Fluorescent Probe Combined with Photoelectric Analysis Technology for Detection of Escherichia coli
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Microbial Photoelectric Detection System
2.3. Optimization Method
2.4. Bacterial Detection with Microbial Photoelectric Detection System
3. Results and Discussion
3.1. Verification of the Microbial Photoelectric Detection System
3.2. Optimization Results
3.3. Evaluation of the Microbial Photoelectric Detection System Technology
3.4. Method Assessment in Real Sample
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Weng, X.; Zhang, C.; Jiang, H. Advances in microfluidic nanobiosensors for the detection of foodborne pathogens. Lwt 2021, 151, 112172. [Google Scholar] [CrossRef]
- Sugrue, I.; Tobin, C.; Ross, R.P.; Stanton, C.; Hill, C. Foodborne Pathogens and Zoonotic Diseases. In Raw Milk; Academic Press: Cambridge, MA, USA, 2019; pp. 259–272. [Google Scholar] [CrossRef] [Green Version]
- Grace, D.; Wu, F.; Havelaar, A. MILK Symposium review: Foodborne diseases from milk and milk products in developing countries—Review of causes and health and economic implications. J. Dairy Sci. 2020, 103, 9715–9729. [Google Scholar] [CrossRef] [PubMed]
- Havelaar, A.H.; Brul, S.; de Jong, A.; de Jonge, R.; Zwietering, M.; Ter Kuile, B.H. Future challenges to microbial food safety. Int. J. Food Microbiol. 2010, 139 (Suppl. S1), S79–S94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fleetwood, J.; Rahman, S.; Holland, D.; Millson, D.; Thomson, L.; Poppy, G. As clean as they look? Food hygiene inspection scores, microbiological contamination, and foodborne illness. Food Control 2018, 96, 76–86. [Google Scholar] [CrossRef]
- Jansen, W.; Müller, A.; Grabowski, N.T.; Kehrenberg, C.; Muylkens, B.; Al Dahouk, S. Foodborne diseases do not respect borders: Zoonotic pathogens and antimicrobial resistant bacteria in food products of animal origin illegally imported into the European Union. Veter-J. 2018, 244, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Brauer, A.; Frail, S.; Shan, P.; Tran, T. Biocontrol for Foodborne Zoonotic Pathogens in Animal Reservoirs and Food Products. In Safety and Practice for Organic Food; Academic Press: Cambridge, MA, USA, 2019; pp. 377–395. [Google Scholar] [CrossRef]
- Chan, E.; Elevitch, C.R. Cocos nucifera (coconut). Species Profiles Pac. Isl. Agrofor. 2006, 2, 1–27. [Google Scholar]
- García, A.; Fox, J.G.; Besser, T.E. Zoonotic Enterohemorrhagic Escherichia coli: A One Health Perspective. ILAR J. 2010, 51, 221–232. [Google Scholar] [CrossRef]
- Torres, A.G. Escherichia coli diseases in Latin America—A ‘One Health’ multidisciplinary approach. Pathog. Dis. 2017, 75, ftx012. [Google Scholar] [CrossRef]
- Ofstead, C.L.; Heymann, O.L.; Quick, M.R.; Eiland, J.E.; Wetzler, H.P. Impact of Sampling and Microbial Culture Methods on Results of Tests for Residual Contamination on Colonoscopes and Gastroscopes. Am. J. Infect. Control 2017, 45, S8. [Google Scholar] [CrossRef]
- Stauber, C.; Miller, C.; Cantrell, B.; Kroell, K. Evaluation of the compartment bag test for the detection of Escherichia coli in water. J. Microbiol. Methods 2014, 99, 66–70. [Google Scholar] [CrossRef]
- Bezdekova, J.; Vodova, M.; Dolezelikova, K.; Zitka, J.; Smerkova, K.; Zitka, O.; Adam, V.; Vaculovicova, M. Detection of microbial contamination based on uracil-selective synthetic receptors. Talanta 2020, 224, 121813. [Google Scholar] [CrossRef] [PubMed]
- Brodin, P.; Quintana-Murci, L. Editorial overview: Evolutionary and systems immunology—Methods to understand human immune system variation. Curr. Opin. Immunol. 2020, 65, iv. [Google Scholar] [CrossRef]
- Ziyaina, M.; Rasco, B.; Sablani, S.S. Rapid methods of microbial detection in dairy products. Food Control 2019, 110, 107008. [Google Scholar] [CrossRef]
- Allard, M.W.; Bell, R.; Ferreira, C.M.; Gonzalez-Escalona, N.; Hoffmann, M.; Muruvanda, T.; Ottesen, A.; Ramachandran, P.; Reed, E.; Sharma, S.; et al. Genomics of foodborne pathogens for microbial food safety. Curr. Opin. Biotechnol. 2018, 49, 224–229. [Google Scholar] [CrossRef] [PubMed]
- Rossmanith, P.; Wagner, M. Aspects of systems theory in the analysis and validation of innovative molecular-biological based food pathogen detection methods. Trends Food Sci. Technol. 2011, 22, 61–71. [Google Scholar] [CrossRef]
- Oyedeji, A.B.; Green, E.; Adebiyi, J.A.; Ogundele, O.M.; Gbashi, S.; Adefisoye, M.A.; Oyeyinka, S.A.; Adebo, O.A. Metabolomic approaches for the determination of metabolites from pathogenic microorganisms: A review. Food Res. Int. 2020, 140, 110042. [Google Scholar] [CrossRef]
- Utpott, M.; Rodrigues, E.; Rios, A.D.O.; Mercali, G.D.; Flôres, S.H. Metabolomics: An analytical technique for food processing evaluation. Food Chem. 2021, 366, 130685. [Google Scholar] [CrossRef]
- Mobed, A.; Hasanzadeh, M. Sensitive recognition of Shiga toxin using biosensor technology: An efficient platform towards bioanalysis of pathogenic bacterial. Microchem. J. 2021, 172, 106900. [Google Scholar] [CrossRef]
- Liu, X.; Liu, G.; Wu, Y.; Pang, X.; Wu, Y.; Qinshu; Niu, J.; Chen, Q.; Zhang, X. Transposon sequencing: A powerful tool for the functional genomic study of food-borne pathogens. Trends Food Sci. Technol. 2021, 118, 679–687. [Google Scholar] [CrossRef]
- Oney, K.; Koo, M.; Roy, C.; Ren, S.; Qurollo, B.; Juhasz, N.B.; Vasconcelos, E.J.; Oakley, B.; Diniz, P.P. Evaluation of a commercial microbial enrichment kit used prior DNA extraction to improve the molecular detection of vector-borne pathogens from naturally infected dogs. J. Microbiol. Methods 2021, 188, 106163. [Google Scholar] [CrossRef]
- Saingam, P.; Li, B.; Yan, T. Fecal indicator bacteria, direct pathogen detection, and microbial community analysis provide different microbiological water quality assessment of a tropical urban marine estuary. Water Res. 2020, 185, 116280. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.-C.; Cui, J.-S.; Hu, A.-Z.; Yang, K.; Zhao, J.; Liu, Y.; Deng, G.-Q.; Zhu, L. Multiplex Nested Solid Phase PCR-Array Chip for Simultaneous Detection of Highly Pathogenic Microorganisms. Chin. J. Anal. Chem. 2019, 47, 1751–1758. [Google Scholar] [CrossRef]
- Bedair, M.; Sumner, L.W. Current and emerging mass-spectrometry technologies for metabolomics. TrAC Trends Anal. Chem. 2008, 27, 238–250. [Google Scholar] [CrossRef]
- Kato, Y.; Inabe, K.; Hidese, R.; Kondo, A.; Hasunuma, T. Metabolomics-based engineering for biofuel and bio-based chemical production in microalgae and cyanobacteria: A review. Bioresour. Technol. 2022, 344, 126196. [Google Scholar] [CrossRef]
- Chen, B.; Li, C.; Zhang, J.; Kan, J.; Jiang, T.; Zhou, J.; Ma, H. Sensing and imaging of mitochondrial viscosity in living cells using a red fluorescent probe with a long lifetime. Chem. Commun. 2019, 55, 7410–7413. [Google Scholar] [CrossRef]
- Sun, Y.; Zhou, X.; Sun, L.; Zhao, X.; He, Y.; Gao, G.; Han, W.; Zhou, J. Lysosome-targeting red fluorescent probe for broad carboxylesterases detection in breast cancer cells. Chin. Chem. Lett. 2022, 33, 4229–4232. [Google Scholar] [CrossRef]
- Arrowsmith, C.H.; Audia, J.E.; Austin, C.; Baell, J.; Bennett, J.; Blagg, J.; Bountra, C.; Brennan, P.E.; Brown, P.J.; Bunnage, M.E.; et al. The promise and peril of chemical probes. Nat. Chem. Biol. 2015, 11, 536–541. [Google Scholar] [CrossRef] [Green Version]
- Dai, N.; Kool, E.T. Fluorescent DNA-based enzyme sensors. Chem. Soc. Rev. 2011, 40, 5756–5770. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Sun, L.; Yan, Q.; Qiu, X.; Cheng, Y.; Wang, B.; Tan, X.; Fang, M.; Luck, R.L.; Liu, H. Near-infrared fluorescent probe based on cyanine scaffold for sensitive detection of uranyl ions in living cells and water samples. Microchem. J. 2022, 180, 107619. [Google Scholar] [CrossRef]
- Xie, J.; Mu, R.; Fang, M.; Cheng, Y.; Senchyna, F.; Moreno, A.; Banaei, N.; Rao, J. A dual-caged resorufin probe for rapid screening of infections resistant to lactam antibiotics. Chem. Sci. 2021, 12, 9153–9161. [Google Scholar] [CrossRef]
- Srinivasan, P.; Mehtre, S. Zinc oxide nanoparticles from Coriandrum sativum as sensor for detection of n-butanol and nitric oxide gas. Mater. Today Proc. 2021, 51, 1760–1764. [Google Scholar] [CrossRef]
- Li, L.; Lin, D.; Yang, F.; Xiao, Y.; Yang, L.; Yu, S.; Jiang, C. Gold Nanoparticle-Based Peroxyoxalate Chemiluminescence System for Highly Sensitive and Rapid Detection of Thiram Pesticides. ACS Appl. Nano Mater. 2021, 4, 3932–3939. [Google Scholar] [CrossRef]
- Verma, V.; Kala, D.; Gupta, S.; Kumar, H.; Kaushal, A.; Kuča, K.; Cruz-Martins, N.; Kumar, D. Leptospira interrogans Outer Membrane Protein-Based Nanohybrid Sensor for the Diagnosis of Leptospirosis. Sensors 2021, 21, 2552. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Raza, N.; Bhardwaj, S.K.; Vikrant, K.; Kim, K.-H.; Bhardwaj, N. Advances in nanomaterial-based electrochemical biosensors for the detection of microbial toxins, pathogenic bacteria in food matrices. J. Hazard. Mater. 2020, 401, 123379. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Z.; Fu, Y.; Lei, C.; Li, Y. Advances in antimicrobial peptides-based biosensing methods for detection of foodborne pathogens: A review. Food Control 2020, 112, 107116. [Google Scholar] [CrossRef]
- Wang, Y.; Ye, Z.-Z.; Si, C.-Y.; Ying, Y.-B. Application of Aptamer Based Biosensors for Detection of Pathogenic Microorganisms. Chin. J. Anal. Chem. 2012, 40, 634–642. [Google Scholar] [CrossRef]
- Yoo, S.M.; Lee, S.Y. Optical Biosensors for the Detection of Pathogenic Microorganisms. Trends Biotechnol. 2015, 34, 7–25. [Google Scholar] [CrossRef]
- Barizuddin, S.; Balakrishnan, B.; Stringer, R.C.; Dweik, M. Highly specific and rapid immuno-fluorescent visualization and detection of E. coli O104:H4 with protein-A coated magnetic beads based LST-MUG assay. J. Microbiol. Methods 2015, 115, 27–33. [Google Scholar] [CrossRef] [Green Version]
- Fior, S.; Vianelli, A.; Gerola, P.D. A novel method for fluorometric continuous measurement of β-glucuronidase (GUS) activity using 4-methyl-umbelliferyl-β-d-glucuronide (MUG) as substrate. Plant Sci. 2009, 176, 130–135. [Google Scholar] [CrossRef]
- Obszynski, J.; Loidon, H.; Blanc, A.; Weibel, J.-M.; Pale, P. Targeted modifications of neomycin and paromomycin: Towards resistance-free antibiotics? Bioorganic Chem. 2022, 126, 105824. [Google Scholar] [CrossRef]
- Secombe, K.R.; Ball, I.A.; Wignall, A.D.; Bateman, E.; Keefe, D.M.; Bowen, J.M. Antibiotic treatment targeting gram negative bacteria prevents neratinib-induced diarrhea in rats. Neoplasia 2022, 30, 100806. [Google Scholar] [CrossRef] [PubMed]
- HJ 1001-2018; Water Quality—Determination of Total Coliforms, Fecal Coliforms and Escherichia Coli-Enzyme Substrate Method. Ministry of Ecology and Environment of the People Republic of China: Beijing, China, 2018.
- GB/T6379; Accuracy(Trueness and Precision) of Measurement Methods and Results. General Administration of Quality Supervision, Inspection and Quarantine of the People Republic of China, China National Standardization Administration Committee: Beijing, China, 2004.
- ISO 16140; Microbiology of the Food Chain—Method Validation. ISO: Geneva, Switzerland, 2016.
Parameters | Acceptance Standard | Group 1 Acceptance Results | Group 1 Conclusions | Group 2 Acceptance Results | Group 2 Conclusions |
---|---|---|---|---|---|
accuracy | ≥95% | 100% | qualified | 100% | qualified |
sensitivity | ≥95% | 100% | qualified | 100% | qualified |
specificity | ≥98% | 100% | qualified | 100% | qualified |
false negative | <5% | 0% | qualified | 0% | qualified |
false positive | <0% | 0% | qualified | 0% | qualified |
Methods | Detection Time | Assay Procedure | Assay Flux | Test Cost (RMB) |
---|---|---|---|---|
microbial photoelectric detection system | ≥2 h | one-step | 16 samples | 6 |
standard plate count method | ≥24 h | multi-step | 1 sample | 2–3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, Q.; Zhong, Y.; Shang, W.; Deng, F.; Wang, B.; Wu, J.; Wang, P.; Wan, L.; Wang, K.; Fang, L.; et al. Fluorescent Probe Combined with Photoelectric Analysis Technology for Detection of Escherichia coli. Biosensors 2023, 13, 150. https://doi.org/10.3390/bios13020150
Cui Q, Zhong Y, Shang W, Deng F, Wang B, Wu J, Wang P, Wan L, Wang K, Fang L, et al. Fluorescent Probe Combined with Photoelectric Analysis Technology for Detection of Escherichia coli. Biosensors. 2023; 13(2):150. https://doi.org/10.3390/bios13020150
Chicago/Turabian StyleCui, Qian, Yongjie Zhong, Wenkai Shang, Fuming Deng, Buhua Wang, Jiajia Wu, Peng Wang, Liudang Wan, Keling Wang, Lingchen Fang, and et al. 2023. "Fluorescent Probe Combined with Photoelectric Analysis Technology for Detection of Escherichia coli" Biosensors 13, no. 2: 150. https://doi.org/10.3390/bios13020150
APA StyleCui, Q., Zhong, Y., Shang, W., Deng, F., Wang, B., Wu, J., Wang, P., Wan, L., Wang, K., Fang, L., Dai, R., Zhang, H., Ledesma-Amaro, R., Zhang, Y., & Huang, J. (2023). Fluorescent Probe Combined with Photoelectric Analysis Technology for Detection of Escherichia coli. Biosensors, 13(2), 150. https://doi.org/10.3390/bios13020150