A Single Aptamer-Dependent Sandwich-Type Biosensor for the Colorimetric Detection of Cancer Cells via Direct Coordinately Binding of Bare Bimetallic Metal–Organic Framework-Based Nanozymes
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Instrumentation
2.3. Preparation of UIO-66(Fe/Zr)
2.4. Preparation of AS1411-Functionalized Fe3O4@SiO2
2.5. Assessment of Peroxidase-Like Nanozyme Activity
2.6. Cell Culture
2.7. Colorimetric Detection of Cancer Cells
3. Results and Discussion
3.1. Principle of Colorimetric Sandwich-Type Detection of Cancer Cells
3.2. Characterization of UIO-66(Fe/Zr) and Fe3O4@SiO2-Apt
3.3. Assessment of Peroxidase-Like Nanozyme Activity
3.4. Construction of a Single-Aptamer-Based Sandwich-Type Biosensor
3.5. Colorimetric Detection of Cancer Cells
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mao, J.J.; Pillai, G.G.; Andrade, C.J.; Ligibel, J.A.; Basu, P.; Cohen, L.; Khan, I.A.; Mustian, K.M.; Puthiyedath, R.; Dhiman, K.S.; et al. Integrative oncology: Addressing the global challenges of cancer prevention and treatment. CA Cancer J. Clin. 2022, 72, 144–164. [Google Scholar] [CrossRef] [PubMed]
- Crosby, D.; Bhatia, S.; Brindle, K.M.; Coussens, L.M.; Dive, C.; Emberton, M.; Esener, S.; Fitzgerald, R.C.; Gambhir, S.S.; Kuhn, P.; et al. Early detection of cancer. Science 2022, 375, eaay9040. [Google Scholar] [CrossRef]
- Kaur, B.; Kumar, S.; Kaushik, B.K. Recent advancements in optical biosensors for cancer detection. Biosens. Bioelectron. 2022, 197, 113805. [Google Scholar] [CrossRef]
- Yang, L.; Cui, M.; Zhang, Y.; Jiang, L.; Liu, H.; Liu, Z. A colorimetric aptasensing assay with adjustable color mutation points for threshold-readout detection of carcinoembryonic antigen. Sens. Actuators B 2022, 350, 130857. [Google Scholar] [CrossRef]
- Li, G.; Chen, M.; Wang, B.; Wang, C.; Wu, G.; Liang, J.; Zhou, Z. Dual-signal sandwich-type aptasensor based on H-rGO-Mn3O4 nanozymes for ultrasensitive Golgi protein 73 determination. Anal. Chim. Acta 2022, 1221, 340102. [Google Scholar] [CrossRef]
- Hu, S.; Tong, L.; Wang, J.; Yi, X.; Liu, J. NIR Light-Responsive Hollow Porous Gold Nanospheres for Controllable Pressure-Based Sensing and Photothermal Therapy of Cancer Cells. Anal. Chem. 2019, 91, 15418–15424. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Yu, Y.; Hu, S.; Yi, X.; Wang, J. Bifunctional Diblock DNA-Mediated Synthesis of Nanoflower-Shaped Photothermal Nanozymes for a Highly Sensitive Colorimetric Assay of Cancer Cells. ACS Appl. Mater. Interfaces 2021, 13, 16801–16811. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Zhang, X.; Zhang, Z.; Hu, S.; Ye, F.; Zhao, S. Complementary atomic flame/molecular colorimetry dual-mode assay for sensitive and wide-range detection of cancer cells. Chem. Commun. 2021, 57, 3327–3330. [Google Scholar] [CrossRef] [PubMed]
- Hou, L.; Qin, Y.; Lin, T.; Sun, Y.; Ye, F.; Zhao, S. Michael reaction-assisted fluorescent sensor for selective and one step determination of catechol via bifunctional Fe-MIL-88NH2 nanozyme. Sens. Actuators B 2020, 321, 128547. [Google Scholar] [CrossRef]
- Cheng, Y.; Liang, L.; Ye, F.; Zhao, S. Ce-MOF with Intrinsic Haloperoxidase-Like Activity for Ratiometric Colorimetric Detection of Hydrogen Peroxide. Biosensors 2021, 11, 204. [Google Scholar] [CrossRef]
- Sun, Y.; Lin, T.; Zeng, C.; Jiang, G.; Zhang, X.; Ye, F.; Zhao, S. A self-correcting fluorescent assay of tyrosinase based on Fe-MIL-88B-NH2 nanozyme. Microchim. Acta 2021, 188, 158. [Google Scholar] [CrossRef]
- Ji, Z.; Zhang, H.; Liu, H.; Yaghi, O.M.; Yang, P. Cytoprotective metal-organic frameworks for anaerobic bacteria. Proc. Natl. Acad. Sci. USA 2018, 115, 10582–10587. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, P.; Niu, X.; Ye, K.; Ni, L.; Du, D.; Pan, J.; Lin, Y. Tri-functional Fe–Zr bi-metal–organic frameworks enable high-performance phosphate ion ratiometric fluorescent detection. Nanoscale 2020, 12, 19383–19389. [Google Scholar] [CrossRef]
- Miao, J.; Zhao, X.; Zhang, Y.-X.; Liu, Z.-H. Feasible synthesis of hierarchical porous MgAl-borate LDHs functionalized Fe3O4@SiO2 magnetic microspheres with excellent adsorption performance toward congo red and Cr(VI) pollutants. J. Alloys Compd. 2021, 861, 157974. [Google Scholar] [CrossRef]
- Cavka, J.H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K.P. A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. J. Am. Chem. Soc. 2008, 130, 13850–13851. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Deng, F.; Shen, T.; Yang, L.; Chen, D.; Luo, J.; Luo, X.; Min, X.; Wang, F. Exceptional adsorption of arsenic by zirconium metal-organic frameworks: Engineering exploration and mechanism insight. J. Colloid Interface Sci. 2019, 539, 223–234. [Google Scholar] [CrossRef]
- Peterson, G.W.; Mahle, J.J.; DeCoste, J.B.; Gordon, W.O.; Rossin, J.A. Extraordinary NO2 Removal by the Metal–Organic Framework UiO-66-NH2. Angew. Chem. 2016, 128, 6343–6346. [Google Scholar] [CrossRef]
- Morel, A.-L.; Nikitenko, S.I.; Gionnet, K.; Wattiaux, A.; Lai-Kee-Him, J.; Labrugere, C.; Chevalier, B.; Deleris, G.; Petibois, C.; Brisson, A.; et al. Sonochemical Approach to the Synthesis of Fe3O4@SiO2 Core−Shell Nanoparticles with Tunable Properties. ACS Nano 2008, 2, 847–856. [Google Scholar] [CrossRef]
- Jermoumi, T.; Hafid, M.; Toreis, N. Density, thermal and FTIR analysis of (50-x)BaO.xFe2O2.50P2O5 glasses. Phys. Chem. Glas. 2002, 43, 129–132. [Google Scholar]
- Li, Q.; Zhao, D.; Shao, X.; Lin, S.; Xie, X.; Liu, M.; Ma, W.; Shi, S.; Lin, Y. Aptamer-Modified Tetrahedral DNA Nanostructure for Tumor-Targeted Drug Delivery. ACS Appl. Mater. Interfaces 2017, 9, 36695–36701. [Google Scholar] [CrossRef] [PubMed]
- Jing, Y.; Cai, M.; Zhou, L.; Jiang, J.; Gao, J.; Wang, H. Aptamer AS1411 utilized for super-resolution imaging of nucleolin. Talanta 2020, 217, 121037. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Fang, X.; Lv, X.; Lu, M.; Xu, H.; Hu, S.; Zhao, S.; Ye, F. A Single Aptamer-Dependent Sandwich-Type Biosensor for the Colorimetric Detection of Cancer Cells via Direct Coordinately Binding of Bare Bimetallic Metal–Organic Framework-Based Nanozymes. Biosensors 2023, 13, 225. https://doi.org/10.3390/bios13020225
Zhu Y, Fang X, Lv X, Lu M, Xu H, Hu S, Zhao S, Ye F. A Single Aptamer-Dependent Sandwich-Type Biosensor for the Colorimetric Detection of Cancer Cells via Direct Coordinately Binding of Bare Bimetallic Metal–Organic Framework-Based Nanozymes. Biosensors. 2023; 13(2):225. https://doi.org/10.3390/bios13020225
Chicago/Turabian StyleZhu, Yuhui, Xueting Fang, Xiaofei Lv, Meijun Lu, Hui Xu, Shengqiang Hu, Shulin Zhao, and Fanggui Ye. 2023. "A Single Aptamer-Dependent Sandwich-Type Biosensor for the Colorimetric Detection of Cancer Cells via Direct Coordinately Binding of Bare Bimetallic Metal–Organic Framework-Based Nanozymes" Biosensors 13, no. 2: 225. https://doi.org/10.3390/bios13020225
APA StyleZhu, Y., Fang, X., Lv, X., Lu, M., Xu, H., Hu, S., Zhao, S., & Ye, F. (2023). A Single Aptamer-Dependent Sandwich-Type Biosensor for the Colorimetric Detection of Cancer Cells via Direct Coordinately Binding of Bare Bimetallic Metal–Organic Framework-Based Nanozymes. Biosensors, 13(2), 225. https://doi.org/10.3390/bios13020225