Self-Powered Biosensors for Monitoring Human Physiological Changes
Abstract
:1. Introduction
2. Human Body Signals
2.1. Physical Signals
2.2. Chemical Signals
3. Biosensors in Different Forms and Additional Characteristics
Sort | Placement Sites | Target | Range | Sensitivity | Ref. |
---|---|---|---|---|---|
Wearable | Skin | Muscle deformation | 0.5–2.0 V | 0.1 V | [45] |
Arm | Volleyball reception | 6.65–19.21 kPa | 0.3086 V kPa−1 | [46] | |
Wrist | Gesture | \ | 92.6% accuracy | [47] | |
Implantable | Aorta (pig) | Blood pressure | 0–200 mmHg | 14.32 mV/mmHg | [48] |
Left ventricle (pig)/ left atrium (pig) | Endocardial pressure | 0–350 mmHg | 1.195 mV mmHg−1 | [49] | |
Ligament | Ligament strain | 0–600% | 25% strain rate | [50] |
3.1. Wearable and Implantable Biosensors
3.1.1. Wearable Biosensors
3.1.2. Implantable Biosensors
3.2. Biosensors with Additional Characteristics
4. Self-Powered Types of Biosensors
4.1. Piezoelectric Nanogenerators
4.2. Triboelectric Nanogenerator
4.3. Pyroelectric Nanogenerators
4.4. Biofuel Cell
Energy Harvester | Materials | Structures | Output | Size | Energy Sources | Ref. |
---|---|---|---|---|---|---|
PENG | PZT | Filler-elastomer-based | 20 V | 5 cm × 4 cm | External deformations | [61] |
PZT-SEBS | Composite elastomer | 100 V | 3 cm × 3 cm | Stretching | [62] | |
TENG | Silicone rubber/Al | Contact-separation | 1.7 V | 5 mm × 10 mm | Finger flexion | [69] |
PANI/PCL | Contact-separation | 1000 V | 8 cm × 4 cm | friction | [70] | |
PyNG | PVDF/Al | Three layers | 4 2 V | 3.5 cm× 3.5 cm | Respiration | [75] |
TENG and PyNG | Cu/FEP/PVDF | Contact-separation | 20 V (18 m/s) | 11.5 cm × 5 cm | Ambient thermal and mechanical energies (wind) | [76] |
Biofuel cell | Glucose/carbon fabrics | Textile-based | 1.08 V | 10 mm × 10 mm (one stack) | Sweat | [78] |
CNT stretchable ink | Textile-based | 0.46 V | \ | Sweat | [79] | |
LOD-based anodic fiber BOD-based cathodic fiber | Textile-based | 20 V (6 in series) | 2 cm2 | Sweat | [80] | |
Carbon nanotube | BFC-integrated touch-based | 0.55 V | 1 cm2 | Sweat | [81] | |
CNT | Island–bridge | 1.1 mA | \ | Sweat | [82] | |
PI/PET | Microfluidic module and BFC module | 1.01 μWcm−2 (45.23 min) | \ | Sweat | [83] | |
Lactate oxidase and bilirubin oxidase | Island–bridge | 0.74 V | 0.18 cm2 | Sweat | [84] | |
Enzyme/mediator/carbon nanotube (CNT) composite fibers | Osmium-based polymer/CNT/glucose oxidase/Os-based polymer/CNT. | 0.5 V (murine abdominal cavity and heart tissue) | \ | Glucose | [85] |
5. Biosensor Application Demonstration
6. Conclusions
7. Challenges and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, L.M.; Li, H.; Meng, J.P.; Li, Z. The recent advances in self-powered medical information sensors. InfoMat 2020, 2, 212–234. [Google Scholar] [CrossRef]
- Liu, Z.; Li, H.; Shi, B.J.; Fan, Y.B.; Wang, Z.L.; Li, Z. Wearable and Implantable Triboelectric Nanogenerators. Adv. Funct. Mater. 2019, 29, 19. [Google Scholar] [CrossRef]
- Koydemir, H.C.; Ozcan, A. Wearable and Implantable Sensors for Biomedical Applications. In Annual Review of Analytical Chemistry; Bohn, P.W., Pemberton, J.E., Eds.; Annual Reviews: Palo Alto, CA, USA, 2018; Volume 11, pp. 127–146. [Google Scholar]
- Dai, J.Y.; Li, L.L.; Shi, B.J.; Li, Z. Recent progress of self-powered respiration monitoring systems. Biosens. Bioelectron. 2021, 194, 17. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.; Tang, Q.Z.; Wang, Z.L.; Li, Z. Self-powered cardiovascular electronic devices and systems. Nat. Rev. Cardiol. 2021, 18, 7–21. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z. Hydrogel-based composites: Unlimited platforms for biosensors and diagnostics. View 2021, 2, 20200165. [Google Scholar] [CrossRef]
- Zhao, C.C.; Feng, H.Q.; Zhang, L.J.; Li, Z.; Zou, Y.; Tan, P.C.; Ouyang, H.; Jiang, D.J.; Yu, M.; Wang, C.; et al. Highly Efficient In Vivo Cancer Therapy by an Implantable Magnet Triboelectric Nanogenerator. Adv. Funct. Mater. 2019, 29, 11. [Google Scholar] [CrossRef]
- Hong, Y.; Cheng, X.L.; Liu, G.J.; Hong, D.S.; He, S.S.; Wang, B.J.; Sun, X.M.; Peng, H.S. One-step Production of Continuous Supercapacitor Fibers for a Flexible Power Textile. Chin. J. Polym. Sci. 2019, 37, 737–743. [Google Scholar] [CrossRef]
- Qu, X.C.; Liu, Y.; Liu, Z.; Li, Z. Assistive devices for the people with disabilities enabled by triboelectric nanogenerators. J. Phys. Mater. 2021, 4, 17. [Google Scholar] [CrossRef]
- Cha, S.; Kim, S.M.; Kim, H.; Ku, J.; Sohn, J.I.; Park, Y.J.; Song, B.G.; Jung, M.H.; Lee, E.K.; Choi, B.L.; et al. Porous PVDF As Effective Sonic Wave Driven Nanogenerators. Nano Lett. 2011, 11, 5142–5147. [Google Scholar] [CrossRef]
- Wang, Z.L.; Song, J.H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246. [Google Scholar] [CrossRef]
- Fan, F.R.; Tian, Z.Q.; Wang, Z.L. Flexible triboelectric generator! Nano Energy 2012, 1, 328–334. [Google Scholar] [CrossRef]
- Haeberlin, A.; Zurbuchen, A.; Walpen, S.; Schaerer, J.; Niederhauser, T.; Huber, C.; Tanner, H.; Servatius, H.; Seiler, J.; Haeberlin, H.; et al. The first batteryless, solar-powered cardiac pacemaker. Heart Rhythm. 2015, 12, 1317–1323. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.L. Towards Self-Powered Nanosystems: From Nanogenerators to Nanopiezotronics. Adv. Funct. Mater. 2008, 18, 3553–3567. [Google Scholar] [CrossRef]
- Wang, Z.L. Self-powered nanotech-Nanosize machines need still tinier power plants. Sci. Am. 2008, 298, 82. [Google Scholar] [CrossRef] [PubMed]
- Bandodkar, A.J.; Wang, J. Wearable Biofuel Cells: A Review. Electroanalysis 2016, 28, 1188–1200. [Google Scholar] [CrossRef]
- Jinno, H.; Fukuda, K.; Xu, X.M.; Park, S.; Suzuki, Y.; Koizumi, M.; Yokota, T.; Osaka, I.; Takimiya, K.; Someya, T. Stretchable and waterproof elastomer-coated organic photovoltaics for washable electronic textile applications. Nat. Energy 2017, 2, 6. [Google Scholar] [CrossRef]
- Seol, M.L.; Jeon, S.B.; Han, J.W.; Choi, Y.K. Ferrofluid-based triboelectric-electromagnetic hybrid generator for sensitive and sustainable vibration energy harvesting. Nano Energy 2017, 31, 233–238. [Google Scholar] [CrossRef]
- Imani, S.; Bandodkar, A.J.; Mohan, A.M.V.; Kumar, R.; Yu, S.F.; Wang, J.; Mercier, P.P. A wearable chemical-electrophysiological hybrid biosensing system for real-time health and fitness monitoring. Nat. Commun. 2016, 7, 7. [Google Scholar] [CrossRef]
- Kumari, P.; Mathew, L.; Syal, P. Increasing trend of wearables and multimodal interface for human activity monitoring: A review. Biosens. Bioelectron. 2017, 90, 298–307. [Google Scholar] [CrossRef]
- Heikenfeld, J.; Jajack, A.; Rogers, J.; Gutruf, P.; Tian, L.; Pan, T.; Li, R.; Khine, M.; Kim, J.; Wang, J.; et al. Wearable sensors: Modalities, challenges, and prospects. Lab Chip 2018, 18, 217–248. [Google Scholar] [CrossRef]
- Park, J.; Kim, M.; Lee, Y.; Lee, H.S.; Ko, H. Fingertip skin-inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli. Sci. Adv. 2015, 1, 13. [Google Scholar] [CrossRef] [PubMed]
- Yao, S.S.; Swetha, P.; Zhu, Y. Nanomaterial-Enabled Wearable Sensors for Healthcare. Adv. Healthc. Mater. 2018, 7, 27. [Google Scholar] [CrossRef] [PubMed]
- Ge, G.; Cai, Y.C.; Dong, Q.C.; Zhang, Y.Z.; Shao, J.J.; Huang, W.; Dong, X.C. A flexible pressure sensor based on rGO/polyaniline wrapped sponge with tunable sensitivity for human motion detection. Nanoscale 2018, 10, 10033–10040. [Google Scholar] [CrossRef] [PubMed]
- Boland, C.S.; Khan, U.; Backes, C.; O’Neill, A.; Mccauley, J.; Duane, S.; Shanker, R.; Liu, Y.; Jurewicz, I.; Dalton, A.B.; et al. Sensitive, High-Strain, High-Rate Bodily Motion Sensors Based on Graphene-Rubber Composites. ACS Nano 2014, 8, 8819–8830. [Google Scholar] [CrossRef] [PubMed]
- Ameri, S.K.; Ho, R.; Jang, H.W.; Tao, L.; Wang, Y.H.; Wang, L.; Schnyer, D.M.; Akinwande, D.; Lu, N.S. Graphene Electronic Tattoo Sensors. ACS Nano 2017, 11, 7634–7641. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.H.; Chiang, C.Y.; Chu, H.C. Recognizing the Degree of Human Attention Using EEG Signals from Mobile Sensors. Sensors 2013, 13, 10273–10286. [Google Scholar] [CrossRef]
- Campana, A.; Cramer, T.; Simon, D.T.; Berggren, M.; Biscarini, F. Electrocardiographic Recording with Conformable Organic Electrochemical Transistor Fabricated on Resorbable Bioscaffold. Adv. Mater. 2014, 26, 3874–3878. [Google Scholar] [CrossRef]
- Xiong, P.W.; Wu, C.C.; Zhou, H.M.; Song, A.G.; Hu, L.Y.; Liu, X.P.P. Design of an accurate end-of-arm force display system based on wearable arm gesture sensors and EMG sensors. Inf. Fusion 2018, 39, 178–185. [Google Scholar] [CrossRef]
- Mullen, T.R.; Kothe, C.a.E.; Chi, Y.M.; Ojeda, A.; Kerth, T.; Makeig, S.; Jung, T.P.; Cauwenberghs, G. Real-Time Neuroimaging and Cognitive Monitoring Using Wearable Dry EEG. IEEE Trans. Biomed. Eng. 2015, 62, 2553–2567. [Google Scholar] [CrossRef]
- Ouyang, H.; Tian, J.J.; Sun, G.L.; Zou, Y.; Liu, Z.; Li, H.; Zhao, L.M.; Shi, B.J.; Fan, Y.B.; Fan, Y.F.; et al. Self-Powered Pulse Sensor for Antidiastole of Cardiovascular Disease. Adv. Mater. 2017, 29, 10. [Google Scholar] [CrossRef]
- Taborri, J.; Keogh, J.; Kos, A.; Santuz, A.; Umek, A.; Urbanczyk, C.; van der Kruk, E.; Rossi, S. Sport Biomechanics Applications Using Inertial, Force, and EMG Sensors: A Literature Overview. Appl. Bionics Biomech. 2020, 2020, 18. [Google Scholar] [CrossRef] [PubMed]
- Luo, N.Q.; Dai, W.X.; Li, C.L.; Zhou, Z.Q.; Lu, L.Y.; Poon, C.C.Y.; Chen, S.C.; Zhang, Y.T.; Zhao, N. Flexible Piezoresistive Sensor Patch Enabling Ultralow Power Cuffless Blood Pressure Measurement. Adv. Funct. Mater. 2016, 26, 1178–1187. [Google Scholar] [CrossRef]
- Mair, P.; Kornberger, E.; Furtwaengler, W.; Balogh, D.; Antretter, H. Prognostic Markers in Patients with Severe Accidental Hypothermia and Cardiocirculatory Arrest. Resuscitation 1994, 27, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Bick, M.; Xiao, X.; Chen, G.; Nashalian, A.; Chen, J. Leveraging triboelectric nanogenerators for bioengineering. Matter 2021, 4, 845–887. [Google Scholar] [CrossRef]
- Guo, H.Y.; Lan, C.Y.; Zhou, Z.F.; Sun, P.H.; Wei, D.P.; Li, C. Transparent, flexible, and stretchable WS2 based humidity sensors for electronic skin. Nanoscale 2017, 9, 6246–6253. [Google Scholar] [CrossRef]
- Lin, W.Y.; Chen, C.H.; Lee, M.Y. Design and Implementation of a Wearable Accelerometer-Based Motion/Tilt Sensing Internet of Things Module and Its Application to Bed Fall Prevention. Biosensors 2021, 11, 428. [Google Scholar] [CrossRef]
- Ferrari, M.; Harrison, B.; Rawashdeh, O.; Hammond, R.; Avery, Y.; Rawashdeh, M.; Sa’deh, W.; Maddens, M. Clinical Feasibility Trial of a Motion Detection System for Fall Prevention in Hospitalized Older Adult Patients. Geriatr. Nurs. 2012, 33, 177–183. [Google Scholar] [CrossRef]
- Miyamoto, A.; Lee, S.; Cooray, N.F.; Lee, S.; Mori, M.; Matsuhisa, N.; Jin, H.; Yoda, L.; Yokota, T.; Itoh, A.; et al. Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes. Nat. Nanotechnol. 2017, 12, 907. [Google Scholar] [CrossRef]
- Msc, E.J.M.M. Wearable sweat sensing for prolonged, semicontinuous, and nonobtrusive health monitoring. View 2020, 1, 20200077. [Google Scholar]
- Wang, L.; Pan, M.M.; Xu, L.; Yu, X.; Zheng, S.Y. Recent Advances of Emerging Microfluidic Chips for Exosome Mediated Cancer Diagnosis. Smart Mater. Med. 2021, 2, 158–171. [Google Scholar] [CrossRef]
- Liu, X.; Liu, J.J.V. Biosensors and sensors for dopamine detection. View 2021, 2, 20200102. [Google Scholar] [CrossRef]
- Bandodkar, A.J.; Wang, J. Non-invasive wearable electrochemical sensors: A review. Trends Biotechnol. 2014, 32, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Emaminejad, S.; Nyein, H.Y.Y.; Challa, S.; Chen, K.V.; Peck, A.; Fahad, H.M.; Ota, H.; Shiraki, H.; Kiriya, D.; et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016, 529, 509. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.M.; Li, D.; Zhong, W.; Xu, L.; Jiang, T.; Wang, Z.L. Self-Powered Inhomogeneous Strain Sensor Enabled Joint Motion and Three-Dimensional Muscle Sensing. ACS Appl. Mater. Interfaces 2019, 11, 34251–34257. [Google Scholar] [CrossRef]
- Shi, Y.P.; Wei, X.L.; Wang, K.M.; He, D.D.; Yuan, Z.H.; Xu, J.H.; Wu, Z.Y.; Wang, Z.L. Integrated All-Fiber Electronic Skin toward Self-Powered Sensing Sports Systems. ACS Appl. Mater. Interfaces 2021, 13, 50329–50337. [Google Scholar] [CrossRef]
- Tan, P.C.; Han, X.; Zou, Y.; Qu, X.C.; Xue, J.T.; Li, T.; Wang, Y.Q.; Luo, R.Z.; Cui, X.; Xi, Y.; et al. Self-Powered Gesture Recognition Wristband Enabled by Machine Learning for Full Keyboard and Multicommand Input. Adv. Mater. 2022, 34, 10. [Google Scholar] [CrossRef]
- Cheng, X.L.; Xue, X.; Ma, Y.; Han, M.D.; Zhang, W.; Xu, Z.Y.; Zhang, H.; Zhang, H.X. Implantable and self-powered blood pressure monitoring based on a piezoelectric thinfilm: Simulated, in vitro and in vivo studies. Nano Energy 2016, 22, 453–460. [Google Scholar] [CrossRef]
- Liu, Z.; Ma, Y.; Ouyang, H.; Shi, B.J.; Li, N.; Jiang, D.J.; Xie, F.; Qu, D.; Zou, Y.; Huang, Y.; et al. Transcatheter Self-Powered Ultrasensitive Endocardial Pressure Sensor. Adv. Funct. Mater. 2019, 29, 10. [Google Scholar] [CrossRef]
- Sheng, F.F.; Zhang, B.; Zhang, Y.H.; Li, Y.Y.; Cheng, R.W.; Wei, C.H.; Ning, C.; Dong, K.; Wang, Z.L. Ultrastretchable Organogel/Silicone Fiber-Helical Sensors for Self-Powered Implantable Ligament Strain Monitoring. ACS Nano 2022, 16, 10958–10967. [Google Scholar] [CrossRef]
- Yi, F.; Wang, J.; Wang, X.F.; Niu, S.M.; Li, S.M.; Liao, Q.L.; Xu, Y.L.; You, Z.; Zhang, Y.; Wang, Z.L. Stretchable and Waterproof Self-Charging Power System for Harvesting Energy from Diverse Deformation and Powering Wearable Electronics. ACS Nano 2016, 10, 6519–6525. [Google Scholar] [CrossRef]
- Liu, Y.J.; Cao, W.T.; Ma, M.G.; Wan, P.B. Ultrasensitive Wearable Soft Strain Sensors of Conductive, Self-healing, and Elastic Hydrogels with Synergistic “Soft and Hard” Hybrid Networks. ACS Appl. Mater. Interfaces 2017, 9, 25559–25570. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Jiang, D.J.; Qu, X.C.; Bai, Y.; Cao, Y.; Luo, R.Z.; Li, Z. A Stretchable, Self-Healable Triboelectric Nanogenerator as Electronic Skin for Energy Harvesting and Tactile Sensing. Materials 2021, 14, 1689. [Google Scholar] [CrossRef]
- Chen, Y.H.; Pu, X.; Liu, M.M.; Kuang, S.; Zhang, P.; Hua, Q.; Cong, Z.; Guo, W.; Hu, W.; Wang, Z.L. Shape-Adaptive, Self-Healable Triboelectric Nanogenerator with Enhanced Performances by Soft Solid-Solid Contact Electrification. ACS Nano 2019, 13, 8936–8945. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.; Zou, Y.; Zhang, Y.L.; Kuang, S.Y.; Zhan, P.P.; Hua, Q.L.; Cong, Z.F.; Guo, W.B.; Hu, W.G.; Wang, Z.L. Biodegradable triboelectric nanogenerator as a life-time designed implantable power source. Sci. Adv. 2016, 2, 9. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Li, S.Y.; Tao, X.L.; Chen, Y.; Huang, F.J.; Li, H.X.; Chen, X.Y.; Bian, Z.F. Fully biodegradable water-soluble triboelectric nanogenerator for human physiological monitoring. Nano Energy 2022, 93, 10. [Google Scholar] [CrossRef]
- Yang, Z.; Lin, B.; Zhou, L.J. Recent progress in human body energy harvesting for smart bioelectronic system. Fundam. Res. 2021, 1, 364–382. [Google Scholar]
- Gao, Y.; Wang, Z.L. Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotronics. Nano Lett. 2007, 7, 2499–2505. [Google Scholar] [CrossRef]
- Rao, Y.; Qu, J.; Marinis, T.; Wong, C.P. A precise numerical prediction of effective dielectric constant for polymer-ceramic composite based on effective-medium theory. IEEE Trans. Compon. Packag. Technol. 2000, 23, 680–683. [Google Scholar]
- Li, Y.; Su, X.; Liang, K.; Luo, C.; Li, P.; Hu, J.; Li, G.; Jiang, H.; Wang, K.Y. Multi-layered BTO/PVDF nanogenerator with highly enhanced performance induced by interlaminar electric field. Microelectron. Eng. 2021, 244, 111557. [Google Scholar] [CrossRef]
- Chou, X.J.; Zhu, J.; Qian, S.; Niu, X.S.; Qian, J.C.; Hou, X.J.; Mu, J.L.; Geng, W.P.; Cho, J.D.; He, J.; et al. All-in-one filler-elastomer-based high-performance stretchable piezoelectric nanogenerator for kinetic energy harvesting and self-powered motion monitoring. Nano Energy 2018, 53, 550–558. [Google Scholar] [CrossRef]
- Huang, X.M.; Qin, Q.H.; Wang, X.Q.; Xiang, H.J.; Zheng, J.L.; Lu, Y.; Lv, C.J.; Wu, K.L.; Yan, L.X.; Wang, N.; et al. Piezoelectric Nanogenerator for Highly Sensitive and Synchronous Multi-Stimuli Sensing. ACS Nano 2021, 15, 19783–19792. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.L. Triboelectric Nanogenerators as New Energy Technology for Self-Powered Systems and as Active Mechanical and Chemical Sensors. ACS Nano 2013, 7, 9533–9557. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.L.; Chen, J.; Lin, L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 2015, 8, 2250–2282. [Google Scholar] [CrossRef]
- Chen, Y.; Li, D.; Xu, Y.; Ling, Z.; Nawaz, H.; Chen, S.; Xu, F. Surface-microstructured cellulose films toward sensitive pressure sensors and efficient triboelectric nanogenerator. Int. J. Biol. Macromol. 2022, 208, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Chen, Y.; Jiang, J.; Jiang, J.; Li, J.; Yang, Y.; Liu, Y.; Yang, L.; Tu, X.; Sun, X.; et al. Self-Powered Gyroscope Angle Sensor Based on Resistive Matching Effect of Triboelectric Nanogenerator. Adv. Mater. Technol. 2021, 6, 2100797. [Google Scholar] [CrossRef]
- Lu, X.; Li, H.; Zhang, X.; Gao, B.; Cheng, T. Magnetic-assisted self-powered acceleration sensor for real-time monitoring vehicle operation and collision based on triboelectric nanogenerator. Nano Energy 2022, 96, 107094. [Google Scholar] [CrossRef]
- Wu, Y.; Li, Y.; Zou, Y.; Rao, W.; Gai, Y.; Xue, J.; Wu, L.; Qu, X.; Liu, Y.; Xu, G. A multi-mode triboelectric nanogenerator for energy harvesting and biomedical monitoring. Nano Energy 2022, 92, 106715. [Google Scholar] [CrossRef]
- Liao, J.W.; Zou, Y.; Jiang, D.J.; Liu, Z.Z.; Qu, X.C.; Li, Z.; Liu, R.P.; Fan, Y.B.; Shi, B.J.; Li, Z.; et al. Nestable arched triboelectric nanogenerator for large deflection biomechanical sensing and energy harvesting. Nano Energy 2020, 69, 9. [Google Scholar] [CrossRef]
- Qiu, H.J.; Song, W.Z.; Wang, X.X.; Zhang, J.; Fan, Z.Y.; Yu, M.; Ramakrishna, S.; Long, Y.Z. A calibration-free self-powered sensor for vital sign monitoring and finger tap communication based on wearable triboelectric nanogenerator. Nano Energy 2019, 58, 536–542. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, W.X.; Pradel, K.C.; Zhu, G.; Zhou, Y.S.; Zhang, Y.; Hu, Y.F.; Lin, L.; Wang, Z.L. Pyroelectric Nanogenerators for Harvesting Thermoelectric Energy. Nano Lett. 2012, 12, 2833–2838. [Google Scholar] [CrossRef]
- Lee, J.H.; Ryu, H.; Kim, T.Y.; Kwak, S.S.; Yoon, H.J.; Kim, T.H.; Seung, W.; Kim, S.W. Thermally Induced Strain-Coupled Highly Stretchable and Sensitive Pyroelectric Nanogenerators. Adv. Energy Mater. 2015, 5, 6. [Google Scholar] [CrossRef]
- Yang, Y.; Zhou, Y.; Wu, J.M.; Wang, Z.L. Single micro/nanowire pyroelectric nanogenerators as self-powered temperature sensors. ACS Nano 2012, 6, 8456–8461. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Dai, Y.; Liu, R.; He, X.; Li, S.; Wang, Z.L. Light-triggered pyroelectric nanogenerator based on a pn-junction for self-powered near-infrared photosensing. ACS Nano 2017, 11, 8339–8345. [Google Scholar] [CrossRef] [PubMed]
- Xue, H.; Yang, Q.; Wang, D.Y.; Wang, D.Y.; Luo, W.J.; Wang, W.Q.; Lin, M.S.; Liang, D.L.; Luo, Q.M. A wearable pyroelectric nanogenerator and self-powered breathing sensor. Nano Energy 2017, 38, 147–154. [Google Scholar] [CrossRef]
- Zheng, H.W.; Zi, Y.L.; He, X.; Guo, H.Y.; Lai, Y.C.; Wang, J.; Zhang, S.L.; Wu, C.S.; Cheng, G.; Wang, Z.L. Concurrent Harvesting of Ambient Energy by Hybrid Nanogenerators for Wearable Self-Powered Systems and Active Remote Sensing. Acs Appl. Mater. Interfaces 2018, 10, 14708–14715. [Google Scholar] [CrossRef]
- Singh, R.; Kaur, N.; Singh, M. Bio-compatible bio-fuel cells for medical devices. In Proceedings of the 11th International Conference on Materials, Processing and Characterization (ICMPC), Indore, India, 15–17 December 2020; pp. 242–249. [Google Scholar]
- Wang, C.; Shim, E.; Chang, H.K.; Lee, N.; Kim, H.R.; Park, J. Sustainable and high-power wearable glucose biofuel cell using long-term and high-speed flow in sportswear fabrics. Biosens. Bioelectron. 2020, 169, 11. [Google Scholar] [CrossRef]
- Jeerapan, I.; Sempionatto, J.R.; Pavinatto, A.; You, J.M.; Wang, J. Stretchable biofuel cells as wearable textile-based self-powered sensors. J. Mater. Chem. A 2016, 4, 18342–18353. [Google Scholar] [CrossRef]
- Yin, S.J.; Liu, X.H.; Kaji, T.; Nishina, Y.; Miyake, T. Fiber-crafted biofuel cell bracelet for wearable electronics. Biosens. Bioelectron. 2021, 179, 6. [Google Scholar] [CrossRef]
- Yin, L.; Moon, J.M.; Sempionatto, J.R.; Lin, M.Y.; Cao, M.Z.; Trifonov, A.; Zhang, F.Y.; Lou, Z.Y.; Jeong, J.M.; Lee, S.J.; et al. A passive perspiration biofuel cell: High energy return on investment. Joule 2021, 5, 1888–1904. [Google Scholar] [CrossRef]
- Bandodkar, A.J.; Gutruf, P.; Choi, J.; Lee, K.; Sekine, Y.; Reeder, J.T.; Jeang, W.J.; Aranyosi, A.J.; Lee, S.P.; Model, J.B.; et al. Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat. Sci. Adv. 2019, 5, eaav3294. [Google Scholar] [CrossRef]
- Sun, M.M.; Gu, Y.N.; Pei, X.Y.; Wang, J.J.; Liu, J.; Ma, C.B.; Bai, J.; Zhou, M. A flexible and wearable epidermal ethanol biofuel cell for on-body and real-time bioenergy harvesting from human sweat. Nano Energy 2021, 86, 11. [Google Scholar] [CrossRef]
- Chen, X.H.; Yin, L.; Lv, J.; Gross, A.J.; Le, M.; Gutierrez, N.G.; Li, Y.; Jeerapan, I.; Giroud, F.; Berezovska, A.; et al. Stretchable and Flexible Buckypaper-Based Lactate Biofuel Cell for Wearable Electronics. Adv. Funct. Mater. 2019, 29, 8. [Google Scholar] [CrossRef]
- Yin, S.J.; Liu, X.H.; Kobayashi, Y.; Nishina, Y.; Nakagawa, R.; Yanai, R.; Kimura, K.; Miyake, T. A needle-type biofuel cell using enzyme/mediator/carbon nanotube composite fibers for wearable electronics. Biosens. Bioelectron. 2020, 165, 6. [Google Scholar] [CrossRef] [PubMed]
- Kou, H.Y.; Wang, H.M.; Cheng, R.W.; Liao, Y.J.; Shi, X.; Luo, J.J.; Li, D.; Wang, Z.L. Smart Pillow Based on Flexible and Breathable Triboelectric Nanogenerator Arrays for Head Movement Monitoring during Sleep. Acs Appl. Mater. Interfaces 2022, 14, 23998–24007. [Google Scholar] [CrossRef]
- Du, M.X.; Cao, Y.; Qu, X.C.; Xue, J.T.; Zhang, W.Y.; Pu, X.; Shi, B.J.; Li, Z. Hybrid Nanogenerator for Biomechanical Energy Harvesting, Motion State Detection, and Pulse Sensing. Adv. Mater. Technol. 2022, 7, 8. [Google Scholar] [CrossRef]
- Li, H.; Chang, T.R.; Gai, Y.S.; Liang, K.; Jiao, Y.L.; Li, D.F.; Jiang, X.R.; Wang, Y.; Huang, X.C.; Wu, H.; et al. Human joint enabled flexible self-sustainable sweat sensors. Nano Energy 2022, 92, 12. [Google Scholar] [CrossRef]
- Tan, P.C.; Xi, Y.; Chao, S.Y.; Jiang, D.J.; Liu, Z.; Fan, Y.B.; Li, Z. An Artificial Intelligence-Enhanced Blood Pressure Monitor Wristband Based on Piezoelectric Nanogenerator. Biosensors 2022, 12, 234. [Google Scholar] [CrossRef]
- Yu, S.G.; Zhang, H.Y.; Zhang, J.; Hu, Z.Y. High-sensitivity RGO-TiO2 humidity sensor driven by triboelectric nanogenerators for non-contact monitoring of human respiration. J. Alloy. Compd. 2023, 935, 10. [Google Scholar] [CrossRef]
- Sun, Q.Z.; Wang, L.; Ren, G.Z.; Zhang, L.R.; Sheng, H.X.; Zhu, Y.M.; Wang, H.C.; Lu, G.; Yu, H.D.; Huang, W. Smart band-aid: Multifunctional and wearable electronic device for self-powered motion monitoring and human-machine interaction. Nano Energy 2022, 92, 10. [Google Scholar] [CrossRef]
- Xue, J.T.; Zou, Y.; Deng, Y.L.; Li, Z. Bioinspired sensor system for health care and human-machine interaction. EcoMat 2022, 4, 28. [Google Scholar] [CrossRef]
- Zou, Y.; Gai, Y.; Tan, P.; Jiang, D.; Qu, X.; Xue, J.; Ouyang, H.; Shi, B.; Li, L.; Luo, D. Stretchable graded multichannel self-powered respiratory sensor inspired by shark gill. Fundam. Res. 2022, 2, 619–628. [Google Scholar] [CrossRef]
- Ning, C.; Cheng, R.W.; Jiang, Y.; Sheng, F.F.; Yi, J.; Shen, S.; Zhang, Y.H.; Peng, X.; Dong, K.; Wang, Z.L. Helical Fiber Strain Sensors Based on Triboelectric Nanogenerators for Self-Powered Human Respiratory Monitoring. Acs Nano 2022, 16, 2811–2821. [Google Scholar] [CrossRef] [PubMed]
- Amjadi, M.; Kyung, K.U.; Park, I.; Sitti, M. Stretchable, Skin-Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review. Adv. Funct. Mater. 2016, 26, 1678–1698. [Google Scholar] [CrossRef]
- Kim, J.; Campbell, A.S.; De Avila, B.E.F.; Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 2019, 37, 389–406. [Google Scholar] [CrossRef]
- Li, Z.; Zheng, Q.; Wang, Z.L.; Li, Z. Nanogenerator-Based Self-Powered Sensors for Wearable and Implantable Electronics. Research 2020, 2020, 25. [Google Scholar] [CrossRef]
- Lim, H.R.; Kim, H.S.; Qazi, R.; Kwon, Y.T.; Jeong, J.W.; Yeo, W.H. Advanced Soft Materials, Sensor Integrations, and Applications of Wearable Flexible Hybrid Electronics in Healthcare, Energy, and Environment. Adv. Mater. 2020, 32, 43. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, C.; Sun, X.; Huang, W.J. Current development of materials science and engineering towards epidermal sensors. Prog. Mater. Sci. 2022, 128, 20. [Google Scholar] [CrossRef]
- Liu, X.; Cai, Z.; Gao, N.; Ye, S.; He, Y. Controllable Preparation of (200) Facets Preferential Oriented Silver Nanowires for Non-invasive Detection of Glucose in Human Sweat. Smart Mater. Med. 2021, 2, 150–157. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, Z.; Wu, L.; Yuan, J.; Xu, G.; Wu, Y. Self-Powered Biosensors for Monitoring Human Physiological Changes. Biosensors 2023, 13, 236. https://doi.org/10.3390/bios13020236
Xue Z, Wu L, Yuan J, Xu G, Wu Y. Self-Powered Biosensors for Monitoring Human Physiological Changes. Biosensors. 2023; 13(2):236. https://doi.org/10.3390/bios13020236
Chicago/Turabian StyleXue, Ziao, Li Wu, Junlin Yuan, Guodong Xu, and Yuxiang Wu. 2023. "Self-Powered Biosensors for Monitoring Human Physiological Changes" Biosensors 13, no. 2: 236. https://doi.org/10.3390/bios13020236
APA StyleXue, Z., Wu, L., Yuan, J., Xu, G., & Wu, Y. (2023). Self-Powered Biosensors for Monitoring Human Physiological Changes. Biosensors, 13(2), 236. https://doi.org/10.3390/bios13020236