Electro-Nano Diagnostic Platform Based on Antibody–Antigen Interaction: An Electrochemical Immunosensor for Influenza A Virus Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Instruments and Procedures
2.3. Hybrid Nanomaterials Preparation
2.3.1. MWCNT-Based Hybrid Nanomaterials Preparation
2.3.2. Graphene-Based Hybrid Nanomaterial Preparation
2.4. Preparation of Hybrid Nanomaterial Modified AuSPE
2.5. Fabrication of Anti-H1 Based Electrochemical Immunosensor
2.6. Electrochemical H1N1 Virus Detection Procedure
2.7. Sample Application
2.8. Selectivity Study
3. Results
3.1. Selection of Type of Hybrid Nanomaterial
3.2. MWCNT-Au-Pt Hybrid Nanomaterial Characterization
3.3. Electrochemical Characterization of Developed Biosensor
3.4. Experimental Parameters Optimization
3.5. Analytical Characteristics
3.6. Selectivity Study
3.7. Sample Application
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dhanasekaran, V.; Sullivan, S.; Edwards, K.M.; Xie, R.; Khvorov, A.; Valkenburg, S.A.; Cowling, B.J.; Barr, I.G. Human Seasonal Influenza under COVID-19 and the Potential Consequences of Influenza Lineage Elimination. Nat. Commun. 2022, 13, 1721. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, S.G.; Carlson, S.; Cheng, A.C.; Chilver, M.B.N.; Dwyer, D.E.; Irwin, M.; Kok, J.; Macartney, K.; MacLachlan, J.; Minney-Smith, C.; et al. Where Has All the Influenza Gone? The Impact of COVID-19 on the Circulation of Influenza and Other Respiratory Viruses. Eurosurveillance 2020, 25, 2001847. [Google Scholar] [CrossRef] [PubMed]
- Olsen, S.J.; Azziz-Baumgartner, E.; Budd, A.P.; Brammer, L.; Sullivan, S.; Pineda, R.F.; Cohen, C.; Fry, A.M. Decreased Influenza Activity during the COVID-19 Pandemic—United States, Australia, Chile, and South Africa. Am. J. Transplant. 2020, 20, 3681–3685. [Google Scholar] [CrossRef]
- Büyüksünetçi, Y.T.; Çitil, B.E.; Anık, Ü. An Impedimetric Approach for COVID-19 Detection. Analyst 2022, 147, 130. [Google Scholar] [CrossRef] [PubMed]
- Büyüksünetçi, Y.T.; Çitil, B.E.; Tapan, U.; Anık, Ü. Development and Application of a SARS-CoV-2 Colorimetric Biosensor Based on the Peroxidase-Mimic Activity of γ-Fe2O3 Nanoparticles. Mikrochim. Acta 2021, 188, 335. [Google Scholar] [CrossRef]
- Olsen, S.J.; Winn, A.K.; Budd, A.P.; Prill, M.M.; Steel, J.; Midgley, C.M.; Kniss, K.; Burns, E.; Rowe, T.; Foust, A.; et al. Changes in Influenza and Other Respiratory Virus Activity During the COVID-19 Pandemic—United States, 2020–2021. MMWR. Morb. Mortal. Wkly. Rep. 2021, 70, 1013–1019. [Google Scholar] [CrossRef]
- Sato, Y.; Nirasawa, S.; Saeki, M.; Yakuwa, Y.; Ono, M.; Kobayashi, R.; Nakafuri, H.; Murai, R.; Fujiya, Y.; Kuronuma, K.; et al. Comparative Study of Rapid Antigen Testing and Two Nucleic Acid Amplification Tests for Influenza Virus Detection. J. Infect. Chemother. 2022, 28, 1033–1036. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, Y.; Tefsen, B.; Shi, Y.; Gao, G.F. Bat-Derived Influenza-like Viruses H17N10 and H18N11. Trends Microbiol. 2014, 22, 183–191. [Google Scholar] [CrossRef]
- Sriwilaijaroen, N.; Suzuki, Y. Molecular Basis of the Structure and Function of H1 Hemagglutinin of Influenza Virus. Proc. Jpn. Acad. Ser. B 2012, 88, 226–249. [Google Scholar] [CrossRef] [Green Version]
- Anik, Ü.; Tepeli, Y.; Sayhi, M.; Nsiri, J.; Diouani, M.F. Towards the Electrochemical Diagnostic of Influenza Virus: Development of a Graphene–Au Hybrid Nanocomposite Modified Influenza Virus Biosensor Based on Neuraminidase Activity. Analyst 2017, 143, 150–156. [Google Scholar] [CrossRef]
- Obenauar, J.C.; Denson, J.; Mehta, P.K.; Su, X.; Mukatira, S.; Finkelstein, D.B.; Xu, X.; Wang, J.; Ma, J.; Fan, Y.; et al. Large-Scale Sequence Analysis of Avian Influenza Isolates. Science 2006, 311, 1576–1580. [Google Scholar] [CrossRef]
- Grohskopf, L.A.; Alyanak, E.; Ferdinands, J.M.; Broder, K.R.; Blanton, L.H.; Talbot, H.K.; Fry, A.M. Prevention and Control of Seasonal Influenza with Vaccines: Recommendations of the Advisory Committee on Immunization Practices, United States, 2020–2021. MMWR. Morb. Mortal. Wkly. Rep. 2021, 70, 1–22. Available online: https://www.cdc.gov/mmwr/volumes/70/rr/pdfs/rr7005a1-H.pdf (accessed on 18 January 2022).
- Karimian, P.; Delavar, M.A. Comparative Study of Clinical Symptoms, Laboratory Results and Imaging Features of Coronavirus and Influenza Virus, Including Similarities and Differences of Their Pathogenesis. Pak. J. Med. Health Sci. 2020, 14, 1405–1411. [Google Scholar]
- Tepeli, Y.; Ülkü, A. Electrochemical Biosensors for Influenza Virus a Detection: The Potential of Adaptation of These Devices to POC Systems. Sens. Actuators B Chem. 2018, 254, 377–384. [Google Scholar] [CrossRef]
- Anik, Ü.; Tepeli, Y.; Diouani, M.F. Fabrication of Electrochemical Model Influenza A Virus Biosensor Based on the Measurements of Neuroaminidase Enzyme Activity. Anal. Chem. 2016, 88, 6151–6153. [Google Scholar] [CrossRef] [Green Version]
- Mair, C.M.; Ludwig, K.; Herrmann, A.; Sieben, C. Receptor Binding and PH Stability—How Influenza A Virus Hemagglutinin Affects Host-Specific Virus Infection. Biochim. Biophys. Acta Biomembr. 2014, 1838, 1153–1168. [Google Scholar] [CrossRef] [Green Version]
- Pitak-Arnnop, P.; Schubert, S.; Dhanuthai, K.; Sappayatosok, K.; Bauer, U.; Ngamwannagul, P.; Liebert, U.G.; Hemprich, A. Swine-Origin H1N1 Influenza A Virus and Dental Practice: A Critical Review. Clin. Oral Investig. 2010, 14, 11–17. [Google Scholar] [CrossRef]
- Tong, S.; Zhu, X.; Li, Y.; Shi, M.; Zhang, J.; Bourgeois, M.; Yang, H.; Chen, X.; Recuenco, S.; Gomez, J.; et al. New World Bats Harbor Diverse Influenza A Viruses. PLOS Pathog. 2013, 9, e1003657. [Google Scholar] [CrossRef] [Green Version]
- Lamb, R. Orthomyxoviridae: The Viruses and Their Replication—Northwestern Scholars. In Molecular Biosciences; Lippincott-Raven Press: Philadelphia, PA, USA, 1996. [Google Scholar]
- Babakir-Mina, M.; Dimonte, S.; Perno, C.F.; Ciotti, M. Origin of the 2009 Mexico Influenza Virus: A Comparative Phylogenetic Analysis of the Principal External Antigens and Matrix Protein. Arch. Virol. 2009, 154, 1349–1352. [Google Scholar] [CrossRef] [Green Version]
- Garten, R.J.; Davis, C.T.; Russell, C.A.; Shu, B.; Lindstrom, S.; Balish, A.; Sessions, W.M.; Xu, X.; Skepner, E.; Deyde, V.; et al. Antigenic and Genetic Characteristics of Swine-Origin 2009 A(H1N1) Influenza Viruses Circulating in Humans. Science 2009, 325, 197–201. [Google Scholar] [CrossRef] [Green Version]
- Ravina; Dalal, A.; Gill, P.S.; Narang, J.; Prasad, M.; Mohan, H. Genosensor for Rapid, Sensitive, Specific Point-of-Care Detection of H1N1 Influenza (Swine Flu). Process Biochem. 2020, 98, 262–268. [Google Scholar] [CrossRef]
- Kamikawa, T.L.; Mikolajczyk, M.G.; Kennedy, M.; Zhang, P.; Wang, W.; Scott, D.E.; Alocilja, E.C. Nanoparticle-Based Biosensor for the Detection of Emerging Pandemic Influenza Strains. Biosens. Bioelectron. 2010, 26, 1346–1352. [Google Scholar] [CrossRef] [PubMed]
- Reid, A.H.; Taubenberger, J.K.; Fanning, T.G. The 1918 Spanish Influenza:Integrating History and Biology. Microbes Infect. 2001, 3, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Stevens, J.; Blixt, O.; Glaser, L.; Taubenberger, J.K.; Palese, P.; Paulson, J.C.; Wilson, I.A. Glycan Microarray Analysis of the Hemagglutinins from Modern and Pandemic Influenza Viruses Reveals Different Receptor Specificities. J. Mol. Biol. 2006, 355, 1143–1155. [Google Scholar] [CrossRef]
- Kaji, M.; Watanabe, A.; Aizawa, H. Differences in Clinical Features between Influenza A H1N1, A H3N2, and B in Adult Patients. Respirology 2003, 8, 231–233. [Google Scholar] [CrossRef]
- Lim, B.H.; Mahmood, T.A. Influenza A H1N1 2009 (Swine Flu) and Pregnancy. J. Obstet. Gynecol. India 2011, 61, 386–393. [Google Scholar] [CrossRef] [Green Version]
- Sharma, V.; Chaudhry, D.; Kaushik, S. Evaluation of Clinical Applicability of Reverse Transcription-Loop-Mediated Isothermal Amplification Assay for Detection and Subtyping of Influenza A Viruses. J. Virol. Methods 2018, 253, 18–25. [Google Scholar] [CrossRef]
- Microbiology, G.; Al-zobaei, A. Comparison between Haemagglutination Inhibition and Complement Fixation Tests in Detecting Antibodies Responses Following Influenza Viral Infection. Egypt. Acad. J. Biol. Sci 2012, 4, 35–38. [Google Scholar]
- Reber, A.; Katz, J. Immunological Assessment of Influenza Vaccines and Immune Correlates of Protection. Expert Rev. Vaccines 2013, 12, 519–536. [Google Scholar] [CrossRef]
- Pedersen, J.C. Hemagglutination-Inhibition Assay for Influenza Virus Subtype Identification and the Detection and Quantitation of Serum Antibodies to Influenza Virus. Methods Mol. Biol. 2014, 1161, 11–25. [Google Scholar] [CrossRef]
- Chen, L.; Tian, Y.; Chen, S.; Liesenfeld, O. Performance of the Cobas(®) Influenza A/B Assay for Rapid Pcr-Based Detection of Influenza Compared to Prodesse ProFlu+ and Viral Culture. Eur. J. Microbiol. Immunol. 2015, 5, 236–245. [Google Scholar] [CrossRef] [Green Version]
- Hazelton, B.; Gray, T.; Ho, J.; Ratnamohan, V.M.; Dwyer, D.E.; Kok, J. Detection of Influenza A and B with the Alere TM i Influenza A & B: A Novel Isothermal Nucleic Acid Amplification Assay. Influenza Other Respi. Viruses 2015, 9, 151–154. [Google Scholar] [CrossRef]
- Sutter, D.E.; Worthy, S.A.; Hensley, D.M.; Maranich, A.M.; Dolan, D.M.; Fischer, G.W.; Daum, L.T. Performance of Five FDA-Approved Rapid Antigen Tests in the Detection of 2009 H1N1 Influenza A Virus. J. Med. Virol. 2012, 84, 1699–1702. [Google Scholar] [CrossRef]
- Almunla, M.; Tepeli Büyüksünetçi, Y.; Akpolat, O.; Anık, Ü. Development of Apple Tissue Based Biocathode and MWCNT−Pt−Au Nanomaterial Based Bioanode Biofuel Cell. Electroanalysis 2021, 33, 873–881. [Google Scholar] [CrossRef]
- Luo, X.L.; Xu, J.J.; Du, Y.; Chen, H.Y. A Glucose Biosensor Based on Chitosan-Glucose Oxidase-Gold Nanoparticles Biocomposite Formed by One-Step Electrodeposition. Anal. Biochem. 2004, 334, 284–289. [Google Scholar] [CrossRef]
- Hummers, W.S.; Offeman, R.E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar] [CrossRef]
- Xu, C.; Wang, X.; Zhu, J. Graphene—Metal Particle Nanocomposites. J. Phys. Chem. C 2008, 112, 19841–19845. [Google Scholar] [CrossRef]
- Pytko-Polonczyk, J.; Jakubik, A.; Przeklasa-Bierowiec, A.; Muszynska, B. Artificial Saliva and Its Use in Biological Experiments. J. Physiol. Pharmacol. 2017, 68, 807–813. [Google Scholar]
- Dharmatti, R.; Phadke, C.; Mewada, A.; Pandey, S.; Oza, G.; Sharon, C.; Sharon, M. Surface Orchestration of Gold Nanoparticles Using Cysteamine as Linker and Folate as Navigating Molecule for Synaphic Delivery of Doxorubicin. J. Nanomed. Res. 2014, 1, 00002. [Google Scholar] [CrossRef] [Green Version]
- Oyama, M.; Orimo, A.; Nouneh, K. Effects of Linker Molecules on the Attachment and Growth of Gold Nanoparticles on Indium Tin Oxide Surfaces. Electrochim. Acta 2009, 54, 5042–5047. [Google Scholar] [CrossRef]
- Wirde, M.; Gelius, U.; Nyholm, L. Self-Assembled Monolayers of Cystamine and Cysteamine on Gold Studied by XPS and Voltammetry. Langmuir 1999, 15, 6370–6378. [Google Scholar] [CrossRef]
- Herne, T.M.; Tarlov, M.J. Characterization of DNA Probes Immobilized on Gold Surfaces. J. Am. Chem. Soc. 1997, 119, 8916–8920. [Google Scholar] [CrossRef]
- Mo, F.; Xie, J.; Wu, T.; Liu, M.; Zhang, Y.; Yao, S. A Sensitive Electrochemical Sensor for Bisphenol A on the Basis of the AuPd Incorporated Carboxylic Multi-Walled Carbon Nanotubes. Food Chem. 2019, 292, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Shahrokhian, S.; Rastgar, S. Construction of an Electrochemical Sensor Based on the Electrodeposition of Au–Pt Nanoparticles Mixtures on Multi-Walled Carbon Nanotubes Film for Voltammetric Determination of Cefotaxime. Analyst 2012, 137, 2706–2715. [Google Scholar] [CrossRef]
- Adam, B.S.; Tonya, M.H.; Michael, J.T. Electrochemical Quantitation of DNA Immobilized on Gold. Anal. Chem. 1998, 70, 4670–4677. [Google Scholar] [CrossRef]
- Tichoniuk, M.; Ligaj, M.; Filipiak, M. Application of DNA Hybridization Biosensor as a Screening Method for the Detection of Genetically Modified Food Components. Sensors 2008, 8, 2118–2135. [Google Scholar] [CrossRef] [Green Version]
- Mitnaul, L.J.; Matrosovich, M.N.; Castrucci, M.R.; Tuzikov, A.B.; Bovin, N.V.; Kobasa, D.; Kawaoka, Y. Balanced Hemagglutinin and Neuraminidase Activities Are Critical for Efficient Replication of Influenza A Virus. J. Virol. 2000, 74, 6015–6020. [Google Scholar] [CrossRef] [Green Version]
- Diouani, M.F.; Helali, S.; Hafaid, I.; Hassen, W.M.; Snoussi, M.A.; Ghram, A.; Jaffrezic-Renault, N.; Abdelghani, A. Miniaturized Biosensor for Avian Influenza Virus Detection. Mater. Sci. Eng. C 2008, 28, 580–583. [Google Scholar] [CrossRef]
- Peduru Hewa, T.M.; Tannock, G.A.; Mainwaring, D.E.; Harrison, S.; Fecondo, J.V. The Detection of Influenza A and B Viruses in Clinical Specimens Using a Quartz Crystal Microbalance. J. Virol. Methods 2009, 162, 14–21. [Google Scholar] [CrossRef]
- Diltemiz, S.E.; Ersöz, A.; Hür, D.; Keçili, R.; Say, R. 4-Aminophenyl Boronic Acid Modified Gold Platforms for Influenza Diagnosis. Mater. Sci. Eng. C 2013, 33, 824–830. [Google Scholar] [CrossRef]
- Wang, R.; Wang, L.; Callaway, Z.T.; Lu, H.; Huang, T.J.; Li, Y. A Nanowell-Based QCM Aptasensor for Rapid and Sensitive Detection of Avian Influenza Virus. Sens. Actuators B Chem. 2017, 240, 934–940. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.; Callaway, Z.; Lum, J.; Wang, R.; Lin, J.; Li, Y. Exploiting Enzyme Catalysis in Ultra-Low Ion Strength Media for Impedance Biosensing of Avian Influenza Virus Using a Bare Interdigitated Electrode. Anal. Chem. 2014, 86, 1965–1971. [Google Scholar] [CrossRef]
- Wu, Z.; Guo, W.-J.; Bai, Y.-Y.; Zhang, L.; Hu, J.; Pang, D.-W.; Zhang, Z.-L. Digital Single Virus Electrochemical Enzyme-Linked Immunoassay for Ultrasensitive H7N9 Avian Influenza Virus Counting. Anal. Chem. 2018, 90, 1683–1690. [Google Scholar] [CrossRef]
- Hai, W.; Goda, T.; Takeuchi, H.; Yamaoka, S.; Horiguchi, Y.; Matsumoto, A.; Miyahara, Y. Human Influenza Virus Detection Using Sialyllactose-Functionalized Organic Electrochemical Transistors. Sens. Actuators B Chem. 2018, 260, 635–641. [Google Scholar] [CrossRef]
- Nidzworski, D.; Siuzdak, K.; Niedziałkowski, P.; Bogdanowicz, R.; Sobaszek, M.; Ryl, J.; Weiher, P.; Sawczak, M.; Wnuk, E.; Goddard, W.A., III; et al. A Rapid-Response Ultrasensitive Biosensor for Influenza Virus Detection Using Antibody Modified Boron-Doped Diamond OPEN. Sci. Rep. 2017, 7, 15707. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.F.; Wang, W.H.; Hong, Y.W.; Yuan, R.Y.; Chen, K.H.; Huang, Y.W.; Lu, P.L.; Chen, Y.H.; Chen, Y.M.A.; Su, L.C.; et al. Simple Strategy for Rapid and Sensitive Detection of Avian Influenza A H7N9 Virus Based on Intensity-Modulated SPR Biosensor and New Generated Antibody. Anal. Chem. 2018, 90, 1861–1869. [Google Scholar] [CrossRef]
Transducer | Bioactive Surface | Analyte | Method | LOD | Linear Detection Range | Reference |
---|---|---|---|---|---|---|
Au/MHA | H7N1 specific antibody | H7N1 virus | EIS | 5 µg/mL | 5–15 µg/mL | [49] |
Gold electrode/protein A | Monoclonal M1 antibody | Human influenza virus | QCM | 103 pfu/mL (10 µg/mL) | 103–104 pfu/mLNp | [50] |
Au/MUA/4-APBA | SA | HA | QCM | 0.26 μg mL−1 | 0.01–0.16 mM | [51] |
Au/MUA/4-APBA | SA | HA | SPR | 0.72 μg mL−1 | 0.01–0.16 mM | [51] |
AuSPE/graphene-gold hybrid nanoparticle | Fetuin A (a sialic acid source) | Neu | EIS | 10−8 U mL−1 of Neu | 10−8 U mL−1 and 10−1 U mL−1 of Neu (H9N2 virus) | [10] |
Gold electrode/nanoporous gold film | H5N1 AIV ssDNA aptamer | H5N1 avian influenza virus | QCM | 2−4 HAU/50 μL | 2−4 to 24 HAU/50 μL | [52] |
Screen-printed IDAE (gold) | H5N1 specific aptamer | H5N1 virus | EIS | 8 × 10−4 HAU in 200 μL sample | 0.001–1 HAU in 200 μL sample | [53] |
ITO/AuNPs | H7N9 monoclonal antibody | H7N9 | ELISA | 7.8 fg/mL | 0.01–1.5 pg/mL | [54] |
OECT | 2,6-sialyllacose | Human influenza virus | Amperometric | 0.025 HAU | 0.03–1 HAU | [55] |
Diamond electrode | polyclonal anti-M1 protein antibody | H1N1 and H3N2 virus | EIS | 1 fg/mL virus | Up to 100 fg/mL virus | [56] |
Gold surface | New generated H7 antibody | H9N7 virus | Intensity-modulated SPR | 402 copies/mL | 2.3 × 102 to 2.3 × 105 copies/mL | [57] |
AuSPE/ MWCNT-Au-Pt | H1 antibody | H1N1 virus | EIS | 3.54 µg/mL of H1N1 | 2.50–25.00 µg/mL of H1N1 | This Study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Büyüksünetçi, Y.T.; Anık, Ü. Electro-Nano Diagnostic Platform Based on Antibody–Antigen Interaction: An Electrochemical Immunosensor for Influenza A Virus Detection. Biosensors 2023, 13, 176. https://doi.org/10.3390/bios13020176
Büyüksünetçi YT, Anık Ü. Electro-Nano Diagnostic Platform Based on Antibody–Antigen Interaction: An Electrochemical Immunosensor for Influenza A Virus Detection. Biosensors. 2023; 13(2):176. https://doi.org/10.3390/bios13020176
Chicago/Turabian StyleBüyüksünetçi, Yudum Tepeli, and Ülkü Anık. 2023. "Electro-Nano Diagnostic Platform Based on Antibody–Antigen Interaction: An Electrochemical Immunosensor for Influenza A Virus Detection" Biosensors 13, no. 2: 176. https://doi.org/10.3390/bios13020176
APA StyleBüyüksünetçi, Y. T., & Anık, Ü. (2023). Electro-Nano Diagnostic Platform Based on Antibody–Antigen Interaction: An Electrochemical Immunosensor for Influenza A Virus Detection. Biosensors, 13(2), 176. https://doi.org/10.3390/bios13020176