Current Advances in Nanotechnology for the Next Generation of Sequencing (NGS)
Abstract
:1. Introduction
2. Current Technologies towards the Next Generation of Sequencing
3. Fluorescence Technique and Nanotechnology for Sequencing
4. Enhanced Techniques and Methods for Sequencing and Genotyping
5. Advances and Perspectives from Nanotechnology towards NGS
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hermanson, G.T. Bioconjugate Techniques, 2nd ed.; Pierce Biotechnology, ThermoFischer Scientific: Rockford, IL, USA, 2008. [Google Scholar]
- Nguyen, H.L.; Nam Nguyen, H.; Hai Nguyen, H.; Quynh Luu, M.; Hieu Nguyen, M. Nanoparticles: Synthesis and applications in life science and environmental technology. Adv. Nat. Sci. Nanosci. Nanotechnol. 2015, 6, 015008. [Google Scholar] [CrossRef]
- Hodson, R. Precision Medicine. Nature 2016, 537, s49. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, T.; Gao, J. Biocompatible Iron Oxide Nanoparticles for Targeted Cancer Gene Therapy: A Review. Nanomaterials 2022, 12, 3323. [Google Scholar] [CrossRef]
- He, W.; Ma, G.; Shen, Q.; Tang, Z. Engineering Gold Nanostructures for Cancer Treatment: Spherical Nanoparticles, Nanorods, and Atomically Precise Nanoclusters. Nanomaterials 2022, 12, 1738. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Y.; Chen, Z.; Sun, L.; Zhao, Y. Anisotropic structural color particles from colloidal phase separation. Sci. Adv. 2020, 6, eaay1438. [Google Scholar] [CrossRef]
- Akbay, N.; Ray, K.; Chowdhury, M.H.; Lakowicz, J.R. Plasmon-controlled fluorescence and single DNA strand sequenching. Proc. SPIE 2012, 8234, 82340M. [Google Scholar]
- Yu, Y.; Xiao, T.-H.; Wu, Y.; Li, W.; Zeng, Q.-G.; Long, L.; Lic, Z.-Y. Roadmap for single-molecule surface-enhanced Raman spectroscopy. Adv. Photonics 2020, 2, 014002–014020. [Google Scholar] [CrossRef]
- Gomez Palacios, L.R.; Bracamonte, A.G. Development of Nano-, Microdevices for the next generation of Biotechnology, Wearables and miniaturized Instrumentation. RSC Adv. 2022, 12, 12806–12822. [Google Scholar] [CrossRef] [PubMed]
- Bracamonte, A.G. Gold nanoparticles chemical surface modifications as versatile Nanoplatform strategy for fundamental Research towards Nanotechnology and further applications. Nanosci. Nanotechnol. Open Access 2022, 1, 1004. [Google Scholar]
- Habuchi, S.; Ando, R.; Dedecker, P.; Verheijen, W.; Mizuno, H.; Miyawaki, A.; Hofkens, J. Reversible single-molecule photoswitching in the GFP-like fluorescent protein Dronpa. PNAS 2005, 102, 9511–9516. [Google Scholar] [CrossRef]
- Nair, R.V.; Jian Yi, P.; Padmanabhan, P.; Gulyas, B.; Murukeshan, V.M. Au nano-urchins enabled localized surface plasmon resonance sensing of beta amyloid Fibrillation. Nanoscale Adv. 2020, 2, 2693–2698. [Google Scholar] [CrossRef] [PubMed]
- Rajil, N.; Sokolov, A.; Yi, Z.; Adams, G.; Agarwal, G.; Belousov, V.; Brick, R.; Chapin, K.; Cirillo, J.; Deckert, V.; et al. A fiber optic–nanophotonic approach to the detection of antibodies and viral particles of COVID-19. Nanophotonics 2021, 10, 235–246. [Google Scholar] [CrossRef]
- Demming, A. DNA sequencing: Nanotechnology unravels the code for life. Nanotechnol. Editor. Lett. 2015, 26, 310201. [Google Scholar] [CrossRef]
- Voelkerding, K.V.; Dames, S.A.; Durtschi, J.D. Next-generation sequencing: From basic research to diagnostics. Clin. Chem. 2009, 55, 641–658. [Google Scholar] [CrossRef]
- Gomez Palacios, L.R.; Bracamonte, A.G. Generation of Bioimaging towards design of hybrid micro-machines and micro-swimmers. J. Chem. Res. Adv. JCRA 2022, 3, 22–27. [Google Scholar]
- Gomez Palacios, L.R.; Martinez, S.; Tettamanti, C.; Quinteros, D.; Bracamonte, A.G. Nano-chemistry and Bio-conjugation with perspectives on the design of Nano-Immune platforms, vaccines and new combinatorial treatments. J. Vaccines Immunol. 2021, 7, 049–056. [Google Scholar]
- Børresen, A.-L. Mismatch detection using heteroduplex analysis. Chapter 7: Unit 7.3. Curr. Protoc. Hum. Genet 2002, 1, 1–25. [Google Scholar] [CrossRef]
- Taberlet, P.; Griffin, S.; Goossens, B.; Questiau, S.; Manceau, V.; Escaravage, N.; Waits, L.P.; Bouvet, J. Reliable genotyping of samples with very low DNA quantities using PCR. Nucleic Acids Res. 1996, 24, 3189–3194. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Ho, C.-M. Aptamer-Based Optical Probes with Separated Molecular Recognition and Signal Transduction Modules. J. Am. Chem. Soc. 2008, 130, 2380–2381. [Google Scholar] [CrossRef] [PubMed]
- Menking, D.; Emanuel, P.A.; Valdes, P.P.; Kracke, S.K. Rapid cleanup of bacterial DNA from field samples. Resour. Conserv. Recycl. 1999, 27, 179–186. [Google Scholar] [CrossRef]
- Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. Isolating, Cloning, and Sequencing DNA, Molecular Biology of the Cell, 4th ed.; Garland Science: New York, NY, USA, 2002. [Google Scholar]
- Mullis, K.B. Target amplification for DNA analysis by the polymerase chain reaction. Ann. Biol. Clin. Paris 1990, 48, 579–582. [Google Scholar] [PubMed]
- Singh, R.; Feltmeyer, A.; Saiapina, O.; Juzwik, J.; Arenz, B.; Abbas, A. Rapid and PCR-free DNA Detection by Nanoaggregation-Enhanced Chemiluminescence, Scientific Reports. Springer Nat. 2017, 7, 1401. [Google Scholar]
- Drmanac, S.; Callow, M.; Chen, L.; Zhou, P.; Eckhardt, L.; Xu, C.; Gong, M.; Gablenz, S.; Rajagopal, J.; Yang, Q.; et al. CoolMPSTM: Advanced massively parallel sequencing using antibodies specific to each natural nucleobase. bioRxiv 2020, 1–19. [Google Scholar] [CrossRef]
- Heiss, M.; Kellner, S. Detection of nucleic acid modifications by chemical reagents. RNA Biol. 2017, 14, 1166–1174. [Google Scholar] [CrossRef]
- Ramachandran, K.; Dauodi, K.; Columbus, S.; Tlili, A.; Gaidi, M. Dual phenomenon of surface plasmon and laser optics induced EM enhancement for rapid DNA detection with semiconductor nanostructures (SiNWs/AgNPs). J. Phys. Conf. Ser. 2022, 2327, 012018. [Google Scholar] [CrossRef]
- Bracamonte, A.G. Design of New High Energy near Field Nanophotonic Materials for Far Field Applications. In Advances in Nanocomposite Materials for Environmental and Energy Harvesting Applications; Engineering Materials Springer Book Series; Springer Nature: Cham, Switzerland, 2022; Chapter 28; pp. 859–920. ISBN 978-3-030-94319-6. [Google Scholar] [CrossRef]
- Carr, A.C.; Moore, S.; Lucia, A.D. (Eds.) Robust quantification of polymerase chain reactions using global fitting. PLoS ONE 2012, 7, e37640. [Google Scholar]
- Innis, M.A.; Gelfand, D.H.; Sninsky, J.J.; White, T.J. (Eds.) PCR Protocols: A Guide to Methods and Applications; Academic Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Rehman, A.; Sarwar, Y.; Ali Raza, Z.; Hussain, S.Z.; Mustafa, T.; Khan, W.S.; Afzal Ghauri, M.; Haque, A.; Hussain, I. Metal nanoparticle assisted polymerase chain reaction for strain typing of Salmonella Typhi. Analyst 2015, 140, 7366–7372. [Google Scholar] [CrossRef]
- Sun, C.; Cheng, Y.; Pan, Y.; Yang, J.; Wang, X.; Xia, F. Efficient polymerase chain reaction assisted by metal–organic frameworks. Chem. Sci. 2020, 11, 797–802. [Google Scholar] [CrossRef]
- Warden, A.R.; Liu, W.; Chen, H.; Ding, X. Portable Infrared Isothermal PCR Platform for Multiple Sexually Transmitted Diseases Strand Detection. Anal. Chem. 2018, 90, 11760–11763. [Google Scholar] [CrossRef] [PubMed]
- Schulz, M.; Probst, S.; Calabrese, S.; Homann, A.R.; Borst, N.; Weiss, M.; von Stetten, F.; Zengerle, R.; Paust, N. Versatile Tool for Droplet Generation in Standard Reaction Tubes by Centrifugal Step Emulsification. Molecules 2020, 25, 1914. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, I.; King, C.H.; Muchiri, E.M.; Hamburger, J. Detection of Schistosoma mansoni and Schistosoma haematobium DNA by loop-mediated isothermal amplification: Identification of infected snails from early prepatency. Am. J. Trop. Med. Hyg. 2010, 83, 427–443. [Google Scholar] [CrossRef] [PubMed]
- Archer, J.; Barksby, R.; Pennance, T.; Rostron, P.; Bakar, F.; Knopp, S.; Allan, F.; Kabole, F.; Ali, S.M.; Ame, S.M.; et al. Analytical and Clinical Assessment of a Portable, Isothermal Recombinase Polymerase Amplification (RPA) Assay for the Molecular Diagnosis of Urogenital Schistosomiasis. Molecules 2020, 25, 4175. [Google Scholar] [CrossRef]
- Kim, J.H.; Oh, S.W. Rapid and sensitive detection of E. coli O157:H7 and S. Typhimurium in iceberg lettuce and cabbage using filtration, DNA concentration, and qPCR without enrichment. Food Chem. 2020, 327, 127036. [Google Scholar] [CrossRef]
- Nolan, T.; Hands, R.E.; Bustin, S.A. Quantification of mRNA using real-time RT-PCR. Nat. Protoc. 2006, 1, 1559–1582. [Google Scholar] [CrossRef] [PubMed]
- Henrik, D.; Larsen, S.L.; Skov, M.N.; Larsen, H.; Hartmeyer, G.N.; Moeller, J.B. Phenol ChloroformBased RNA Purification for Detection of SARS CoV 2 by RT qPCR: Comparison with Automated Systems. PLoS ONE 2020, 16, e0247524. [Google Scholar]
- Adli, M. The CRISPR tool kit for genome editing and beyond. Nat. Commun. 2018, 9, 1911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, Y.; Cheng, T.; Yao, Y.; Li, X.; Ma, Y.; Li, L.; Zhao, H.; Bao, J.; Zhang, M.; Qiu, Z.; et al. In vivo genome editing rescues photoreceptor degeneration via a Cas9/RecA-mediated homology-directed repair pathway. Sci. Adv. 2019, 5, eaav3335. [Google Scholar] [CrossRef]
- Liang, P.; Xu, Y.; Zhang, X.; Ding, C.; Huang, R.; Zhang, Z.; Lv, J.; Xie, X.; Chen, Y.; Li, Y.; et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell 2015, 6, 363–372. [Google Scholar] [CrossRef]
- Charpentier, E.; Doudna, J.A. The Nobel Prize in Chemistry 2020: “For the development of a method for genome editing”. Press Release of the Royal Swedish Academy of Sciences, 7 October 2020. [Google Scholar]
- Myhrvold, C.; Freije, C.A.; Gootenberg, J.S.; Abudayyeh, O.O.; Metsky, H.C.; Durbin, A.F.; Kellner, M.J.; Tan, A.L.; Paul, L.M.; Parham, L.A.; et al. Field-deployable viral diagnostics using CRISPR-Cas13. Science 2018, 360, 444–448. [Google Scholar] [CrossRef]
- Chen, J.S.; Doudna, J.A. The chemistry of Cas9 and its CRISPR colleagues. Nat. Rev. Chem. 2017, 1, 0078. [Google Scholar] [CrossRef]
- Ramachandran, A.; Santiago, J.G. Enzyme kinetics of CRISPR molecular diagnostics. bioRxiv 2021, 1–12. [Google Scholar] [CrossRef]
- Heather, J.M.; Chain, B. The sequence of sequencers: The history of sequencing DNA. Genomics 2016, 107, 1–8. [Google Scholar] [CrossRef]
- Govek, K.W.; Troisi, E.C.; Miao, Z.; Aubin, R.G.; Woodhouse, S.; Camara, P.G. Single-cell transcriptomic analysis of mIHC images via antigen mapping. Sci. Adv. 2021, 7, eabc5464. [Google Scholar] [CrossRef] [PubMed]
- Hess, J.F.; Kohl, T.A.; Kotrova, M.; Ronsch, K.; Paprotka, T.; Mohr, V.; Hutzenlaub, T.; Brugemann, M.; Zengerle, R.; Niemann, S.; et al. Library preparation for the next gemeration sequencing: A Review of automatization. Biotechnol. Adv. 2020, 41, 107537. [Google Scholar] [CrossRef]
- Hayden, E. Nanopore genome sequencer makes its debut. Technique promises it will produce a human genome in 15 minutes. Nat. News 2012. [Google Scholar] [CrossRef]
- Guo Ning Xu, J.; Li, Z.; Zhang, S.; Wu, J.; Hyun Kim, D.; Sano Marma, M.; Meng, Q.; Cao, H.; Li, X.; Shi, S.; et al. Four-color DNA sequencing with 3O-modified nucleotide reversible terminators and chemically cleavable fluorescent dideoxynucleotides. PNAS 2008, 105, 9145–9150. [Google Scholar]
- Bentley, D.R.; Balasubramanian, S.; Swerdlow, H.P.; Smith, G.P.; Milton, J.; Brown, C.G.; Hall, K.P.; Evers, D.J.; Barnes, C.L.; Bignell, H.R.; et al. Accurate Whole Human Genome Sequencing using Reversible Terminator Chemistry. Nature 2008, 456, 7218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dacres, H.; Wang, J.; Dumancic, M.M.; Trowels, S.C. Determination of the Forster distance for two commonly bioluminescent resonant energy transfer pairs. Anal. Chem. 2010, 82, 432–435. [Google Scholar] [CrossRef]
- O’Connor, C. Fluorescence In Situ Hybridization (FISH). Nat. Educ. 2008, 1, 171. [Google Scholar]
- Juskowiak, B. Nucleic acid-based fluorescent probes and their analytical potential. Anal. Bioanal. Chem. 2011, 399, 3157–3176. [Google Scholar] [CrossRef]
- Pernthaler, A.; Preston, C.M.; Pernthaler, J.; DeLong, E.F.; Amann, R. Comparison of Fluorescently Labeled Oligonucleotide and Polynucleotide Probes for the Detection of Pelagic Marine Bacteria and Archaea. Appl. Environ. Microbiol. 2020, 68, 661–667. [Google Scholar] [CrossRef] [PubMed]
- Chien, J.C.Y.; Tabet, E.; Pinkham, K.; d’Hora, C.C.; Chang, J.C.Y.; Lin, S.; Badr, C.E. A multiplexed bioluminescent reporter for sensitive and non-invasive tracking of DNA double strand break repair dynamics in vitro and in vivo. Nucleic Acids Res. 2020, 3, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Lieber, M.R. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu. Rev. Biochem. 2010, 79, 181–211. [Google Scholar] [CrossRef] [PubMed]
- Haddock, S.H.; Moline, M.A.; Case, J.F. Bioluminescence in the sea. Ann. Rev. Mar. Sci. 2010, 2, 443–493. [Google Scholar] [CrossRef]
- Geron-Landre, B.; Roulon, T.; Desbioles, P.; Escude, C. Sequence-specific fuorescent labeling of double stranded DNA observed at the single molecule level. Nucleic Acids Res. 2003, 31, e125. [Google Scholar] [CrossRef]
- Fromherz, P.; Rieger, B. Photoinduced electron transfer in DNA matrix from intercalated ethidium to condensed methylviologen. J. Am. Chem. Soc. 1986, 108, 5361–5362. [Google Scholar] [CrossRef]
- Armitage, B.A. Cyanine Dye–DNA Interactions: Intercalation, Groove Binding, and Aggregation; Springer-Verlag: Berlin/Heidelberg, Germany, 2005; pp. 55–76. [Google Scholar] [CrossRef]
- Dore, K.; Leclerc, M.; Boudreau, D. Investigation of a Fluorescence Signal Amplification Mechanism. Used for the Direct Molecular Detection of Nucleic Acids. J. Fluoresc. 2006, 16, 259–265. [Google Scholar] [CrossRef]
- Béra Abérem, M.; Najari, A.; . Ho, H.-A.; Gravel, J.-F.; Nobert, P.; Boudreau, D.; Leclerc, M. Protein Detecting Arrays Based on Cationic Polythiophene-DNA-Aptamer Complexes. Adv. Mater. 2006, 18, 2703–2707. [Google Scholar] [CrossRef]
- Do, S.; Lee, C.; Lee, T.; Kim, D.-N.; Shin, Y. Engineering DNA-based synthetic condensates with programmable material properties, compositions, and functionalities. Sci. Adv. 2022, 8, eabj1771. [Google Scholar] [CrossRef]
- Dore, K.; Neagu-Plesu, R.; Leclerc, M.; Boudreau, D.; Ritcey, A.M. Characterization of Superlighting Polymer-DNA Aggregates: A Fluorescence and Light Scattering Study. Langmuir 2007, 23, 258–264. [Google Scholar] [CrossRef]
- Didenko, V.V. DNA Probes Using Fluorescence Resonance Energy Transfer (FRET): Designs and Applications. Biotechniques 2001, 31, 1106–1121. [Google Scholar] [CrossRef]
- Li, Y.; Du, H.; Wang, W.; Zhang, P.; Xu, L.; Wen, Y.; Zhang, X. A Versatile Multiple Target Detection System Based on DNA Nano-assembled Linear FRET Arrays. Sci. Rep. 2016, 6, 26879. [Google Scholar] [CrossRef]
- Qiao, Y.; Luo, Y.; Long, Y.; Xing, Y.; Tu, J. Review Single-Molecular Förster Resonance Energy Transfer Measurement on Structures and Interactions of Biomolecules. Micromachines 2021, 492, 1–22. [Google Scholar]
- Bartnik, K.; Barth, A.; Pilo-Pais, M.; Crevenna, A.H. A DNA Origami Platform for Single pair Forster Resonance Energy Transfer Investigation of DNA-DNA and DNA Protein Interactions. Biophys. J. 2019, 3, 1–40. [Google Scholar] [CrossRef]
- Dramanac, R.; Sparks, A.B.; Callowaaron, M.J.; Alpernnnorman, L.; Burnsbahram, L.; Kermani, K.; Carnevali, P.; Nazarensko, I.; Nilsen, B.; Reid, C.A. Human Genome Sequencing Using Unchained Base Reads on Self-Assembling DNA Nanoarrays. Science 2009, 327, 5961. [Google Scholar] [CrossRef]
- Anderson, J.P.; Reynolds, B.L.; Baum, K.; Williams, J.G. Fluorescent Structural DNA Nanoballs Functionalized with Phosphate-Linked Nucleotide Triphosphates. Nano Lett. 2010, 10, 788–792. [Google Scholar] [CrossRef] [PubMed]
- Dhiman, A.; Kalraa, P.; Bansalc, V.; Bruno, J.G.; Kumar Sharma, T. Aptamer-based point-of-care diagnostic platforms. Sens. Actuators B 2017, 246, 535–553. [Google Scholar] [CrossRef]
- Afanassiev, V.; Hanemann, V.; Wolfi, S. Preparation of DNA and protein microarrays on glass slides coated with an agarose film. Nucleic Acids Res. 2000, 28, 12. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Liang, J.; Wang, Y.; Ren, S.; Wu, J.; Zhou, H.; Gao, Z. Highly Selective, Aptamer-Based, Ultrasensitive Nanogold Colorimetric Smartphone Readout for Detection of Cd(II). Molecules 2019, 24, 2745. [Google Scholar] [CrossRef]
- Ponzo, I.; Möller, F.M.; Daub, H.; Matscheko, N. A DNA-Based Biosensor Assay for the Kinetic Characterization of Ion-Dependent Aptamer Folding and Protein Binding. Molecules 2019, 24, 2877. [Google Scholar] [CrossRef]
- Meech, S. Biophotonics, Living lasers. Nat. Photonics 2011, 5, 387–388. [Google Scholar] [CrossRef]
- Prendergast, F.G.; Mann, K.G. Chemical and physical properties of aequorin and the green fluorescent protein isolated from Aequorea forskålea. Biochemistry 1978, 17, 3448–3453. [Google Scholar] [CrossRef]
- Ormö, M.; Cubitt, A.B.; Kallio, K.; Gross, L.A.; Tsien, R.Y.; Remington, S.J. Crystal structure of the Aequorea victoria green fluorescent protein. Science 1996, 273, 1392–1395. [Google Scholar] [CrossRef]
- Shaner, N.C.; Steinbach, P.A.; Tsien, R.Y. A guide to choosing fluorescent proteins. Nat. Methods 2005, 2, 905–909. [Google Scholar] [CrossRef] [PubMed]
- Wilhelmsson, M.; Tor, Y. Fluorescent Analogs of Biomolecular Building Blocks: Design and Applications; Wiley: Hoboken, NJ, USA, 2016; ISBN 9781118175866. [Google Scholar]
- Arun, K.H.; Kaul, C.L.; Ramarao, P. Green fluorescent proteins in receptor research: An emerging tool for drug discovery. J. Pharmacol. Toxicol. Methods 2005, 51, 1–23. Available online: https://pubmed.ncbi.nlm.nih.gov/15596111 (accessed on 10 January 2023). [CrossRef] [PubMed]
- Song, Y.H.; Kim, C.S.; Seo, J. Noninvasive monitoring of environmental toxicity through green fluorescent protein expressing Escherichia coli. Korean J. Chem. Eng. 2016, 33, 331–336. [Google Scholar] [CrossRef]
- Gong, Z.; Ju, B.; Wan, H. Green fluorescent protein (GFP) transgenic fish and their applications. Genetica 2001, 111, 213–225. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Leifert, A.; Graf, M.; Schiefer Thoröe-Boveleth, F.; Broda, S.J.; Halloran, M.C.; Hollert, H.; Laaf, D.; Simon, U.; Jahnen-Dechent, W. High-sensitivity real-time analysis of nanoparticle toxicity in green fluorescent protein-expressing zebrafish. Small. Weinh. Bergstr. Ger. 2013, 9, 863–869. [Google Scholar] [CrossRef]
- Dore, K.; Dubus, S.; Ho, H.-A.; Lvesque, I.; Brunette, M.; Corbeil, G.; Boissinot, M.; Boivin, G.; Bergeron, M.G.; Boudreau, D.; et al. Fluorescent Polymeric Transducer for the Rapid, Simple, and Specific Detection of Nucleic Acids at the Zeptomole Level. J. Am. Chem. Soc. 2004, 126, 4240–4244. [Google Scholar] [CrossRef]
- Ho, H.A.; Boissinot, M.; Bergeron, M.G.; Corbeil, G.; Dore, K.; Boudreau, D.; Leclerc, M. Colorimetric and Fluorimetric Detection of Nucleic Acids using Cationic Polythiophene Derivatives. Angew. Chem. 2002, 9, 1618–1621. [Google Scholar] [CrossRef]
- Inden Kirschen, O.; Bracamonte, A.G.; Miniambres, G. Perspectives in Quantum Coupling, Interferences, and Enhanced Properties on Graphene Derivatives. Special Issue: Design and Synthesis of Graphene Based Metamaterials, Current Material Science (CMS)—Recent Patents on Materials Science. Bentham Sci. Pub. 2022, 15, 220–228. [Google Scholar]
- Brouard, D.; Lessard Viger, M.; Bracamonte, A.G.; Boudreau, D. Label-free biosensing based on multilayer fluorescent nanocomposites and a cationic polymeric transducer. ACS Nano 2011, 5, 1888–1896. [Google Scholar] [CrossRef]
- Brouard, D.; Ratelle, O.; Bracamonte, A.G.; St-Louis, M.; Boudreau, D. Direct molecular detection of SRY gene from unamplified genomic DNA by metal-enhanced fluorescence and FRET. Anal. Methods 2013, 5, 6896–6899. [Google Scholar] [CrossRef]
- Brouard, D.; Ratelle, O.; Perreault, J.; Boudreau, D.; St-Louis, M. PCR-free blood group genotyping using a nanobiosensor, VoxSanguinis. Int. J. Transfus. Med. 2015, 108, 197–204. [Google Scholar]
- Bracamonte, A.G. Advances in New Matter Properties and Applications of Hybrid Graphene-Based Metamaterials. Special Issue: Design and Synthesis of Graphene Based Metamaterials, Current Material Science (CMS)—Recent Patents on Materials Science. Bentham Sci. Pub. 2022, 15, 215–219. [Google Scholar]
- Salinas, C.; Amé, M.; Bracamonte, A.G. Tuning silica nanophotonics based on fluorescence resonance energy transfer for targeted non-classical light delivery applications. J. Nanophoton 2020, 14, 046007. [Google Scholar] [CrossRef]
- Salinas, C.; Valeria Ame, M.; Bracamonte, A.G. Synthetic non-classical luminescence generation by Enhanced Silica Nanophotonics based on Nano-Bio-FRET. RSC Adv. 2020, 10, 20620–20637. [Google Scholar] [CrossRef] [PubMed]
- Shu, D.; Zhang, H.; Petrenko, R.; Meller, J.; Guo, P. Dual-Channel Single-Molecule Fluorescence Resonance Energy Transfer to Establish Distance Parameters for RNA Nanoparticles. ACS Nano 2010, 4, 6843–6853. [Google Scholar] [CrossRef] [PubMed]
- Jepsen, M.D.E.; Sparvath, S.M.; Nielsen, T.B.; Langvad, A.H.; Grossi, G.; Gothelf, K.V.; Andersen, E.S. Development of a genetically encodable FRET system using fluorescent RNA aptamers. Nat. Commun. 2018, 9, 18. [Google Scholar] [CrossRef]
- Choi, Y.; Kotthoff, L.; Olejko, L.; Resch Genger, U.; Bald, I. DNA Origami Based Förster Resonance Energy Transfer Nanoarrays and their Application as Ratiometric Sensors. ACS Appl. Mater. Interfaces 2018, 10, 23295–23302. [Google Scholar] [CrossRef]
- Sapkota, K.; Kaur, A.; Megalathan, A.; Donkoh-Moore, C.; Dhaka, S. Single-Step FRET-Based Detection of Femtomoles DNA. Sensors 2019, 19, 3495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacak, J.; Hesse, J.; Hesch, C.; Kasper, M.; Aberger, F.; Frischauf, A.; Sonnleitner, M.; Freudenthaler, G.; Howorka, S.; Schuetz, G.J. Ultrasensitive DNA Detection on Microarrays. In Proceedings of SPIE 5699, Imaging, Manipulation, and Analysis of Biomolecules and Cells: Fundamentals and Applications III; SPIE: Cergy-Pontoise, France, 2005; pp. 1–17. [Google Scholar]
- Next-Generation Sequencing (NGS). Explore the Technology. Available online: https://www.illumina.com/science/technology/next-generation-sequencing.html (accessed on 20 January 2023).
- McGuire, A.L.; Gabriel, S.; Tishkoff, S.A.; Wonkam, A.; Chakravarti, A.; Furlong, E.E.M.; Treutlein, B.; Meissner, A.; Chang, H.Y.; López-Bigas, N.; et al. The road ahead in genetics and genomics. Nat. Rev. Genet. 2020, 21, 581–596. [Google Scholar] [CrossRef]
- Pancza, B.; Szathmáry, M.; Gyurján, I.; Bánkuti, B.; Tudós, Z.; Szathmary, S.; Zsófia, L.S.; Sipos-Kozma, Á.B.; Varga, L.; Szenthe, K.; et al. A rapid and efficient DNA isolation method for qPCR-based detection of pathogenic and spoilage bacteria in milk. Food Control 2021, 130, 108236. [Google Scholar] [CrossRef]
- Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; et al. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef] [PubMed]
- Kararoudi, M.N.; Hejazi, S.S.; Elmas, E.; Hellström, M.; Naeimi Kararoudi, M.; Padma, A.M.; Lee, D.; Dolatshad, H. Clustered Regularly Interspaced Short Palindromic Repeats/Cas9 Gene Editing Technique in Xenotransplantation. Front. Immunol. 2018, 9, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Kan, Y.; Ruis, B.; Takasugi, T.; Hendrickson, E.A. Mechanisms of precise genome editing using oligonucleotide donors. Genome Res. 2017, 7, 1099–1111. [Google Scholar] [CrossRef] [PubMed]
- Burgess, D.J. A CRISPR genome-editing tool. Nat. Rev. Genet. 2013, 81, 1–2. [Google Scholar] [CrossRef]
- Charpentier, E.J.; Doudna, A. Popular Science Background. The Nobel Prize in Chemistry 2020. “Genetic Scissors: A Tool for Rewriting the Code of Life”. Royal Swedish Academy of Sciences: Stockholm, Sweden, 2020; pp. 1–8. [Google Scholar]
- Osborn, M.J.; Bhardway, A.; Bingea, S.P.; Knipping, F.; Feser, C.J.; Lees, C.J.; Collins, D.P.; Steer, C.J.; Blazar, B.R.; Tolar, J. CRISPR/Cas9-Based Lateral Flow and Fluorescence Diagnostics. Bioengineering 2021, 8, 23. [Google Scholar] [CrossRef]
- Kaminski, M.M.; Abudayyeh, O.O.; Gootenberg, J.S.; Zhang, F.; Collins, J.J. CRISPR-based diagnostics. Nat. Biomed. Eng. 2022, 5, 643–656. [Google Scholar] [CrossRef]
- Campagne, S.; Boigner, S.; Rüdisser, S.; Moursy, A.; Gillioz, L.; Knörlein, A.; Hall, J.; Ratni, H.; Cléry, A.; Allain, F. H-T. Structural basis of a small molecule targeting RNA for a specific splicing correction. Nat. Chem. Biol. 2019, 15, 1191–1198. [Google Scholar] [CrossRef] [PubMed]
- Neguembor, M.V.; Arcon, J.P.; Buitrago, D.; Lema, R.; Walther, J.; Garate, X.; Martin, L.; Romero, P.; Al Haj Abed, J.; Gut, M.; et al. MiOS, an integrated imaging and computational strategy to model gene folding with nucleosome resolution. Nat. Struct. Mol. Biol. 2022, 29, 1011–1023. [Google Scholar] [CrossRef]
- Bracamonte, A.G. Biophotonics at Single-Molecule Detection Level. In Frontiers in Nano- and Micro-Device Design for Applied Nanophotonics, Biophotonics and Nanomedicine; Bentham Science Publishers: Sharjah, United Arab Emirates, 2021; Chapter 11; ISBN 978-1-68108-857-0. [Google Scholar] [CrossRef]
- Walt, D.R. Optical Methods for Single Molecule Detection and Analysis. Anal. Chem. 2013, 85, 1258–1263. [Google Scholar] [CrossRef]
- Braslavsky, I.; Hebert, B.E.; Kartalov, S.R. Sequence information can be obtained from single DNA molecules. Proc. Natl. Acad. Sci. USA 2003, 100, 3960−3964. [Google Scholar] [CrossRef]
- Eid, J.; Fehr, A.; Gray, J.; Luong, K.; Lyle, J.; Otto, G.; Peluso, P.; Rank, D.; Baybayan, P.; Bettman, B.; et al. Real-Time DNA Sequencing from Single Polymerase. Mol. Sci. 2009, 323, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Guan, J.; Jia, C.; Li, Y.; Liu, Z.; Wang, J.; Yang, Z.; Gu, C.; Su, D.; Houk, K.N.; Zhang, D.; et al. Direct single molecule dynamic detection of chemical reactions. Sci. Adv. 2018, 4, eaar2177. [Google Scholar] [CrossRef] [PubMed]
- Dubus, S.; Gravel, J.-F.; Le Drogoff, B.; Nobert, P.; Veres, T.; Boudreau, D. PCR-Free DNA Detection Using a Magnetic Bead-Supported Polymeric Transducer and Microelectromagnetic Traps. Anal. Chem. 2006, 78, 4457–4464. [Google Scholar] [CrossRef] [PubMed]
- Boissinot, K.; Peytavi, R.; Chapdelaine, S.; Geissler, M.; Boissinot, M.; Martel, E.A.; Béliveau-Viel, D.; Gravel, J.-F.; Malic, L.; Veres, T.; et al. Real-time monitoring of bead-based DNA hybridization in a microfluidic system: Study of amplicon hybridization behavior on solid supports. Analyst 2021, 146, 4226–4234. [Google Scholar] [CrossRef]
- Salinas, C.; Bracamonte, A.G. From Microfluidics to Nanofluidics and signal Wave-guiding for Nanophotonics, Biophotonics resolution and Drug Delivery. Front. Drug Chem. Clin. Res. 2019, 2, 1–6. [Google Scholar]
- Barnes, W.L. Electromagnetic crystals for surface plasmon polaritons and the extraction of light from emissive devices. J. Light. Tech. 1999, 17, 2170–2182. [Google Scholar] [CrossRef]
- Kim, J.Y.; Kwon, M.K.; Lee, K.S.; Park, S.J.; Kim, S.H.; Lee, K.D. Enhanced light extraction from GaN-based green light-emitting diode with photonic crystal. Appl. Phys. Lett. 2007, 91, 181109. [Google Scholar] [CrossRef]
- Chen, W.; Tymchenko, M.; Gopalan, P.; Ye, X.; Wu, Y.; Zhang, M.; Murra, C.B.; Alu, A.; Kagan, C.R. Large-Area Nanoimprinted Colloidal Au Nanocrystal-Based Nanoantennas for Ultrathin Polarizing Plasmonic Metasurfaces. Nano Lett. 2015, 15, 5254–5260. [Google Scholar] [CrossRef]
- Wu, P.C.; Tsai, W.Y.; Ti Chen, Y.W.; Huang, T.Y.; Chen, J.-W.; Chen, C.Y.; Lia, C.H.; Chu, T.; Sun, G.; Tsai, D.P. Integrated metasurface chip for versatile polarization generation. SPIE Newsroom 2017, 1–3. [Google Scholar] [CrossRef]
- Senes, A.; Meskers, S.C.J.; Greiner, H.; Suzuki, K.; Kaji, H.; Adachi, C.; Wilsona, J.S.; Janssen, R.A.J. Increasing the horizontal orientation of transition dipole moments in solution processed small molecular emitters. J. Mater. Chem. C 2017, 5, 6555–6562. [Google Scholar] [CrossRef]
- Lai, C.W.; An, J.; Ong, H.C. Surface-plasmon-mediated emission from metal-capped ZnO thin films. Appl. Phys. Lett. 2005, 86, 251105. [Google Scholar] [CrossRef]
- Goodfellow, K.M.; Chakraborty, C.; Beams, R.; Novotny, L.; Nick Vamivakas, A. Direct On-Chip Optical Plasmon Detection with an Atomically Thin Semiconductor. Nano Lett. 2015, 15, 5477–5481. [Google Scholar] [CrossRef] [PubMed]
- Reithmaier, G.; Kaniber, M.; Flassig, F.; Lichtmannecker, S.; Müller, K.; Andrejew, A.; Vučković, J.; Gross, R.; Finley, J.J. On-Chip Generation, Routing, and Detection of Resonance Fluorescence. Nano Lett. 2015, 15, 5208–5213. [Google Scholar] [CrossRef] [PubMed]
- Asselin, J.; Legros, P.; Grégoire, A.; Boudreau, D. Correlating metal-enhanced fluorescenceandstructuralpropertiesinAg@SiO2 core-shell nanoparticles. Plasmonics 2016, 5, 1–8. [Google Scholar]
- Grégoire, A.; Boudreau, D. Metal-Enhanced Fluorescence in Plasmonic Waveguides. In Nano-Optics: Principles Enabling Basic Research and Applications; Springer Science + Business Media: Dordrecht, The Netherlands, 2017; Chapter 28. [Google Scholar] [CrossRef]
- Yen, C.-W.; de Puig, H.; Tam, J.O.; Gómez-Márquez, J.; Bosch, I.; Hamad-Schifferli, K.; Gehrk, L. Multicolored silver nanoparticles for multiplexed disease diagnostics: Distinguishing dengue, yellow fever, and Ebola viruses. Lab Chip. 2015, 15, 1638–1640. [Google Scholar] [CrossRef]
- Glass, N.R.; Tjeung, R.; Chan, P.; Yeo, L.Y.; Friend, J.R. Organosilane deposition for microfluidic application. Biomicrofluidics 2011, 5, 036501. [Google Scholar] [CrossRef]
- Lackowicz, J.R. Radiative decay engineering: Metal enhanced fluorescence and plasmon emission. Anal. Biochem. 2005, 337, 171–194. [Google Scholar] [CrossRef]
- Bowden, R. Sequencing of human genomes with nanopore technology. Nat. Commun. 2019, 10, 1869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taxt, A.M.; Avershina, E.; Frye, S.A.; Naseer, U.; Ahmad, R. Rapid identification of pathogens, antibiotic resistance genes and plasmids in blood cultures by nanopore sequencing. Sci. Rep. Springer Nat. 2020, 10, 7622. [Google Scholar] [CrossRef] [PubMed]
- Bracamonte, A.G. Microarrays towards Nanoarrays and the Future Next Generation of Sequencing Methodologies (NGS), Sensing and Bio-Sensing Research; Elsevier: Amsterdam, The Netherlands, 2022; Volume 37, p. 100503. [Google Scholar]
- Gomez Palacios, L.R.; Veglia, A.; Bracamonte, A.G. Inflow nano-optics from the near-to the far-field detection based on Metal-Enhanced Fluorescence signaling. Microchem. J. 2021, 169, 106539. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bracamonte, A.G. Current Advances in Nanotechnology for the Next Generation of Sequencing (NGS). Biosensors 2023, 13, 260. https://doi.org/10.3390/bios13020260
Bracamonte AG. Current Advances in Nanotechnology for the Next Generation of Sequencing (NGS). Biosensors. 2023; 13(2):260. https://doi.org/10.3390/bios13020260
Chicago/Turabian StyleBracamonte, Angel Guillermo. 2023. "Current Advances in Nanotechnology for the Next Generation of Sequencing (NGS)" Biosensors 13, no. 2: 260. https://doi.org/10.3390/bios13020260
APA StyleBracamonte, A. G. (2023). Current Advances in Nanotechnology for the Next Generation of Sequencing (NGS). Biosensors, 13(2), 260. https://doi.org/10.3390/bios13020260