how can we prevent it? J Thromb. Haemost. 2015, 13 (Suppl. S1), S72–S81. [Google Scholar] [CrossRef] [PubMed]
- Annich, G.M. Extracorporeal life support: The precarious balance of hemostasis. J. Thromb. Haemost. 2015, 13 (Suppl. S1), S336–S342. [Google Scholar] [CrossRef] [PubMed]
- Chlebowski, M.M.; Baltagi, S.; Carlson, M.; Levy, J.H.; Spinella, P.C. Clinical controversies in anticoagulation monitoring and antithrombin supplementation for ECMO. Crit. Care 2020, 24, 19. [Google Scholar] [CrossRef]
- Dawes, J.; Smith, R.C.; Pepper, D.S. The release, distribution, and clearance of human beta-thromboglobulin and platelet factor 4. Thromb. Res. 1978, 12, 851–861. [Google Scholar] [CrossRef]
- Holmsen, H. Biochemistry of the platelet release reaction. Ciba Found. Symp. 1975, 35, 175–205. [Google Scholar] [CrossRef]
- Cella, G.; Scattolo, N.; Girolami, A.; Sasahara, A.A. Are platelet factor 4 and β-thromboglobulin markers of cardiovascular disorders? Ric. Clin. Lab. 1984, 14, 9–18. [Google Scholar] [CrossRef]
- Sharma, G.; Berger, J.S. Platelet activity and cardiovascular risk in apparently healthy individuals: A review of the data. J. Thromb. Thrombolysis 2011, 32, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, K.L.; Owen, J. Plasma levels of beta-thromboglobulin and platelet factor 4 as indices of platelet activation in vivo. Blood 1981, 57, 199–202. [Google Scholar] [CrossRef] [PubMed]
Sex of Blood Donor | HCT [%] | Blood Clot Formation? | ||
---|---|---|---|---|
Clotting Group (n = 11) 0.6 IE heparin/mL blood | 1 | m | 46.4 | Yes |
2 | m | 44 | Yes | |
3 | m | 43.5 | Yes | |
4 | m | 43.2 | Yes | |
5 | m | 44.3 | Yes | |
6 | m | 46.3 | Yes | |
7 | f | 38.9 | Yes | |
8 | m | 45.6 | Yes | |
9 | m | 44.9 | Yes | |
10 | m | 41.4 | Yes | |
11 | f | 36.2 | Yes | |
Control Group (n = 3) 1.5 IE heparin/mL blood | 12 | f | 38.9 | No |
13 | f | 36.3 | No | |
14 | f | 43.2 | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fischbach, A.; Lamberti, M.; Simons, J.A.; Wrede, E.; Theißen, A.; Winnersbach, P.; Rossaint, R.; Stollenwerk, A.; Bleilevens, C. Early Blood Clot Detection Using Forward Scattering Light Measurements Is Not Superior to Delta Pressure Measurements. Biosensors 2023, 13, 1012. https://doi.org/10.3390/bios13121012
Fischbach A, Lamberti M, Simons JA, Wrede E, Theißen A, Winnersbach P, Rossaint R, Stollenwerk A, Bleilevens C. Early Blood Clot Detection Using Forward Scattering Light Measurements Is Not Superior to Delta Pressure Measurements. Biosensors. 2023; 13(12):1012. https://doi.org/10.3390/bios13121012
Chicago/Turabian StyleFischbach, Anna, Michael Lamberti, Julia Alexandra Simons, Erik Wrede, Alexander Theißen, Patrick Winnersbach, Rolf Rossaint, André Stollenwerk, and Christian Bleilevens. 2023. "Early Blood Clot Detection Using Forward Scattering Light Measurements Is Not Superior to Delta Pressure Measurements" Biosensors 13, no. 12: 1012. https://doi.org/10.3390/bios13121012
APA StyleFischbach, A., Lamberti, M., Simons, J. A., Wrede, E., Theißen, A., Winnersbach, P., Rossaint, R., Stollenwerk, A., & Bleilevens, C. (2023). Early Blood Clot Detection Using Forward Scattering Light Measurements Is Not Superior to Delta Pressure Measurements. Biosensors, 13(12), 1012. https://doi.org/10.3390/bios13121012