Green Synthesis of Gold Nanoparticles Using Peach Extract Incorporated in Graphene for the Electrochemical Determination of Antioxidant Butylated Hydroxyanisole in Food Matrices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Solutions
2.2. Biosynthesis and Characterization of Peach Extract-Stabilized Gold Nanoparticles (AuNP-Peach-ext)
2.3. Preparation and Characterization of Gr-AuNP-Peach-ext
2.4. Preparation of Sensors, Electrochemical Measurements and Data Analysis
2.5. Sample Preparation
3. Results and Discussion
3.1. Synthesis and Characterization of AuNP-Peach-ext Dispersion
3.2. Electrochemical Characterization of Modified Electrodes
3.3. Electrochemical Investigation of BHA
3.4. Study of pH Value on the BHA Oxidation
3.5. Behavior of BHA at Different Scan Rate
3.6. Differential Pulse Optimization Parameters
3.7. Calibration Plot
3.8. Precision, Interferents, and Stability Data
3.9. Determination of BHA in Mayonnaise Samples
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sukma, R.M.; Iswantini, D.; Nurhidayat, N.; Rafi, M.; Ariyanti, D. Antioxidant Determining Using Electrochemical Method. Chemistry 2023, 5, 1921–1941. [Google Scholar] [CrossRef]
- Felter, S.P.; Zhang, X.; Thompson, C. Butylated Hydroxyanisole: Carcinogenic Food Additive to Be Avoided or Harmless Antioxidant Important to Protect Food Supply? Regul. Toxicol. Pharmacol. 2021, 121, 104887. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.J.; Diao, M.N.; Zhang, Y.F. A Review of the Occurrence, Metabolites and Health Risks of Butylated Hydroxyanisole (BHA). J. Sci. Food Agric. 2023, 103, 6150–6166. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Song, W.; Liu, N.; Sun, Z.; Liu, R.; Liu, Q.S.; Zhou, Q.; Jiang, G. Synthetic Phenolic Antioxidants Cause Perturbation in Steroidogenesis In Vitro and In Vivo. Environ. Sci. Technol. 2018, 52, 850–858. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Mabury, S.A. Synthetic Phenolic Antioxidants: A Review of Environmental Occurrence, Fate, Human Exposure, and Toxicity. Environ. Sci. Technol. 2020, 54, 11706–11719. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, X.; Sun, X. The Transformation Mechanism and Eco-Toxicity Evaluation of Butylated Hydroxyanisole in Environment. Ecotoxicol. Environ. Saf. 2022, 231, 113179. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Yu, H.; Lu, L.; Lv, X.; Ju, G.; Zhao, J.; Sun, F.; Wang, Y.; Yu, W. Simultaneous Determination and Exposure Assessment of Antioxidants in Food-Contact Plastic Materials by HPLC-MS/MS. J. Food Prot. 2023, 86, 100121. [Google Scholar] [CrossRef]
- Yıldız, E.; Çabuk, H. Determination of the Synthetic Antioxidants Butylated Hydroxyanisole (BHA) and Butylated Hydroxytoluene (BHT) by Matrix Acidity-Induced Switchable Hydrophilicity Solvent-Based Homogeneous Liquid-Liquid Microextraction (MAI-SHS-HLLME) and High-Performance. Anal. Lett. 2022, 55, 480–494. [Google Scholar] [CrossRef]
- Xiang, Q.; Gao, Y. Analysis of Synthetic Antioxidant in Food by Capillary Electrophoresis. Adv. Mater. Res. 2012, 361–363, 1855–1858. [Google Scholar] [CrossRef]
- Monteiro, M.C.; Winiarski, J.P.; Santana, E.R.; Szpoganicz, B.; Vieira, I.C. Ratiometric Electrochemical Sensor for Butralin Determination Using a Quinazoline-Engineered Prussian Blue Analogue. Materials 2023, 16, 1024. [Google Scholar] [CrossRef]
- Barros, M.R.; Winiarski, J.P.; de Matos Morawski, F.; Marim, R.G.; Chaves, E.S.; Blacha-Grzechnik, A.; Jost, C.L. A High-Performance Electrochemical Sensor Based on a Mesoporous Silica/Titania Material and Cobalt(II) Phthalocyanine for Sensitive Pentachlorophenol Determination. Microchim. Acta 2022, 189, 269. [Google Scholar] [CrossRef] [PubMed]
- Zamarchi, F.; Silva, T.R.; Winiarski, J.P.; Santana, E.R.; Vieira, I.C. Polyethylenimine-Based Electrochemical Sensor for the Determination of Caffeic Acid in Aromatic Herbs. Chemosensors 2022, 10, 357. [Google Scholar] [CrossRef]
- Antoniazzi, C.; Lima, C.A.; Marangoni, R.; Castro, E.G.; Santana, E.R.; Spinelli, A. Molybdenum Trioxide Incorporated in a Carbon Paste as a Sensitive Device for Bisphenol A Monitoring. Microchem. J. 2020, 159, 105528. [Google Scholar] [CrossRef]
- Xiao, Q.; Wang, L.; Fan, W.; Zhuang, Q.; Wang, Y. Ratiometric Electrochemical Sensor Based on Polythionine/Multiwalled Carbon Nanotube Composite for Butylated Hydroxyanisole Determination. J. Alloys Compd. 2022, 925, 166659. [Google Scholar] [CrossRef]
- Jiaojiao, X.; Feng, L.; Lishi, Y.; Hongbo, S.; Jingya, Q.; Bin, Z. Simultaneous Determination of Tert-Butylhydroquinone, Butylated Hydroxyanisole and Phenol in Plant Oil by Metalloporphyrin-Based Covalent Organic Framework Electrochemical Sensor. J. Food Compos. Anal. 2023, 122, 105486. [Google Scholar] [CrossRef]
- Hashım, S.; Albayatı, M.; Soylu, P. Butylated Hydroxyanisole Nanomolar Detection Using a Molecularly Imprinted Electrochemical Sensor in Food Samples. J. Appl. Electrochem. 2023; in press. [Google Scholar] [CrossRef]
- Fan, L.; Kan, X. Sensitive Detection of Butylated Hydroxyanisole Based on Free-Standing Paper Decorated with Gold and NiO Nanoparticles. Microchem. J. 2020, 159, 105511. [Google Scholar] [CrossRef]
- Barros, M.R.; Winiarski, J.P.; Elias, W.C.; Campos, C.E.M.; Jost, C.L. Au-on-Pd Bimetallic Nanoparticles Applied to the Voltammetric Determination and Monitoring of 4-Nitroaniline in Environmental Samples. J. Environ. Chem. Eng. 2021, 9, 105821. [Google Scholar] [CrossRef]
- Souza, C.D.; Nogueira, B.R.; Rostelato, M.E.C.M. Review of the Methodologies Used in the Synthesis Gold Nanoparticles by Chemical Reduction. J. Alloys Compd. 2019, 798, 714–740. [Google Scholar] [CrossRef]
- Ettadili, F.E.; Aghris, S.; Laghrib, F.; Farahi, A.; Saqrane, S.; Bakasse, M.; Lahrich, S.; El Mhammedi, M.A. Recent Advances in the Nanoparticles Synthesis Using Plant Extract: Applications and Future Recommendations. J. Mol. Struct. 2022, 1248, 131538. [Google Scholar] [CrossRef]
- Qiao, J.; Qi, L. Recent Progress in Plant-Gold Nanoparticles Fabrication Methods and Bio-Applications. Talanta 2021, 223, 121396. [Google Scholar] [CrossRef] [PubMed]
- Scala, A.; Neri, G.; Micale, N.; Cordaro, M.; Piperno, A. State of the Art on Green Route Synthesis of Gold/Silver Bimetallic Nanoparticles. Molecules 2022, 27, 1134. [Google Scholar] [CrossRef] [PubMed]
- Alsaiari, N.S.; Alzahrani, F.M.; Amari, A.; Osman, H.; Harharah, H.N.; Elboughdiri, N.; Tahoon, M.A. Plant and Microbial Approaches as Green Methods for the Synthesis of Nanomaterials: Synthesis, Applications, and Future Perspectives. Molecules 2023, 28, 463. [Google Scholar] [CrossRef] [PubMed]
- García-Moreira, D.P.; Hernández-Guzmán, H.; Pacheco, N.; Cuevas-Bernardino, J.C.; Herrera-Pool, E.; Moreno, I.; López-Vidaña, E.C. Solar and Convective Drying: Modeling, Color, Texture, Total Phenolic Content, and Antioxidant Activity of Peach (Prunus persica (L.) Batsch) Slices. Processes 2023, 11, 1280. [Google Scholar] [CrossRef]
- Mihaylova, D.; Popova, A.; Vrancheva, R.; Dincheva, I. HS-SPME-GC–MS Volatile Profile Characterization of Peach (Prunus persica L. Batsch) Varieties Grown in the Eastern Balkan Peninsula. Plants 2022, 11, 166. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Ghoshal, G.; Jain, A.; Goyal, M. Rapid Green Synthesis of Silver Nanoparticles (AgNPs) Using (Prunus persica) Plants Extract: Exploring Its Antimicrobial and Catalytic Activities. J. Nanomed. Nanotechnol. 2017, 8, 4. [Google Scholar] [CrossRef]
- Skiba, M.; Vorobyova, V. Green Synthesis and Characterization of Silver Nanoparticles Using Prunus persica L. (Peach Pomace) with Natural Deep Eutectic Solvent and Plasma-Liquid Process. Chem. Pap. 2022, 76, 5789–5806. [Google Scholar] [CrossRef]
- Bento, C.; Gonçalves, A.C.; Silva, B.; Silva, L.R. Peach (Prunus persica): Phytochemicals and Health Benefits. Food Rev. Int. 2022, 38, 1703–1734. [Google Scholar] [CrossRef]
- Maatallah, S.; Dabbou, S.; Castagna, A.; Guizani, M.; Hajlaoui, H.; Ranieri, A.M.; Flamini, G. Prunus persica By-Products: A Source of Minerals, Phenols and Volatile Compounds. Sci. Hortic. 2020, 261, 109016. [Google Scholar] [CrossRef]
- Serra, S.; Anthony, B.; Masia, A.; Giovannini, D.; Musacchi, S. Determination of Biochemical Composition in Peach (Prunus persica L. Batsch) Accessions Characterized by Different Flesh Color and Textural Typologies. Foods 2020, 9, 1452. [Google Scholar] [CrossRef]
- Tabassum, S.; Naz, S.; Nisar, A.; Sun, H.; Karim, S.; Khan, M.; Shahzada, S.; Rahman, A.U.; Ahmad, M. Synergic Effect of Plasmonic Gold Nanoparticles and Graphene Oxide on the Performance of Glucose Sensing. New J. Chem. 2019, 43, 18925–18934. [Google Scholar] [CrossRef]
- Baumgarten, L.G.; Freitas, A.A.; Santana, E.R.; Winiarski, J.P.; Dreyer, J.P.; Vieira, I.C. Graphene and Gold Nanoparticle-Based Bionanocomposite for the Voltammetric Determination of Bisphenol A in (Micro) Plastics. Chemosphere 2023, 334, 139016. [Google Scholar] [CrossRef]
- Wang, L.; Yang, R.; Wang, H.; Li, J.; Qu, L.; Harrington, P. de B. High-Selective and Sensitive Voltammetric Sensor for Butylated Hydroxyanisole Based on AuNPs-PVP-Graphene Nanocomposites. Talanta 2015, 138, 169–175. [Google Scholar] [CrossRef]
- Nardi, N.; Baumgarten, L.G.; Dreyer, J.P.; Santana, E.R.; Winiarski, J.P.; Vieira, I.C. Nanocomposite Based on Green Synthesis of Gold Nanoparticles Decorated with Functionalized Multi-Walled Carbon Nanotubes for the Electrochemical Determination of Hydroxychloroquine. J. Pharm. Biomed. Anal. 2023, 236, 115681. [Google Scholar] [CrossRef] [PubMed]
- Rasheed, Z.; Vikraman, A.E.; Thomas, D.; Jagan, J.S.; Kumar, K.G. Carbon-Nanotube-Based Sensor for the Determination of Butylated Hydroxyanisole in Food Samples. Food Anal. Methods 2015, 8, 213–221. [Google Scholar] [CrossRef]
- Mokrani, A.; Madani, K. Effect of Solvent, Time and Temperature on the Extraction of Phenolic Compounds and Antioxidant Capacity of Peach (Prunus persica L.) Fruit. Sep. Purif. Technol. 2016, 162, 68–76. [Google Scholar] [CrossRef]
- Huang, X.; El-Sayed, M.A. Gold Nanoparticles: Optical Properties and Implementations in Cancer Diagnosis and Photothermal Therapy. J. Adv. Res. 2010, 1, 13–28. [Google Scholar] [CrossRef]
- Markovic, S.; Tosovic, J. Application of Time-Dependent Density Functional and Natural Bond Orbital Theories to the UV−vis Absorption Spectra of Some Phenolic Compounds. J. Phys. Chem. A 2015, 119, 9352–9362. [Google Scholar] [CrossRef]
- Villena, J.F.; Domínguez, E.; Heredia, A. Monitoring Biopolymers Present in Plant Cuticles by FT-IR Spectroscopy. J. Plant Physiol. 2000, 156, 419–422. [Google Scholar] [CrossRef]
- Fernández, V.; Khayet, M.; Montero-Prado, P.; Heredia-Guerrero, J.; Liakopoulos, G.; Karabourniotis, G.; del Río, V.; Domínguez, E.; Tacchini, I.; Nerín, C.; et al. New Insights into the Properties of Pubescent Surfaces: Peach Fruit as a Model. Plant Physiol. 2011, 156, 2098–2108. [Google Scholar] [CrossRef]
- Botteon, C.E.A.; Silva, L.B.; Ccana-Ccapatinta, G.V.; Silva, T.S.; Ambrosio, S.R.; Veneziani, R.C.S.; Bastos, J.K.; Marcato, P.D. Biosynthesis and Characterization of Gold Nanoparticles Using Brazilian Red Propolis and Evaluation of Its Antimicrobial and Anticancer Activities. Sci. Rep. 2021, 11, 1974. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, T.; Irfan, M.; Bhattacharjee, S. Parametric Study on Gold Nanoparticle Synthesis Using Aqueous Elaise guineensis (Oil Palm) Leaf Extract: Effect of Precursor Concentration. Procedia Eng. 2016, 148, 1396–1401. [Google Scholar] [CrossRef]
- Shih, Y.; Zen, J.M.; Kumar, A.S.; Chen, P.Y. Flow Injection Analysis of Zinc Pyrithione in Hair Care Products on a Cobalt Phthalocyanine Modified Screen-Printed Carbon Electrode. Talanta 2004, 62, 912–917. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D.; Rasheed, Z.; Jagan, J.S.; Kumar, K.G. Study of Kinetic Parameters and Development of a Voltammetric Sensor for the Determination of Butylated Hydroxyanisole (BHA) in Oil Samples. J. Food Sci. Technol. 2015, 52, 6719–6726. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Ni, Y.; Kokot, S. Glassy Carbon Electrodes Modified with Gold Nanoparticles for the Simultaneous Determination of Three Food Antioxidants. Anal. Chim. Acta 2013, 765, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, R.A.; Rocha-Filho, R.C.; Fatibello-Filho, O. Simultaneous Voltammetric Determination of Phenolic Antioxidants in Food Using a Boron-Doped Diamond Electrode. Food Chem. 2010, 123, 886–891. [Google Scholar] [CrossRef]
- Desimoni, E.; Brunetti, B. Data Treatment of Electrochemical Sensors and Biosensors. In Environmental Analysis by Electrochemical Sensors and Biosensors; Springer: New York, NY, USA, 2015; pp. 1137–1151. ISBN 9781493913015. [Google Scholar]
- Caramit, R.P.; Andrade, A.G.F.; Souza, J.B.G.; De Araujo, T.A.; Viana, L.H.; Trindade, M.A.G.; Ferreira, V.S. A New Voltammetric Method for the Simultaneous Determination of the Antioxidants TBHQ and BHA in Biodiesel Using Multi-Walled Carbon Nanotube Screen-Printed Electrodes. Fuel 2013, 105, 306–313. [Google Scholar] [CrossRef]
- Freitas, K.H.G.; Fatibello-Filho, O. Simultaneous Determination of Butylated Hydroxyanisole (BHA) and Butylated Hydroxytoluene (BHT) in Food Samples Using a Carbon Composite Electrode Modified with Cu3(PO4)2 Immobilized in Polyester Resin. Talanta 2010, 81, 1102–1108. [Google Scholar] [CrossRef]
- Ng, K.L.; Tan, G.H.; Khor, S.M. Graphite Nanocomposites Sensor for Multiplex Detection of Antioxidants in Food. Food Chem. 2017, 237, 912–920. [Google Scholar] [CrossRef]
- Wang, P.; Han, C.; Zhou, F.; Lu, J.; Han, X.; Wang, Z. Electrochemical Determination of Tert-Butylhydroquinone and Butylated Hydroxyanisole at Choline Functionalized Film Supported Graphene Interface. Sensors Actuators B Chem. 2016, 224, 885–891. [Google Scholar] [CrossRef]
- Prabakar, S.J.R.; Narayanan, S.S. Surface Modification of Amine-Functionalised Graphite for Preparation of Cobalt Hexacyanoferrate (CoHCF)-Modified Electrode: An Amperometric Sensor for Determination of Butylated Hydroxyanisole (BHA). Anal. Bioanal. Chem. 2006, 386, 2107–2115. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Ding, Y.; Teng, F.; Yao, A.; Leng, Q. Molecularly Imprinted Electrochemical Sensor Based on 3D-Flower-like MoS2 Decorated with Silver Nanoparticles for Highly Selective Detection of Butylated Hydroxyanisole. Food Chem. 2022, 387, 132899. [Google Scholar] [CrossRef] [PubMed]
- Cui, M.; Liu, S.; Lian, W.; Li, J.; Xu, W.; Huang, J. A Molecularly-Imprinted Electrochemical Sensor Based on a Graphene-Prussian Blue Composite-Modified Glassy Carbon Electrode for the Detection of Butylated Hydroxyanisole in Foodstuffs. Analyst 2013, 138, 5949–5955. [Google Scholar] [CrossRef] [PubMed]
- Gorji, S.G.; Smyth, H.E.; Sharma, M.; Fitzgerald, M. Lipid Oxidation in Mayonnaise and the Role of Natural Antioxidants: A Review. Trends Food Sci. Technol. 2016, 56, 88–102. [Google Scholar] [CrossRef]
- Brazil. Resolução Da Diretoria Colegiada RDC No 23, de 15 de Fevereiro de 2005; Agência Nacional de Vigilância Sanitária: Brasília, Brazil, 2005. [Google Scholar]
Electrodes | Technique | pH | LOD/nmol L−1 | Reference |
---|---|---|---|---|
SPE-MWCNT a | LSV | B-R buffer (pH 2.0) | 176 | [48] |
MCCE-Cu3(PO3)2-Poly b | SWV | KNO3/10% ethanol (v/v) (pH 6.7) | 72 | [49] |
AuNP/graphite | LSV | B-R buffer (pH 2.0) | 550 | [50] |
Gr/Ch/GCE c | DPV | Phosphate buffer (pH 3.0) | 190 | [51] |
CoHCF-graphite d | Amperometry | Phosphate buffer (pH 7.0) | 190 | [52] |
Au–PVP–GO/GCE e | LSV | B-R buffer (pH 4.0) | 40 | [33] |
MIP/MoS2/AgNPs-CS/GCE f | DPV | Phosphate buffer (pH 7.0) | 7.9 | [53] |
GR–PB/GCE g | Amperometry | Phosphate buffer (pH 6.0) | 76 | [54] |
Gr-AuNP-Peach-ext/GCE | DPV | B-R buffer (pH 4.0) | 70 | This work |
Samples | Determined/mg kg−1 | Recovery/% |
---|---|---|
1 | 19.02 ± 0.19 | 92–105 |
2 | 17.21 ± 0.12 | 95–102 |
3 | 17.94 ± 0.15 | 93–102 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Döll, E.G.; Santana, E.R.; Winiarski, J.P.; Baumgarten, L.G.; Vieira, I.C. Green Synthesis of Gold Nanoparticles Using Peach Extract Incorporated in Graphene for the Electrochemical Determination of Antioxidant Butylated Hydroxyanisole in Food Matrices. Biosensors 2023, 13, 1037. https://doi.org/10.3390/bios13121037
Döll EG, Santana ER, Winiarski JP, Baumgarten LG, Vieira IC. Green Synthesis of Gold Nanoparticles Using Peach Extract Incorporated in Graphene for the Electrochemical Determination of Antioxidant Butylated Hydroxyanisole in Food Matrices. Biosensors. 2023; 13(12):1037. https://doi.org/10.3390/bios13121037
Chicago/Turabian StyleDöll, Emanuela Grechi, Edson Roberto Santana, João Paulo Winiarski, Luan Gabriel Baumgarten, and Iolanda Cruz Vieira. 2023. "Green Synthesis of Gold Nanoparticles Using Peach Extract Incorporated in Graphene for the Electrochemical Determination of Antioxidant Butylated Hydroxyanisole in Food Matrices" Biosensors 13, no. 12: 1037. https://doi.org/10.3390/bios13121037
APA StyleDöll, E. G., Santana, E. R., Winiarski, J. P., Baumgarten, L. G., & Vieira, I. C. (2023). Green Synthesis of Gold Nanoparticles Using Peach Extract Incorporated in Graphene for the Electrochemical Determination of Antioxidant Butylated Hydroxyanisole in Food Matrices. Biosensors, 13(12), 1037. https://doi.org/10.3390/bios13121037