Single Printing Step Prussian Blue Bulk-Modified Transducers for Oxidase-Based Biosensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Objects of Analysis
2.2. Screen-Printed Electrode Fabrication
2.3. Prussian Blue Nanoparticles Preparation
2.4. Biosensor Preparation
2.5. Electrochemical Measurements
2.6. Control Serum Analysis
3. Results
3.1. Bulk-Modified Hydrogen Peroxide Sensor
3.2. Biosensors Based on Bulk-Modified Sensors
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Niethammer, P.; Grabher, C.; Look, A.T.; Mitchison, T.J. A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature 2009, 459, 996–999. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Cai, S.; Ren, Q.Q.; Wen, W.; Zhao, Y.D. Recent advances in electrochemical sensing for hydrogen peroxide: A review. Analyst 2012, 137, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Hawe, A.; Wiggenhorn, M.; van de Weert, M.; Garbe, J.H.; Mahler, H.-C.; Jiskoot, W. Forced Degradation of Therapeutic Proteins. J. Pharm. Sci. 2012, 101, 895–913. [Google Scholar] [CrossRef] [PubMed]
- Seresirikachorn, K.; Phoophiboon, V.; Chobarporn, T.; Tiankanon, K.; Aeumjaturapat, S.; Chusakul, S.; Snidvongs, K. Decontamination and reuse of surgical masks and N95 filtering facepiece respirators during the COVID-19 pandemic: A systematic review. Infect. Control Hosp. Epidemiol. 2021, 42, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Kumkrong, P.; Scoles, L.; Brunet, Y.; Baker, S. Determination of hydrogen peroxide on N95 masks after sanitization using a colorimetric method. Methodsx 2021, 8, 101485. [Google Scholar] [CrossRef]
- Ivanova, A.S.; Merkuleva, A.D.; Andreev, S.V.; Sakharov, K.A. Method for determination of hydrogen peroxide in adulterated milk using high performance liquid chromatography. Food Chem. 2019, 283, 431–436. [Google Scholar] [CrossRef]
- Liu, S.G.; Liu, S.; Yang, S.; Zhao, Q.; Deng, J.; Shi, X. A facile fluorescent sensing strategy for determination of hydrogen peroxide in foods using a nanohybrid of nanoceria and carbon dots based on the target-promoted electron transfer. Sens. Actuators B Chem. 2022, 356, 131325. [Google Scholar] [CrossRef]
- Xing, L.; Zhang, W.; Fu, L.; Lorenzo, J.M.; Hao, Y. Fabrication and application of electrochemical sensor for analyzing hydrogen peroxide in food system and biological samples. Food Chem. 2022, 385, 132555. [Google Scholar] [CrossRef]
- Karyakin, A.A. Advances of Prussian blue and its analogues in (bio)sensors. Curr. Opin. Electrochem. 2017, 5, 92–98. [Google Scholar] [CrossRef]
- Piermarini, S.; Migliorelli, D.; Volpe, G.; Massoud, R.; Pierantozzi, A.; Cortese, C.; Palleschi, G. Uricase biosensor based on a screen-printed electrode modified with Prussian blue for detection of uric acid in human blood serum. Sens. Actuators B Chem. 2013, 179, 170–174. [Google Scholar] [CrossRef]
- Gurban, A.-M.; Noguer, T.; Bala, C.; Rotariu, L. Improvement of NADH detection using Prussian blue modified screen-printed electrodes and different strategies of immobilisation. Sens. Actuators B Chem. 2008, 128, 536–544. [Google Scholar] [CrossRef]
- Harrad, L.E.; Amine, A. Amperometric biosensor based on prussian blue and nafion modified screen-printed electrode for screening of potential xanthine oxidase inhibitors from medicinal plants. Enzyme Microb. Technol. 2016, 85, 57–63. [Google Scholar] [CrossRef]
- Yashina, E.I.; Borisova, A.V.; Karyakina, E.E.; Shchegolikhina, O.I.; Vagin, M.Y.; Sakharov, D.A.; Tonevitsky, A.G.; Karyakin, A.A. Sol−Gel Immobilization of Lactate Oxidase from Organic Solvent: Toward the Advanced Lactate Biosensor. Anal. Chem. 2010, 82, 1601–1604. [Google Scholar] [CrossRef]
- Khumngern, S.; Jirakunakorn, R.; Thavarungkul, P.; Kanatharana, P.; Numnuam, A. A highly sensitive flow injection amperometric glucose biosensor using a gold nanoparticles/polytyramine/Prussian blue modified screen-printed carbon electrode. Bioelectrochemistry 2021, 138, 107718. [Google Scholar] [CrossRef]
- Ulasova, E.A.; Micheli, L.; Vasii, L.; Moscone, D.; Palleschi, G.; Vdovichev, S.V.; Zorin, A.V.; Krutovertsev, S.A.; Karyakina, E.E.; Karyakin, A.A. Flow-Injection Analysis of Residual Glucose in Wines Using a Semiautomatic Analyzer Equipped with a Prussian Blue-Based Biosensor. Electroanalysis 2003, 15, 447–451. [Google Scholar] [CrossRef]
- Komkova, M.A.; Karyakina, E.E.; Karyakin, A.A. Catalytically Synthesized Prussian Blue Nanoparticles Defeating Natural Enzyme Peroxidase. J. Am. Chem. Soc. 2018, 140, 11302–11307. [Google Scholar] [CrossRef]
- Komkova, M.A.; Karyakin, A.A. Prussian blue: From advanced electrocatalyst to nanozymes defeating natural enzyme. Microchim. Acta 2022, 189, 290. [Google Scholar] [CrossRef]
- Komkova, M.A.; Ibragimova, O.A.; Karyakina, E.E.; Karyakin, A.A. Catalytic Pathway of Nanozyme “Artificial Peroxidase” with 100-Fold Greater Bimolecular Rate Constants Compared to Those of the Enzyme. J. Phys. Chem. Lett. 2021, 12, 171–176. [Google Scholar] [CrossRef]
- Komkova, M.A.; Zarochintsev, A.A.; Karyakin, A.A. Nanozymes ‘artificial peroxidase’ in reduction and detection of organic peroxides. J. Electroanal. Chem. 2022, 904, 115902. [Google Scholar] [CrossRef]
- Banerjee, S.; Sarkar, P.; Turner, A.P. Amperometric biosensor based on Prussian Blue nanoparticle-modified screen-printed electrode for estimation of glucose-6-phosphate. Anal. Biochem. 2013, 439, 194–200. [Google Scholar] [CrossRef]
- Vokhmyanina, D.V.; Andreeva, K.D.; Komkova, M.A.; Karyakina, E.E.; Karyakin, A.A. ‘Artificial peroxidase’ nanozyme—Enzyme based lactate biosensor. Talanta 2020, 208, 120393. [Google Scholar] [CrossRef] [PubMed]
- Aller-Pellitero, M.; Fremeau, J.; Villa, R.; Guirado, G.; Lakard, B.; Hihn, J.-Y.; del Campo, F.J. Electrochromic biosensors based on screen-printed Prussian Blue electrodes. Sens. Actuators B Chem. 2019, 290, 591–597. [Google Scholar] [CrossRef]
- Cinti, S.; Arduini, F.; Moscone, D.; Palleschi, G.; Killard, A.J. Development of a Hydrogen Peroxide Sensor Based on Screen-Printed Electrodes Modified with Inkjet-Printed Prussian Blue Nanoparticles. Sensors 2014, 14, 14222–14234. [Google Scholar] [CrossRef] [PubMed]
- Cinti, S.; Arduini, F.; Vellucci, G.; Cacciotti, I.; Nanni, F.; Moscone, D. Carbon black assisted tailoring of Prussian Blue nanoparticles to tune sensitivity and detection limit towards H2O2 by using screen-printed electrode. Electrochem. Commun. 2014, 47, 63–66. [Google Scholar] [CrossRef]
- Cinti, S.; Arduini, F.; Moscone, D.; Palleschi, G.; Gonzalez-Macia, L.; Killard, A.J. Cholesterol biosensor based on inkjet-printed Prussian blue nanoparticle-modified screen-printed electrodes. Sens. Actuators B Chem. 2015, 221, 187–190. [Google Scholar] [CrossRef]
- da Cruz, F.S.; de Souza Paula, F.; Franco, D.L.; dos Santos, W.T.P.; Ferreira, L.F. Electrochemical detection of uric acid using graphite screen-printed electrodes modified with Prussian blue/poly(4-aminosalicylic acid)/Uricase. J. Electroanal. Chem. 2017, 806, 172–179. [Google Scholar] [CrossRef]
- Hirst, N.; Hazelwood, L.; Jayne, D.; Millner, P. An amperometric lactate biosensor using H2O2 reduction via a Prussian Blue impregnated poly(ethyleneimine) surface on screen printed carbon electrodes to detect anastomotic leak and sepsis. Sens. Actuators B Chem. 2013, 186, 674–680. [Google Scholar] [CrossRef]
- Sekar, N.C.; Shaegh, S.A.M.; Gary, N.S.H.; Liya, G.; Ngin, T.S. A paper-based amperometric glucose biosensor developed with Prussian Blue-modified screen-printed electrodes. Sens. Actuators B Chem. 2014, 204, 414–420. [Google Scholar] [CrossRef]
- O’Halloran, M.P.; Pravda, M.; Guilbault, G.G. Prussian Blue bulk modified screen-printed electrodes for H2O2 detection and for biosensors. Talanta 2001, 55, 605–611. [Google Scholar] [CrossRef]
- Borisova, A.V.; Karyakina, E.E.; Cosnier, S.; Karyakin, A. Current-Free Deposition of Prussian Blue with Organic Polymers: Towards Improved Stability and Mass Production of the Advanced Hydrogen Peroxide Transducer. Electroanalysis 2009, 21, 409–414. [Google Scholar] [CrossRef]
- Karyakin, A.A.; Kotel’Nikova, E.A.; Lukachova, L.V.; Karyakina, E.E.; Wang, J. Optimal Environment for Glucose Oxidase in Perfluorosulfonated Ionomer Membranes: Improvement of First-Generation Biosensors. Anal. Chem. 2002, 74, 1597–1603. [Google Scholar] [CrossRef]
- Pribil, M.M.; Cortés-Salazar, F.; Andreyev, E.A.; Lesch, A.; Karyakina, E.E.; Voronin, O.G.; Girault, H.H.; Karyakin, A.A. Rapid optimization of a lactate biosensor design using soft probes scanning electrochemical microscopy. J. Electroanal. Chem. 2014, 731, 112–118. [Google Scholar] [CrossRef]
- Komkova, M.A.; Karpova, E.V.; Sukhorukov, G.A.; Sadovnikov, A.A.; Karyakin, A.A. Estimation of continuity of electroactive inorganic films based on apparent anti-Ohmic trend in their charge transfer resistance. Electrochim. Acta 2016, 219, 588–591. [Google Scholar] [CrossRef]
- Komkova, M.A.; Zarochintsev, A.A.; Karyakina, E.E.; Karyakin, A.A. Electrochemical and sensing properties of Prussian Blue based nanozymes “artificial peroxidase”. J. Electroanal. Chem. 2020, 872, 114048. [Google Scholar] [CrossRef]
PBNP Concentration, mg/g | H2O2 Sensor | Glucose Biosensor | Lactate Biosensor | |||
---|---|---|---|---|---|---|
S, mA·M−1·cm−2 | LOD, M | S, mA·M−1·cm−2 | LOD, M | S, mA·M−1·cm−2 | LOD, M | |
0 | 0.030 ± 0.005 | 2.8 × 10−5 | – | – | – | – |
0.14 | 3.0 ± 0.5 | 9.1 × 10−7 | 9 ± 2 | 2.8 × 10−6 | 25 ± 6 | 8.0 × 10−7 |
0.22 | 3.1 ± 0.6 | 6.0 × 10−7 | 10 ± 2 | 1.6 × 10−6 | 23 ± 2 | 8.8 × 10−7 |
0.43 | 8.9 ± 0.4 | 3.3 × 10−7 | 16.8 ± 0.9 | 1.5 × 10−6 | 46 ± 4 | 6.0 × 10−7 |
0.86 | 21 ± 2 | 2.3 × 10−7 | 24 ± 6 | 1.3 × 10−6 | 89 ± 6 | 8.5 × 10−7 |
2.15 | 73 ± 4 | 2.2 × 10−7 | 40 ± 5 | 1.7 × 10−6 | 150 ± 10 | 5.5 × 10−7 |
surface-modified electrode | 600 ± 20 | 8.9 × 10−7 | 31 ± 1 | 8.3 × 10−6 | 200 ± 30 | 1.3 × 10−6 |
Pretreatment | Sensitivity, mA·M−1·cm−2 |
---|---|
No pretreatment | 73 ± 4 |
Isopropanol–water mixture (9:1) | 160 ± 20 |
PFSI solution in isopropanol–water mixture | 254 ± 6 |
APTES solution in isopropanol–water mixture | 296 ± 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vokhmyanina, D.; Daboss, E.; Sharapova, O.; Mogilnikova, M.; Karyakin, A. Single Printing Step Prussian Blue Bulk-Modified Transducers for Oxidase-Based Biosensors. Biosensors 2023, 13, 250. https://doi.org/10.3390/bios13020250
Vokhmyanina D, Daboss E, Sharapova O, Mogilnikova M, Karyakin A. Single Printing Step Prussian Blue Bulk-Modified Transducers for Oxidase-Based Biosensors. Biosensors. 2023; 13(2):250. https://doi.org/10.3390/bios13020250
Chicago/Turabian StyleVokhmyanina, Darya, Elena Daboss, Olesya Sharapova, Mariia Mogilnikova, and Arkady Karyakin. 2023. "Single Printing Step Prussian Blue Bulk-Modified Transducers for Oxidase-Based Biosensors" Biosensors 13, no. 2: 250. https://doi.org/10.3390/bios13020250
APA StyleVokhmyanina, D., Daboss, E., Sharapova, O., Mogilnikova, M., & Karyakin, A. (2023). Single Printing Step Prussian Blue Bulk-Modified Transducers for Oxidase-Based Biosensors. Biosensors, 13(2), 250. https://doi.org/10.3390/bios13020250