Mn3O4/NiO Nanoparticles Decorated on Carbon Nanofibers as an Enzyme-Free Electrochemical Sensor for Glucose Detection
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Instrumentations
2.3. Synthesis of Mn3O4/NiO/CNFs
2.4. Electrochemical Measurements
3. Results and Discussion
3.1. XRD, Raman, FT-IR, and XPS Characterization of Mn3O4/NiO/CNFs
3.2. SEM and TEM of Mn3O4/NiO/CNFs
3.3. Electrochemical Characterization
3.4. Selectivity, Stability, Repeatability, and Reproducibility of Mn3O4/NiO/CNFs/GCE
3.5. Actual Sample Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, D.; Chang, Y. The Construct CoSe2 on Carbon Nanosheets as High Sensitivity Catalysts for Electrocatalytic Oxidation of Glucose. Nanomaterials 2022, 12, 572. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Li, S.P.; Wang, W.W.; Zhao, M.T.; Liu, J.F.; Feng, H.F.; Chen, Y.M.; Du, Y.; Hao, W.C. A Non-Enzymatic Photoelectrochemical Glucose Sensor Based on BiVO4 Electrode under Visible Light. Sens. Actuators B 2019, 291, 34–41. [Google Scholar] [CrossRef]
- Cao, F.H.; Zhou, Y.; Wu, J.; Li, W.; Zhang, C.L.; Ni, G.; Cui, P.; Song, C.J. Electrospinning One-dimensional Surface-phosphorized CuCo/C Nanofibers for Enzyme-free Glucose Sensing. New J. Chem. 2022, 46, 11531–11539. [Google Scholar] [CrossRef]
- Adeel, M.; Rahman, M.M.; Caligiuri, I.; Canzonieri, V.; Rizzolio, F.; Daniele, S. Recent Advances of Electrochemical and Optical Enzyme-Free Glucose Sensors Operating at Physiological Conditions. Biosens. Bioelectron. 2020, 165, 112331. [Google Scholar] [CrossRef]
- Liu, S.; Qiu, Y.Z.; Liu, Y.F.; Zhang, W.F.; Dai, Z.; Srivastava, D.; Kumar, A.; Pan, Y.; Liu, J.Q. Recent Advances in Bimetallic Metal-organic Frameworks (BMOFs): Synthesis, Applications and Challenges. New J. Chem. 2022, 46, 13818–13837. [Google Scholar] [CrossRef]
- Li, L.T.; Zou, J.F.; Han, Y.T.; Liao, Z.H.; Lu, P.F.; Nezamzadeh-Ejhieh, A.; Liu, J.Q.; Peng, Q.P. Recent Advances in Al(iii)/In(iii)-based MOFs for the Detection of Pollutants. New J. Chem. 2022, 46, 19577–19592. [Google Scholar] [CrossRef]
- Gao, H.; Xiao, F.; Ching, C.B.; Duan, H. One-Step Electrochemical Synthesis of PtNi Nanoparticle-Graphene Nanocomposites for Nonenzymatic Amperometric Glucose Detection. ACS Appl. Mater. Interfaces 2011, 3, 3049–3057. [Google Scholar] [CrossRef]
- Li, Y.Y.; Tang, L.; Deng, D.M.; He, H.B.; Yan, X.X.; Wang, J.H.; Luo, L.Q. Hetero-Structured MnO-Mn3O4@rGO Composites: Synthesis and Nonenzymatic Detection of H2O2. Mater. Sci. Eng. C 2021, 118, 111443. [Google Scholar] [CrossRef]
- Liu, X.Z.; Yang, H.P.; Diao, Y.Y.; He, Q.; Lu, C.Y.; Singh, A.; Kumar, A.; Liu, J.Q.; Lan, Q. Recent Advances in the Electrochemical Applications of Ni-based Metal Organic Frameworks (Ni-MOFs) and Their Derivatives. Chemosphere 2022, 307, 135729. [Google Scholar] [CrossRef]
- Saxena, A.; Liyanage, W.P.R.; Kapila, S.; Nath, M. Nickel Selenide as an Efficient Electrocatalyst for Selective Reduction of Carbon Dioxide to Carbon-rich Products. Catal. Sci. Technol. 2022, 12, 4727–4739. [Google Scholar] [CrossRef]
- Li, M.R.; Zheng, K.T.; Zhang, J.J.; Li, X.M.; Xu, C.J. Design and Construction of 2D/2D Sheet-on-sheet Transition Metal Sulfide/Phosphide Heterostructure for Efficient Oxygen Evolution Reaction. Appl. Surf. Sci. 2021, 565, 150510. [Google Scholar] [CrossRef]
- Sivanantham, A.; Shanmugam, S. Graphitic Carbon-NiCo Nanostructures as Efficient Non-precious-metal Electrocatalysts for the Oxygen Reduction Reaction. ChemElectroChem 2018, 5, 1937–1943. [Google Scholar] [CrossRef]
- Hernandez-Ramirez, D.; Mendoza-Huizar, L.H.; Galan-Vidal, C.A.; Aguilar-Lira, G.Y.; Alvarez-Romero, G.A. Development of a Non-Enzymatic Glucose Sensor Based on Fe2O3 Nanoparticles-carbonve and Analytica Paste Electrodes. J. Electrochem. Soc. 2022, 169, 067507. [Google Scholar] [CrossRef]
- Wang, H.; Li, Y.Y.; Deng, D.M.; Li, M.J.; Zhang, C.Y.; Luo, L.Q. NiO-Coated CuCo2O4 Nanoneedle Arrays on Carbon Cloth for Nonenzymatic Glucose Sensing. ACS Appl. Nano Mater. 2021, 4, 9821–9830. [Google Scholar] [CrossRef]
- Xu, Y.H.; Ding, Y.P.; Zhang, L.H.; Zhang, X.X. Highly Sensitive Enzyme-free Glucose Sensor Based on CuO-NiO Nanocomposites by Electrospinning. Compos. Commun. 2021, 25, 100687. [Google Scholar] [CrossRef]
- Zhang, R.; Zhou, T.T.; Zhang, T. Functionalization of Hybrid 1D SnO2-ZnO Nanofibers for Formaldehyde Detection. Adv. Mater. Interfaces 2018, 5, 1800967. [Google Scholar] [CrossRef]
- Thomas, T.; Jayababu, N.; Shruthi, J.; Mathew, A.; Cerdan-Pasaran, A.; Hernandez-Magallanes, J.A.; Sanal, K.C.; Reshmi, R. Room Temperature Ammonia Sensing of Alpha-MoO3 Nanorods Grown on Glass Substrates. Thin Solid Films 2021, 722, 138575. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Li, Y.Y.; Wang, H.; Niu, X.Y.; Deng, D.M.; Qin, X.; Yan, X.X.; He, H.B.; Luo, L.Q. Low Temperature Growth of CuS Nanosheets on Hollow Co9S8 Nanotubes: Synthesis and Analytical Application. Microchem. J. 2022, 183, 108037. [Google Scholar] [CrossRef]
- Kokulnathan, T.; Vishnuraj, R.; Chen, S.M.; Pullithadathil, B.; Ahmed, F.; Hasan, P.M.Z.; Bilgrami, A.L.; Kumar, S. Tailored Construction of One-Dimensional TiO2/Au Nanofibers: Validation of an Analytical Assay for Detection of Diphenylamine in Food Samples. Food Chem. 2022, 380, 132052. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.H.; Kim, J.; Kim, M.; Lim, H.; Zhang, M.; You, J.; Yun, J.H.; Bando, Y.; Li, J.S.; Yamauchi, Y. Nanoarchitectured Metal-Organic Framework-Derived Hollow Carbon Nanofiber Filters for Advanced Oxidation Processes. J. Mater. Chem. A 2019, 7, 13743–13750. [Google Scholar] [CrossRef]
- Zhang, Z.X.; Wang, Y.X.; Leng, X.X.; Crespi, V.H.; Kang, F.Y.; Lv, R.T. Controllable Edge Exposure of MoS2 for Efficient Hydrogen Evolution with High Current Density. ACS Appl. Energy Mater. 2018, 1, 1268–1275. [Google Scholar] [CrossRef]
- Sui, L.L.; Yu, T.T.; Zhao, D.; Cheng, X.L.; Zhang, X.F.; Wang, P.; Xu, Y.M.; Gao, S.; Zhao, H.; Gao, Y.; et al. In Situ Deposited Hierarchical CuO/NiO Nanowall Arrays Film Sensor with Enhanced Gas Sensing Performance to H2S. J. Hazard. Mater. 2020, 385, 121570. [Google Scholar] [CrossRef]
- Liu, S.Y.; Xie, J.; Zheng, Y.X.; Cao, G.S.; Zhu, T.J.; Zhao, X.B. Nanocrystal Manganese Oxide (Mn3O4, MnO) Anchored on Graphite Nanosheet with Improved Electrochemical Li-Storage Properties. Electrochim. Acta 2012, 66, 271–278. [Google Scholar] [CrossRef]
- Niu, H.T.; Zhang, J.; Xie, Z.L.; Wang, X.G.; Lin, T. Preparation, Structure and Supercapacitance of Bonded Carbon Nanofiber Electrode Materials. Carbon 2011, 49, 2380–2388. [Google Scholar] [CrossRef]
- Abe, J.; Takahashi, K.; Kawase, K.; Kobayashi, Y.; Shiratori, S. Self-Standing Carbon Nanofiber and SnO2 Nanorod Composite as a High-Capacity and High-Rate-Capability Anode for Lithium-Ion Batteries. ACS Appl. Nano Mater. 2018, 1, 2982–2989. [Google Scholar] [CrossRef]
- Yang, G.; Li, Y.H.; Ji, H.M.; Wang, H.Y.; Gao, P.; Wang, L.; Liu, H.D.; Pinto, J.; Jiang, X.F. Influence of Mn Content on the Morphology and Improved Electrochemical Properties of Mn3O4 Vertical Bar MnO@Carbon Nanofiber as Anode Material for Lithium Batteries. J. Power Source 2012, 216, 353–362. [Google Scholar] [CrossRef]
- Rani, B.J.; Rathika, S.; Ravi, G.; Yuvakkumar, R. Synthesis of MnNiO3/Mn3O4 Nanocomposites for the Water Electrolysis Process. J. Sol-Gel Sci. Technol. 2019, 92, 1–11. [Google Scholar] [CrossRef]
- Liu, M.M.; An, M.L.; Xu, J.Q.; Liu, T.; Wang, L.L.; Liu, Y.Y.; Zhang, J.J. Three-Dimensional Carbon Foam Supported NiO Nanosheets as Non-Enzymatic Electrochemical H2O2 sensors. Appl. Surf. Sci. 2021, 542, 148699. [Google Scholar] [CrossRef]
- Pan, J.Q.; Li, S.; Ou, W.; Liu, Y.Y.; Li, H.L.; Wang, J.J.; Song, C.S.; Zheng, Y.Y.; Li, C.R. The Photovoltaic Conversion Enhancement of NiO/Tm:CeO2/SnO2 Transparent P-N Junction Device with Dual-Functional Tm:CeO2 Quantum Dots. Chem. Eng. J. 2020, 393, 124802. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Wang, Y.Z.; Jia, J.B.; Wang, J.G. Nonenzymatic Glucose Sensor Based on Graphene Oxide and Electrospun NiO Nanofibers. Sens. Actuators B 2012, 171, 580–587. [Google Scholar] [CrossRef]
- Alegre, C.; Busacca, C.; Di Blasi, A.; Di Blasi, O.; Arico, A.S.; Antonucci, V.; Modica, E.; Baglio, V. Electrospun Carbon Nanofibers Loaded with Spinel-Type Cobalt Oxide as Bifunctional Catalysts for Enhanced Oxygen Electrocatalysis. J. Energy Storage 2019, 23, 269–277. [Google Scholar] [CrossRef]
- Busacca, C.; Di Blasi, O.; Giacoppo, G.; Briguglio, N.; Antonucci, V.; Di Blasi, A. High Performance Electrospun Nickel Manganite on Carbon Nanofibers Electrode for Vanadium Redox Flow Battery. Electrochim. Acta 2020, 355, 136755. [Google Scholar] [CrossRef]
- Huan, K.; Li, Y.Y.; Deng, D.M.; Wang, H.; Wang, D.J.; Li, M.J.; Luo, L.Q. Composite-Controlled Electrospinning of CuSn Bimetallic Nanoparticles/Carbon Nanofibers for Electrochemical Glucose Sensor. Appl. Surf. Sci. 2022, 573, 151528. [Google Scholar] [CrossRef]
- Hao, Z.Y.; Meng, Z.S.; Li, X.Y.; Sun, X.C.; Xu, J.; Nan, H.; Shi, W.; Qi, G.J.; Hu, X.Y.; Tian, H.W. Two-Step Fabrication of Lanthanum Nickelate and Nickel Oxide Core-Shell Dandelion-Like Materials for High-Performance Supercapacitors. J. Colloid Interface Sci. 2022, 617, 430–441. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.J.; Guo, X.L.; Zhao, J.J.; Zheng, Y.M.; Xie, H.; Zhang, Z.; Wang, S.H.; Xu, Q.; Fu, Q.P.; Zhang, T. High Performance Flower-Like Mn3O4/rGO Composite for Supercapacitor Applications. J. Electroanal. Chem. 2022, 910, 116170. [Google Scholar] [CrossRef]
- Singer, N.; Pillai, R.G.; Johnson, A.I.D.; Harris, K.D.; Jemere, A.B. Nanostructured Nickel Oxide Electrodes for Non-Enzymatic Electrochemical Glucose Sensing. Microchim. Acta 2020, 187, 196. [Google Scholar] [CrossRef]
- Dong, C.J.; Tao, Y.; Chang, Q.; Liu, Q.H.; Guan, H.T.; Chen, G.; Wang, Y.D. Direct Growth of MnCO3 on Ni Foil for a Highly Sensitive Nonenzymatic Glucose Sensor. J. Alloys Compd. 2018, 762, 216–221. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Huang, Y.Q.; Gao, P.P.; Yin, W.; Yin, M.; Pu, H.C.; Sun, Q.Q.; Liang, X.L.; Huan, B.H. Bimetal-organic Frameworks MnCo-MOF-74 Derived Co/MnO@HC for the Construction of a Novel Enzyme-free Glucose sensor. Microchem. J. 2022, 175, 107097. [Google Scholar] [CrossRef]
- Wang, L.J.; Li, Y.Y.; Zhang, C.Y.; Deng, D.M.; He, H.B.; Yan, X.X.; Li, Z.G.; Luo, L.Q. Hierarchical NiMn Layered Double Hydroxide Nanostructures on Carbon Cloth for Electrochemical Detection of Hydrogen Peroxide. ACS Appl. Nano Mater. 2022, 5, 17741–17749. [Google Scholar] [CrossRef]
- Dong, Q.Y.; He, Z.Y.; Tang, X.; Zhang, Y.; Yang, L.; Huang, K.; Jiang, X.; Xiong, X.L. One-Step Synthesis of Mn3O4@ZIF-67 on Carbon Cloth: As an Effective Non-Enzymatic Glucose Sensor. Microchem. J. 2022, 175, 107203. [Google Scholar] [CrossRef]
- Pu, F.Z.; Miao, H.R.; Lu, W.J.; Zhang, X.J.; Yang, Z.M.; Kong, C.C. High-Performance Non-Enzymatic Glucose Sensor Based on Flower-Like Cu2O-Cu-Au Ternary Nanocomposites. Appl. Surf. Sci. 2022, 581, 152389. [Google Scholar] [CrossRef]
- Wei, H.G.; Xu, Q.Z.; Li, A.; Wan, T.; Huang, Y.; Cui, D.P.; Pan, D.; Dong, D.D.; Wei, R.B.; Naik, N.; et al. Dendritic Core-Shell Copper-Nickel Alloy@Metal Oxide for Efficient Non-Enzymatic Glucose Detection. Sens. Actuators B 2021, 337, 129687. [Google Scholar] [CrossRef]
- Rani, S.D.; Ramachandran, R.; Sheet, S.; Aziz, M.A.; Lee, Y.S.; Al-Sehemi, A.G.; Pannipara, M.; Xia, Y.; Tsai, S.Y.; Ng, F.L.; et al. NiMoO4 Nanoparticles Decorated Carbon Nanofiber Membranes for the Flexible and High Performance Glucose Sensors. Sens. Actuators B 2020, 312, 127886. [Google Scholar] [CrossRef]
- He, L.; Li, J.W.; Cao, J.; Li, X.; Feng, X.F.; Zhang, J.; Yang, Y. High Performance of Non-Enzymatic Glucose Biosensors Based on the Design of Microstructure of Ni2P/Cu3P Nanocomposites. Appl. Surf. Sci. 2022, 593, 153395. [Google Scholar] [CrossRef]
- Myndrul, V.; Coy, E.; Babayevska, N.; Zahorodna, V.; Balitskyi, V.; Baginskiy, I.; Gogotsi, O.; Bechelany, M.; Giardi, M.T.; Iatsunskyi, I. MXene Nanoflakes Decorating ZnO Tetrapods for Enhanced Performance of Skin-Attachable Stretchable Enzymatic Electrochemical Glucose Sensor. Biosens. Bioelectron. 2022, 207, 114141. [Google Scholar] [CrossRef]
- Kong, X.Y.; Xia, B.; Xiao, Y.W.; Chen, H.H.; Li, H.F.; Chen, W.Z.; Wu, P.; Shen, Y.; Wu, J.S.; Li, S.; et al. Regulation of Cobalt-Nickel LDHs’ Structure and Components for Optimizing the Performance of an Electrochemical Sensor. ACS Appl. Nano Mater. 2019, 2, 6387–6396. [Google Scholar] [CrossRef]
- Wang, Y.; Cui, J.W.; Wang, Y.; Yu, D.B.; Cheng, S.; Zheng, H.M.; Shu, X.; Zhang, Y.; Wu, Y.C. Decorating Mn3O4 Nanoparticle on NiO Nanoflake Arrays for High-performance Electrochemical Biosensors. J. Solid State Electrochem. 2019, 23, 135–142. [Google Scholar] [CrossRef]
- Sinha, L.; Pakhira, S.; Bhojane, P.; Mali, S.; Hong, C.K.; Shirage, P.M. Hybridization of Co3O4 and alpha-MnO2 Nanostructures for High-Performance Nonenzymatic Glucose Sensing. ACS Sustain. Chem. Eng. 2018, 6, 13248–13261. [Google Scholar] [CrossRef]
- Tai, N.H.; Lin, M.H.; Gupta, S.; Chang, C.; Lee, C.Y. Carbon Nanotubes/Polyethylenimine/Glucose Oxidase as a Non-invasive Electrochemical Biosensor Performs High Sensitivity for Detecting Glucose in Saliva. Microchem. J. 2022, 180, 107547. [Google Scholar] [CrossRef]
- Murugan, P.; Annamalai, J.; Atchudan, R.; Govindasamy, M.; Nallaswamy, D.; Ganapathy, D.; Reshetilov, A.; Sundramoorthy, A.K. Electrochemical Sensing of Glucose Using Glucose Oxidase/PEDOT:4-Sulfocalix 4 arene/MXene Composite Modified Electrode. Micromachines 2022, 13, 304. [Google Scholar] [CrossRef]
- Dong, S.; Niu, H.W.; Sun, L.W.; Zhang, S.X.; Wu, D.Q.; Yang, Z.; Xiang, M. Highly Dense Ni-MOF Nanoflake Arrays Supported on Conductive Graphene/Carbon Fiber Substrate as Flexible Microelectrode for Electrochemical Sensing of Glucose. J. Electroanal. Chem. 2022, 911, 116219. [Google Scholar] [CrossRef]
Sensing Material | Linear Range (μM) | Detection Limit (μM) | Sensitivity (μA mM−1 cm−2) | Ref. |
---|---|---|---|---|
Mn3O4@ZIF-67/CC 1 | 0.8–6000 | 0.24 | 3421.0 | [40] |
CuCo2O4/NiO/CC | 0.5–6000 | 0.28 | 4140 | [14] |
Cu2O-Cu-Au | 0–4500 | 1.71 | 1082 | [41] |
Cu-Ni/NF | 1–600 | 2 | 11,340.25 | [42] |
NiMoO4/CNF | 0.3–4500 | 0.05 | 301.77 | [43] |
Ni2P-Cu3P | 4–5000 | 0.1 | 4700 | [44] |
ZnO/MXene | 50–700 | 17 | 29 | [45] |
Co0.33Ni0.67-HLDH 2 | 10–2000 | 3.1 | 242.9 | [46] |
Mn3O4/NiO | 9.9–3665 | 1.0 | 226.2 | [47] |
MnO2/Co3O4 | 60–7000 | 0.03 | 127 | [48] |
FTO-CNTs/PEI/GOX | 70–700 | 70 | 63.38 | [49] |
PEDOT: SCX/MXene/GOX/GCE | 500–8000 | 22.5 | - | [50] |
Ni-MOF 3/rGO 4/CF 5 | 6–2090 | 0.6 | 852 | [51] |
Mn3O4/NiO/CNFs | 5–3000 3000–12,000 | 0.73 | 386.84 243.74 | This work |
Sample | Detected (mM) | Commercial Method (mM) | RSD (%) | Recovery (%) |
---|---|---|---|---|
1 | 4.72 | 4.59 | 1.91 | 100.09 |
2 | 4.83 | 4.69 | 1.47 | 100.2 |
3 | 8.00 | 7.67 | 2.34 | 99.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Dong, J.; Deng, D.; Ouyang, X.; Yan, X.; Liu, S.; Luo, L. Mn3O4/NiO Nanoparticles Decorated on Carbon Nanofibers as an Enzyme-Free Electrochemical Sensor for Glucose Detection. Biosensors 2023, 13, 264. https://doi.org/10.3390/bios13020264
Li M, Dong J, Deng D, Ouyang X, Yan X, Liu S, Luo L. Mn3O4/NiO Nanoparticles Decorated on Carbon Nanofibers as an Enzyme-Free Electrochemical Sensor for Glucose Detection. Biosensors. 2023; 13(2):264. https://doi.org/10.3390/bios13020264
Chicago/Turabian StyleLi, Mengjie, Jie Dong, Dongmei Deng, Xun Ouyang, Xiaoxia Yan, Shima Liu, and Liqiang Luo. 2023. "Mn3O4/NiO Nanoparticles Decorated on Carbon Nanofibers as an Enzyme-Free Electrochemical Sensor for Glucose Detection" Biosensors 13, no. 2: 264. https://doi.org/10.3390/bios13020264
APA StyleLi, M., Dong, J., Deng, D., Ouyang, X., Yan, X., Liu, S., & Luo, L. (2023). Mn3O4/NiO Nanoparticles Decorated on Carbon Nanofibers as an Enzyme-Free Electrochemical Sensor for Glucose Detection. Biosensors, 13(2), 264. https://doi.org/10.3390/bios13020264