Diboronic-Acid-Based Electrochemical Sensor for Enzyme-Free Selective and Sensitive Glucose Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Synthesis of a Diboronic Acid Derivative
2.2.2. Synthesis of di-tert-butyl ((((2-acetylanthracene-9,10-diyl) bis(methylene)) bis (azanediyl )) bis(hexane-6,1-diyl))dicarbamate (Compound 5)
2.2.3. Synthesis of (((((2-acetylanthracene-9,10-diyl) bis(methylene)) bis((6-((tert-butoxycarbonyl) amino) hexyl) azanediyl)) bis(methylene)) bis(4-(trifluoromethyl)-2,1-phenylene)) diboronic acid (Compound 6)
2.2.4. Synthesis of (((((2-acetylanthracene-9,10-diyl) bis(methylene)) bis((6-aminohexyl) azaned -iyl )) bis(methylene))bis(4-(trifluoromethyl)-2,1-phenylene))diboronic acid (Compound 7)
2.3. Fabrication of Diboronic-Acid-Derivative-Immobilized Electrode
2.4. Electrochemical Measurement of Fabricated Electrodes
3. Results and Discussion
3.1. Electrochemical Analysis of DA-Immobilized Electrodes
3.2. Electrochemical Detection of Glucose
3.3. Selectivity for Electrochemical Detection of Glucose
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IDF Diabetes Atlas, 10th ed. 2021. Available online: https://diabetesatlas.org/ (accessed on 21 November 2022).
- Reno, C.; Skinner, A.; Bayles, J.; Chen, Y.; Daphna-Iken, D.; Fisher, S. Severe hypoglycemia-induced sudden death is mediated by both cardiac arrhythmias and seizures. Am. J. Physiol. Endocrinol. Metab. 2018, 315, E240. [Google Scholar] [PubMed]
- Cappon, G.; Vettoretti, M.; Sparacino, G.; Facchinetti, A. Continuous glucose monitoring sensors for diabetes management: A Review of Technologies and Applications. Diabetes Metab. J. 2019, 43, 383. [Google Scholar] [CrossRef] [PubMed]
- Bandodkar, A.; Jia, W.; Yardımcı, C.; Wang, X.; Ramirez, J.; Wang, J. Tattoo-based noninvasive glucose monitoring: A proof-of-concept study. Anal. Chem. 2014, 87, 394. [Google Scholar] [PubMed]
- Martín, A.; Kim, J.; Kurniawan, J.; Sempionatto, J.; Moreto, J.; Tang, G.; Campbell, A.; Shin, A.; Lee, M.Y.; Liu, X.; et al. Epidermal microfluidic electrochemical detection system: Enhanced sweat sampling and metabolite detection. ACS Sens. 2017, 2, 1860. [Google Scholar]
- Yao, H.; Shum, A.; Cowan, M.; Lähdesmäki, I.; Parviz, B. A contact lens with embedded sensor for monitoring tear glucose level. Biosens. Bioelectron. 2011, 26, 3290. [Google Scholar] [PubMed]
- Valdés-Ramírez, G.; Li, Y.; Kim, J.; Jia, W.; Bandodkar, A.; Nuñez-Flores, R.; Miller, P.R.; Wu, S.Y.; Narayan, R.; Windmiller, J.R.; et al. Microneedle-based self-powered glucose sensor. Electrochem. Commun. 2014, 47, 58. [Google Scholar] [CrossRef]
- Brouzgou, A.; Tsiakaras, P. Electrocatalysts for glucose electrooxidation reaction: A Review. Top. Catal. 2015, 28, 1311. [Google Scholar]
- Alsunaidi, B.; Althobaiti, M.; Tamal, M.; Albaker, W.; Al-Naib, I. A review of non-invasive optical systems for continuous blood glucose monitoring. Sensors 2021, 21, 6820. [Google Scholar] [CrossRef]
- Colvin, A.; Jiang, H. Increased in vivo stability and functional lifetime of an implantable glucose sensor through platinum catalysis. J. Biomed. Mater. Res. A. 2012, 101A, 1274. [Google Scholar]
- Colvin, A.; Mortellaro, M.; Modzelewska, A. Oxidation Resistant Indicator Molecules. U.S. Patent 7,851,225 B2, 14 December 2010. [Google Scholar]
- Lacina, K.; Skládal, P.; James, T. Boronic acids for sensing and other applications-a mini-review of papers. Chem. Cent. J. 2014, 18, 60. [Google Scholar]
- Li, M.; Zhu, W.; Marken, F.; James, T. Electrochemical sensing using boronic acids. Chem Commun. 2015, 51, 14562. [Google Scholar] [CrossRef]
- Wang, H.-C.; Zhou, H.; Chen, B.; Mendes, P.; Fossey, J.; James, T.; Long, Y.-T. A bis-boronic acid modified electrode for the sensitive and selective determination of glucose concentrations. Analyst 2013, 138, 7146. [Google Scholar] [CrossRef] [PubMed]
- FDA. Self-Monitoring Blood Glucose Test Systems for Over-the-Counter Use: Guidance for Industry and Food and Drug Administration Staff; FDA: Silver Spring, MD, USA, 2016. [Google Scholar]
- Chen, H.; Guo, H.; Wang, X.; Qin, W. An enzyme-free glucose sensor based on a difunctional diboronic acid for molecular recognition and potentiometric transduction. RSC Adv. 2015, 5, 13805. [Google Scholar]
- Choi, H.; Song, I.; Park, C.; Yim, H.; Kim, J. Acetylated trifluoromethyl diboronic acid anthracene with a large stokes shift and long excitation wavelength as a glucose-selective probe. Appl. Sci. 2022, 12, 2782. [Google Scholar] [CrossRef]
- Fischer, L.; Tenje, M.; Heiskanen, A.; Masuda, N.; Castillo, J.; Bentien, A.; Émneus, J.; Jakobsen, M.H.; Boisen, A. Gold cleaning methods for electrochemical detection applications. Microelectron. Eng. 2009, 86, 1282. [Google Scholar]
- Joe, C.; Lee, B.; Kim, S.; Ko, Y.; Gu, M. Aptamer duo-based portable electrochemical biosensors for early diagnosis of periodontal disease. Biosens. Bioelectron. 2022, 199, 113884. [Google Scholar] [PubMed]
- Pei, R.; Cheng, Z.; Wang, E.; Yang, X. Amplification of antigen–antibody interactions based on biotin labeled protein–streptavidin network complex using impedance spectroscopy. Biosens. Bioelectron. 2001, 16, 355. [Google Scholar] [CrossRef]
- James, T.; Sandanayake, K.; Iguchi, R.; Shinkai, S. Novel saccharide-photoinduced electron transfer sensors based on the interaction of boronic acid and amine. J. Am. Chem. Soc. 1995, 117, 8982. [Google Scholar]
- Zou, X.; Wei, S.; Badieyan, S.; Schroeder, M.; Jasensky, J.; Brooks, C.; Marsh, N.; Chen, Z. Investigating the effect of two-point surface attachment on enzyme stability and activity. J. Am. Chem. Soc. 2018, 140, 16560. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, R.; Yue, X.; Zhou, Z.; Bai, L.; Tong, Y.; Wang, B.; Gu, D.; Wang, S.; Qiao, Y.; et al. Synthesis of diboronic acid-based fluorescent probes for the sensitive detection of glucose in aqueous media and biological matrices. ACS Sens. 2021, 6, 1543. [Google Scholar] [CrossRef]
- Larkin, J.; Frimat, K.; Fyles, T.; Flower, S.; James, T. Boronic acid based photoinduced electron transfer (PET) fluorescence sensors for Saccharides. New J. Chem. 2010, 34, 2922. [Google Scholar]
- Johnson, A.; Song, Q.; Ko, F.; Bueno, P.; Davis, J. Sensitive affimer and antibody based impedimetric label-free assays for C-reactive protein. Anal. Chem. 2012, 84, 6553. [Google Scholar] [PubMed]
- Bryan, T.; Luo, X.; Forsgren, L.; Morozova-Roche, L.; Davis, J. The robust electrochemical detection of a Parkinson's disease marker in whole blood sera. Chem. Sci. 2012, 3, 3468. [Google Scholar]
- Canbaz, M.; Simşek, C.; Sezgintürk, M. Electrochemical biosensor based on self-assembled monolayers modified with gold nanoparticles for detection of HER-3. Anal. Chim. Acta 2014, 814, 31. [Google Scholar] [PubMed]
- Jarocka, U.; Sawicka, R.; Góra-Sochacka, A.; Sirko, A.; Zagórski-Ostoja, W.; Radecki, J.; Radecka, H. Electrochemical immunosensor for detection of antibodies against influenza A virus H5N1 in hen serum. Biosens. Bioelectron. 2014, 55, 301. [Google Scholar] [PubMed]
- Moyer, J.; Wilson, D.; Finkelshtein, I.; Wong, B.; Potts, R. Correlation between sweat glucose and blood glucose in subjects with diabetes. Diabetes Technol. Ther. 2012, 14, 398. [Google Scholar] [CrossRef] [PubMed]
- Thriveni, G.; Ghosh, K. Advancement and challenges of biosensing using field effect transistors. Biosensors 2022, 12, 64. [Google Scholar]
- Lerner, M.; Kybert, N.; Mendoza, R.; Villechenon, R.; Lopez, M.B.; Johnson, A.C. Scalable, non-invasive glucose sensor based on boronic acid functionalized carbon nanotube transistors. Appl. Phys. Lett. 2013, 102, 183113. [Google Scholar]
- Langendam, M.; Luijf, Y.; Hooft, L.; DeVries, J.; Mudde, A.; Scholten, R. Continuous glucose monitoring systems for type 1 diabetes mellitus. Cochrane Database Sys. Rev. 2012, 1, CD008101. [Google Scholar] [CrossRef]
- National Institute for Health and Care Excellence. Diabetes (Type 1 and Type 2) in Children and Young People: Diagnosis and Management; National Institute for Health and Care Excellence: London, UK, 2015. [Google Scholar]
- Liu, Y.; Deng, C.; Tang, L.; Qin, A.; Hu, R.; Sun, J.; Tang, B.Z. Specific detection of d-glucose by a tetraphenylethene-based fluorescent sensor. J. Am. Chem. Soc. 2010, 133, 660. [Google Scholar] [CrossRef]
- Hwang, J.; Johnson, A.; Cline, G.; Belfort-DeAguiar, R.; Snegovskikh, D.; Han, C.; Sherwin, R. Fructose levels are markedly elevated in cerebrospinal fluid compared to plasma in pregnant women. PLoS ONE 2015, 10, e0128582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.-H.; Choi, H.; Park, C.-S.; Yim, H.-S.; Kim, D.; Lee, S.; Lee, Y. Diboronic-Acid-Based Electrochemical Sensor for Enzyme-Free Selective and Sensitive Glucose Detection. Biosensors 2023, 13, 248. https://doi.org/10.3390/bios13020248
Kim J-H, Choi H, Park C-S, Yim H-S, Kim D, Lee S, Lee Y. Diboronic-Acid-Based Electrochemical Sensor for Enzyme-Free Selective and Sensitive Glucose Detection. Biosensors. 2023; 13(2):248. https://doi.org/10.3390/bios13020248
Chicago/Turabian StyleKim, Joong-Hyun, Hongsik Choi, Chul-Soon Park, Heung-Seop Yim, Dongguk Kim, Sungmin Lee, and Yeonkeong Lee. 2023. "Diboronic-Acid-Based Electrochemical Sensor for Enzyme-Free Selective and Sensitive Glucose Detection" Biosensors 13, no. 2: 248. https://doi.org/10.3390/bios13020248
APA StyleKim, J. -H., Choi, H., Park, C. -S., Yim, H. -S., Kim, D., Lee, S., & Lee, Y. (2023). Diboronic-Acid-Based Electrochemical Sensor for Enzyme-Free Selective and Sensitive Glucose Detection. Biosensors, 13(2), 248. https://doi.org/10.3390/bios13020248