Recent Advancements in Novel Sensing Systems through Nanoarchitectonics
Abstract
:1. Introduction
2. Sensing Biomolecules via Nanoarchitectonics
3. Quartz Crystal Microbalance (QCM)-Based Sensing Techniques
4. Membrane-Type Surface Stress (MSS)-Based Sensing Platforms
5. Particle Systems
6. Conclusions and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, J.; Zhou, H.; Yang, W.; Ariga, K. Soft Nanoarchitectonics for Enantioselective Biosensing. Acc. Chem. Res. 2020, 53, 644–653. [Google Scholar] [CrossRef] [PubMed]
- Ariga, K.; Makita, T.; Ito, M.; Mori, T.; Watanabe, S.; Takeya, J. Review of Advanced Sensor Devices Employing Nanoarchitectonics Concepts. Beilstein J. Nanotechnol. 2019, 10, 2014–2030. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, Y.; Ohkura, K.; Nishina, Y. Self-Assembly Strategies for Graphene Oxide/Silica Nanostructures: Synthesis and Structural Analysis. Bull. Chem. Soc. Jpn. 2023, in press. [Google Scholar] [CrossRef]
- Miyabe, K.; Aoki, K. Moment Analysis of Solute Permeation Kinetics at an Interface of Mixed Micelles of Anionic and Nonionic Surfactants. Bull. Chem. Soc. Jpn. 2022, 95, 1715–1722. [Google Scholar] [CrossRef]
- Nishiuchi, T.; Takeuchi, S.; Makihara, Y.; Kimura, R.; Saito, S.; Sato, H.; Kubo, T. Synthesis, Properties, and Intermolecular Interactions in the Solid States of π-Congested X-Shaped 1,2,4,5-Tetra(9-Anthryl)Benzenes. Bull. Chem. Soc. Jpn. 2022, 95, 1591–1599. [Google Scholar] [CrossRef]
- Fujita, Y.; Niizeki, T.; Fukumitsu, N.; Ariga, K.; Yamauchi, Y.; Malgras, V.; Kaneti, Y.V.; Liu, C.-H.; Hatano, K.; Suematsu, H.; et al. Mechanisms Responsible for Adsorption of Molybdate Ions on Alumina for the Production of Medical Radioisotopes. Bull. Chem. Soc. Jpn. 2021, 95, 129–137. [Google Scholar] [CrossRef]
- Segawa, Y. Nonplanar Aromatic Hydrocarbons: Design and Synthesis of Highly Strained Structures. Bull. Chem. Soc. Jpn. 2022, 95, 1600–1610. [Google Scholar] [CrossRef]
- Suzuki, S.; Homma, A.; Nishi, R.; Mizuno, H.; Kawauchi, S.; Fukuhara, G. A Dynamically Responsive Chemosensor That Can Be Modulated by an Effector: Amplification Sensing by Positive Heterotropic Allosterism. Bull. Chem. Soc. Jpn. 2022, 95, 1183–1189. [Google Scholar] [CrossRef]
- Watanabe, H.; Ekuni, K.; Okuda, Y.; Nakayama, R.; Kawano, K.; Iwanaga, T.; Yamaguchi, A.; Kiyomura, T.; Miyake, H.; Yamagami, M.; et al. Composite Formation of Anthrylene- and Ferrocenoyl-Substituted Phenyleneethynylenes with Single-Wall Carbon Nanotubes (SWCNTs). Bull. Chem. Soc. Jpn. 2022, 96, 57–64. [Google Scholar] [CrossRef]
- Miura, C.; Sanada, Y.; Katsumoto, Y.; Watanabe, K. The Phase Behavior of a Mixture of the Ionic Liquids [C8mim][AzoO] and [C8mim][PF6]. Bull. Chem. Soc. Jpn. 2022, 95, 1521–1531. [Google Scholar] [CrossRef]
- Lee, G.; Kageyama, Y.; Takeda, S. Site-Selective Spin-Probe with a Photocleavable Macrocyclic Linker for Measuring the Dynamics of Water Surrounding a Liposomal Assembly. Bull. Chem. Soc. Jpn. 2022, 95, 909–921. [Google Scholar] [CrossRef]
- Ariga, K. Nanoarchitectonics for Analytical Science at Interfaces and with Supramolecular Nanostructures. Anal. Sci. 2021, 37, 1331–1348. [Google Scholar] [CrossRef] [PubMed]
- Negi, S.; Hamori, M.; Kubo, Y.; Kitagishi, H.; Kano, K. Monolayer Formation and Chiral Recognition of Binaphthyl Amphiphiles at the Air–water Interface. Bull. Chem. Soc. Jpn. 2023, 96, 48–56. [Google Scholar] [CrossRef]
- Tanks, J.; Hiroi, T.; Tamura, K.; Naito, K. Tethering Organic Disulfides to Layered Silicates: A Versatile Strategy for Photo-Controllable Dynamic Chemistry and Functionalization. Bull. Chem. Soc. Jpn. 2023, 96, 65–71. [Google Scholar] [CrossRef]
- Mizuno, K.; Mori, K.; Matsuura, S.; Hashimoto, T.; Ishihara, A. Selective Formation of P-Xylene in Catalytic Cracking of Low-Density Polyethylene Using Simultaneously Generated ZSM-5 and Mesoporous Silica with Gel Skeletal Reinforcement. Chem. Lett. 2022, 51, 1033–1036. [Google Scholar] [CrossRef]
- Charles-Blin, Y.; Kondo, T.; Wu, Y.; Bandow, S.; Awaga, K. Salt-Assisted Pyrolysis of Covalent Organic Framework for Controlled Active Nitrogen Functionalities for Oxygen Reduction Reaction. Bull. Chem. Soc. Jpn. 2022, 95, 972–977. [Google Scholar] [CrossRef]
- Ariga, K. Nanoarchitectonics approach for sensing. In Materials Nanoarchitectonics; Wiley: Hoboken, NJ, USA, 2018; pp. 255–263. ISBN 9783527808311. [Google Scholar]
- Arima, H.; Nakazono, T.; Wada, T. Proton Relay Effects on Oxygen Reduction Reaction Catalyzed by Dinuclear Cobalt Polypyridyl Complexes with OH Groups on Bipyridine Ligands. Bull. Chem. Soc. Jpn. 2022, 95, 1100–1110. [Google Scholar] [CrossRef]
- Psarra, E.; König, U.; Ueda, Y.; Bellmann, C.; Janke, A.; Bittrich, E.; Eichhorn, K.-J.; Uhlmann, P. Nanostructured Biointerfaces: Nanoarchitectonics of Thermoresponsive Polymer Brushes Impact Protein Adsorption and Cell Adhesion. ACS Appl. Mater. Interfaces 2015, 7, 12516–12529. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Feng, H.; Xu, H.; Chen, B.; Yang, T. An Intelligent Superhydrophilic/Underwater Superoleophobic Temperature Sensitive Switch Device with Excellent Targeted Oil-Water Separation Performance. Bull. Chem. Soc. Jpn. 2022, 95, 532–537. [Google Scholar] [CrossRef]
- (Baitong) Tirayaphanitchkul, C.; (Jaa) Imwiset, K.; Ogawa, M. Nanoarchitectonics through Organic Modification of Oxide Based Layered Materials; Concepts, Methods and Functions. Bull. Chem. Soc. Jpn. 2020, 94, 678–693. [Google Scholar] [CrossRef]
- Arunbalaji, S.; Ismail, M.A.M.; Arivanandhan, M.; Alsalme, A.; Alghamdi, A.; Jayavel, R. High Sensitive Electrochemical Nitrite Sensor Using Fe2O3/MoS2 Nanocomposites Synthesized by Facile Method. Bull. Chem. Soc. Jpn. 2020, 93, 1564–1570. [Google Scholar] [CrossRef]
- Arnold, G.; Winkler, R.; Stermitz, M.; Orthacker, A.; Noh, J.-H.; Fowlkes, J.D.; Kothleitner, G.; Huth, M.; Rack, P.D.; Plank, H. Tunable 3D Nanoresonators for Gas-Sensing Applications. Adv. Funct. Mater. 2018, 28, 1707387. [Google Scholar] [CrossRef]
- Adachi, J.; Naito, M.; Sugiura, S.; Le, N.H.-T.; Nishimura, S.; Huang, S.; Suzuki, S.; Kawamorita, S.; Komiya, N.; Hill, J.P.; et al. Coordination Amphiphile: Design of Planar-Coordinated Platinum Complexes for Monolayer Formation at an Air-Water Interface Based on Ligand Characteristics and Molecular Topology. Bull. Chem. Soc. Jpn. 2022, 95, 889–897. [Google Scholar] [CrossRef]
- Kimura, K.; Yasunaga, T.; Makikawa, T.; Takahashi, D.; Toshima, K. Efficient Strategy for the Preparation of Chemical Probes of Biologically Active Glycosides Using a Boron-Mediated Aglycon Delivery (BMAD) Method. Bull. Chem. Soc. Jpn. 2022, 95, 1075–1082. [Google Scholar] [CrossRef]
- Van Tran, V.; Jeong, G.; Kim, K.S.; Kim, J.; Jung, H.-R.; Park, B.; Park, J.-J.; Chang, M. Facile Strategy for Modulating the Nanoporous Structure of Ultrathin π-Conjugated Polymer Films for High-Performance Gas Sensors. ACS Sens. 2022, 7, 175–185. [Google Scholar] [CrossRef]
- Veselinovic, J.; Almashtoub, S.; Nagella, S.; Seker, E. Interplay of Effective Surface Area, Mass Transport, and Electrochemical Features in Nanoporous Nucleic Acid Sensors. Anal. Chem. 2020, 92, 10751–10758. [Google Scholar] [CrossRef] [PubMed]
- Komiyama, M.; Yoshimoto, K.; Sisido, M.; Ariga, K. Chemistry Can Make Strict and Fuzzy Controls for Bio-Systems: DNA Nanoarchitectonics and Cell-Macromolecular Nanoarchitectonics. Bull. Chem. Soc. Jpn. 2017, 90, 967–1004. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.; Chen, H.; Li, L.; An, R.; Komiyama, M. Ring-Structured DNA and RNA as Key Players In Vivo and In Vitro. Bull. Chem. Soc. Jpn. 2021, 94, 141–157. [Google Scholar] [CrossRef]
- Nishijima, Y.; Juodkazis, S. The Tunable Coupling between Metasurface and Molecular Vibration towards the Platform of Spectral Analysis. Bull. Chem. Soc. Jpn. 2022, 95, 1318–1324. [Google Scholar] [CrossRef]
- Kawasaki, Y.; Nakagawa, M.; Ito, T.; Imura, Y.; Wang, K.-H.; Kawai, T. Chiral Transcription from Chiral Au Nanowires to Self-Assembled Monolayers of Achiral Azobenzene Derivatives. Bull. Chem. Soc. Jpn. 2022, 95, 1006–1010. [Google Scholar] [CrossRef]
- Mitomo, H.; Ijiro, K. Controlled Nanostructures Fabricated by the Self-Assembly of Gold Nanoparticles via Simple Surface Modifications. Bull. Chem. Soc. Jpn. 2021, 94, 1300–1310. [Google Scholar] [CrossRef]
- Rastogi, R.; Dogbe Foli, E.A.; Vincent, R.; Adam, P.-M.; Krishnamoorthy, S. Engineering Electromagnetic Hot-Spots in Nanoparticle Cluster Arrays on Reflective Substrates for Highly Sensitive Detection of (Bio)Molecular Analytes. ACS Appl. Mater. Interfaces 2021, 13, 32653–32661. [Google Scholar] [CrossRef]
- Larasati, L.; Lestari, W.W.; Firdaus, M. Dual-Action Pt(IV) Prodrugs and Targeted Delivery in Metal-Organic Frameworks: Overcoming Cisplatin Resistance and Improving Anticancer Activity. Bull. Chem. Soc. Jpn. 2022, 95, 1561–1577. [Google Scholar] [CrossRef]
- Ohyoshi, T.; Zhao, Y.; Akemoto, K.; Ishihara, T.; Taniguchi, A.; Zhang, M.; Kigoshi, H. Bioinspired Total Synthesis and Structure-Activity Relationship Studies on Aplaminal. Bull. Chem. Soc. Jpn. 2022, 95, 1242–1249. [Google Scholar] [CrossRef]
- Hu, K.; Sun, W.; Tang, R.; Zhang, B.; An, R.; Liang, X. Ethanolamine Derivatives Prompt Oxidation-Mediated Cleavage of Phosphorothioated DNA via Redox Control and Competition with Desulphurization. Bull. Chem. Soc. Jpn. 2022, 95, 1578–1590. [Google Scholar] [CrossRef]
- Neal, E.A.; Nakanishi, T. Alkyl-Fullerene Materials of Tunable Morphology and Function. Bull. Chem. Soc. Jpn. 2021, 94, 1769–1788. [Google Scholar] [CrossRef]
- Nishikawa, M.; Kang, H.G.; Zou, Y.; Takeuchi, H.; Matsuno, N.; Suzuki, M.; Komatsu, N. Conjugation of Phenylboronic Acid Moiety through Multistep Organic Transformations on Nanodiamond Surface for an Anticancer Nanodrug for Boron Neutron Capture Therapy. Bull. Chem. Soc. Jpn. 2021, 94, 2302–2312. [Google Scholar] [CrossRef]
- Shrestha, R.G.; Maji, S.; Mallick, A.K.; Jha, A.; Shrestha, R.M.; Rajbhandari, R.; Hill, J.P.; Ariga, K.; Shrestha, L.K. Hierarchically Porous Carbon from Phoenix Dactylifera Seed for High-Performance Supercapacitor Applications. Bull. Chem. Soc. Jpn. 2022, 95, 1060–1067. [Google Scholar] [CrossRef]
- Kaneko, M.; Nakayama, T.; Seki, H.; Yamamoto, S.; Uemura, T.; Inoue, K.; Hadano, S.; Watanabe, S.; Niko, Y. Lipophilic Nitrile N-Oxide for Catalyst-Free Surface Modification of Nanoemulsions as Light-Harvesting Nanoantennas. Bull. Chem. Soc. Jpn. 2022, 95, 1760–1768. [Google Scholar] [CrossRef]
- Zeng, R.; Xu, J.; Liang, T.; Li, M.; Tang, D. Photocurrent-Polarity-Switching Photoelectrochemical Biosensor for Switching Spatial Distance Electroactive Tags. ACS Sens. 2023, 8, 317–325. [Google Scholar] [CrossRef]
- Yoshida, K.; Hayashi, T.; Takinoue, M.; Onoe, H. Repeatable Detection of Ag+ Ions Using a DNA Aptamer-Linked Hydrogel Biochemical Sensor Integrated with Microfluidic Heating System. Sci. Rep. 2022, 12, 9692. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.; Gurudatt, N.G.; Jeon, J.; Ban, C.; Shim, Y.B. Fast Aptamer Generation Method Based on the Electrodynamic Microfluidic Channel and Evaluation of Aptamer Sensor Performance. Anal. Chem. 2021, 93, 1416–1422. [Google Scholar] [CrossRef] [PubMed]
- Podder, A.; Lee, H.J.; Kim, B.H. Fluorescent Nucleic Acid Systems for Biosensors. Bull. Chem. Soc. Jpn. 2020, 94, 1010–1035. [Google Scholar] [CrossRef]
- Hiratsuka, K.; Salim, F.T.; Takahashi, K.; Nakamura, T.; Sagara, Y. Crystal Structure of a 4,7-Bis(Phenylethynyl)-2,1,3-Benzothiadiazole-Based Cyclophane and the Mechanoresponsive Luminescence. Bull. Chem. Soc. Jpn. 2022, 95, 1474–1480. [Google Scholar] [CrossRef]
- Ariga, K.; Yamauchi, Y. Nanoarchitectonics from Atom to Life. Chem. Asian J. 2020, 15, 718–728. [Google Scholar] [CrossRef]
- Liang, X.; Liu, M.; Komiyama, M. Recognition of Target Site in Various Forms of DNA and RNA by Peptide Nucleic Acid (PNA): From Fundamentals to Practical Applications. Bull. Chem. Soc. Jpn. 2021, 94, 1737–1756. [Google Scholar] [CrossRef]
- Itoh, T.; Procházka, M.; Dong, Z.-C.; Ji, W.; Yamamoto, Y.S.; Zhang, Y.; Ozaki, Y. Toward a New Era of SERS and TERS at the Nanometer Scale: From Fundamentals to Innovative Applications. Chem. Rev. 2023, in press. [Google Scholar] [CrossRef]
- Karthick, V.; Shrestha, L.K.; Kumar, V.G.; Pranjali, P.; Kumar, D.; Pal, A.; Ariga, K. Nanoarchitectonics Horizons: Materials for Life Sciences. Nanoscale 2022, 14, 10630–10647. [Google Scholar] [CrossRef]
- Fan, S.; Takada, T.; Maruyama, A.; Fujitsuka, M.; Kawai, K. Large Heterogeneity Observed in Single Molecule Measurements of Intramolecular Electron Transfer Rates through DNA. Bull. Chem. Soc. Jpn. 2022, 95, 1697–1702. [Google Scholar] [CrossRef]
- Imai, Y.; Mimura, Y.; Motomura, Y.; Ikemura, R.; Shizuma, M.; Kitamatsu, M. Controlling Excimer-Origin Circularly Polarized Luminescence of Bipyrenyl-Arginine Peptides by Cyclodextrin in Water. Bull. Chem. Soc. Jpn. 2023, in press. [Google Scholar] [CrossRef]
- Utomo, D.H.; Kita, M. Binding Mode of Actin–aplyronine A–tubulin Heterotrimeric Complex Revealed by Molecular Dynamics Simulation. Bull. Chem. Soc. Jpn. 2023, in press. [Google Scholar] [CrossRef]
- Liu, M.; Cui, Y.; Zhang, Y.; An, R.; Li, L.; Park, S.; Sugiyama, H.; Liang, X. Single Base-Modification Reports and Locates Z-DNA Conformation on a Z-B-Chimera Formed by Topological Constraint. Bull. Chem. Soc. Jpn. 2022, 95, 433–439. [Google Scholar] [CrossRef]
- Murata, T.; Minami, K.; Yamazaki, T.; Sato, T.; Koinuma, H.; Ariga, K.; Matsuki, N. Nanometer-Flat DNA-Featured Thin Films Prepared via Laser Molecular Beam Deposition under High-Vacuum for Selective Methanol Sensing. Bull. Chem. Soc. Jpn. 2023, 96, 29–34. [Google Scholar] [CrossRef]
- Sun, D.; Lu, J.; Luo, Z.; Zhang, L.; Liu, P.; Chen, Z. Competitive Electrochemical Platform for Ultrasensitive Cytosensing of Liver Cancer Cells by Using Nanotetrahedra Structure with Rolling Circle Amplification. Biosens. Bioelectron. 2018, 120, 8–14. [Google Scholar] [CrossRef]
- Pang, P.; Lai, Y.; Zhang, Y.; Wang, H.; Conlan, X.A.; Barrow, C.J.; Yang, W. Recent Advancement of Biosensor Technology for the Detection of Microcystin-LR. Bull. Chem. Soc. Jpn. 2020, 93, 637–646. [Google Scholar] [CrossRef]
- Zhang, J.; Lei, J.; Xu, C.; Ding, L.; Ju, H. Carbon Nanohorn Sensitized Electrochemical Immunosensor for Rapid Detection of Microcystin-LR. Anal. Chem. 2010, 82, 1117–1122. [Google Scholar] [CrossRef]
- Pang, P.; Teng, X.; Chen, M.; Zhang, Y.; Wang, H.; Yang, C.; Yang, W.; Barrow, C.J. Ultrasensitive Enzyme-Free Electrochemical Immunosensor for Microcystin-LR Using Molybdenum Disulfide/Gold Nanoclusters Nanocomposites as Platform and Au@Pt Core-Shell Nanoparticles as Signal Enhancer. Sens. Actuators B Chem. 2018, 266, 400–407. [Google Scholar] [CrossRef]
- Prakash, R.; Usha, G.; Karpagalakshmi, K.; Ramalakshmi, S.; Piramuthu, L.; Yang, C.; Selvapalam, N. Vitamin B1 Sensor at Neutral PH and Improvement by Cucurbit[7]Uril. Bull. Chem. Soc. Jpn. 2019, 92, 1503–1508. [Google Scholar] [CrossRef]
- Kim, W.; Hwang, W.; Kim, N.H.; Kim, J.; Baek, K.; Kim, K. Permselective Two-Dimensional Polymer Film-Based Chemical Sensors. Bull. Chem. Soc. Jpn. 2021, 94, 869–871. [Google Scholar] [CrossRef]
- Han, X.; Wang, S.; Liu, M.; Liu, L. A Cucurbit[6]Uril-Based Supramolecular Assembly as a Multifunctional Material for the Detection and Removal of Organic Explosives and Antibiotics. Bull. Chem. Soc. Jpn. 2022, 95, 1445–1452. [Google Scholar] [CrossRef]
- Harding, D.P.; Bootsma, A.N.; Wheeler, S.E. Better Sensing through Stacking: The Role of Non-Covalent Interactions in Guanine-Binding Sensors. J. Phys. Chem. B 2019, 123, 487–495. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhang, Y.; Arora, P.; Guan, X. Nanopore Stochastic Sensing Based on Non-Covalent Interactions. Anal. Chem. 2021, 93, 10974–10981. [Google Scholar] [CrossRef] [PubMed]
- Xiang, D.; Zhang, Z.; Han, Z.; Zhang, X.; Zhou, Z.; Zhang, J.; Luo, X.; Wang, P.; Zhao, C.; Li, Y. Effects of Non-Covalent Interactions on the Properties of 3D Printed Flexible Piezoresistive Strain Sensors of Conductive Polymer Composites. Compos. Interfaces 2020, 28, 577–591. [Google Scholar] [CrossRef]
- Jimbo, A.; Nishikado, Y.; Imura, K. Optical Field and Chemical Environment Near the Surface Modified Gold Nanoparticle Assembly Revealed by Two-Photon Induced Photoluminescence and Surface Enhanced Raman Scattering. Bull. Chem. Soc. Jpn. 2021, 94, 2272–2278. [Google Scholar] [CrossRef]
- Wang, X.; Tian, X.; Zhao, K.; Wu, L.; Cao, J.; Shen, S. Oxygen-Independent Free Radicals Induced by Photothermal Effect of Fe3O4 for Hypoxic Cancer Therapy. Chem. Lett. 2022, 51, 633–635. [Google Scholar] [CrossRef]
- Jin, C.; Wu, Z.; Molinski, J.H.; Zhou, J.; Ren, Y.; Zhang, J.X.J. Plasmonic Nanosensors for Point-of-Care Biomarker Detection. Mater. Today Bio 2022, 14, 100263. [Google Scholar] [CrossRef]
- Mitomo, H.; Takeuchi, C.; Sugiyama, R.; Tamada, K.; Ijiro, K. Thermo-Responsive Silver Nanocube Assembled Films. Bull. Chem. Soc. Jpn. 2022, 95, 771–773. [Google Scholar] [CrossRef]
- Luo, X.; Zhu, C.; Saito, M.; Espulgar, W.V.; Dou, X.; Terada, Y.; Obara, A.; Uchiyama, S.; Tamiya, E. Cauliflower-Like Nanostructured Localized Surface Plasmon Resonance Biosensor Chip for Cytokine Detection. Bull. Chem. Soc. Jpn. 2020, 93, 1121–1126. [Google Scholar] [CrossRef]
- Chang, C.-Y.; Lin, H.-T.; Lai, M.-S.; Shieh, T.-Y.; Peng, C.-C.; Shih, M.-H.; Tung, Y.-C. Flexible Localized Surface Plasmon Resonance Sensor with Metal–Insulator–Metal Nanodisks on PDMS Substrate. Sci. Rep. 2018, 8, 11812. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Murray, J.; Haverstick, J.; Tripp, R.A.; Zhao, Y. Silver Nanotriangle Array Based LSPR Sensor for Rapid Coronavirus Detection. Sens. Actuators B Chem. 2022, 359, 131604. [Google Scholar] [CrossRef]
- Qiu, G.; Ng, S.P.; Liang, X.; Ding, N.; Chen, X.; Wu, C.-M.L. Label-Free LSPR Detection of Trace Lead(II) Ions in Drinking Water by Synthetic Poly(mPD-co-ASA) Nanoparticles on Gold Nanoislands. Anal. Chem. 2017, 89, 1985–1993. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Li, L.; Li, X.; Lin, C.; Zhang, Y. Construction of Boronate-Affinity Magnetic Immunity SERS Sensor and Detection of Alpha-Fetoprotein (AFP) in Human Serum. Bull. Chem. Soc. Jpn. 2021, 94, 860–868. [Google Scholar] [CrossRef]
- Sunayama, H.; Takamiya, K.; Takano, E.; Horikawa, R.; Kitayama, Y.; Takeuchi, T. Simultaneous Detection of Two Tumor Marker Proteins Using Dual-Colored Signaling Molecularly Imprinted Polymers Prepared via Multi-Step Post-Imprinting Modifications. Bull. Chem. Soc. Jpn. 2021, 94, 525–531. [Google Scholar] [CrossRef]
- Amishiro, S.; Ueda, M.; Mazaki, Y. Synthesis, Structures, and Properties of Tropone-Fused Coumarin Dyes. Bull. Chem. Soc. Jpn. 2022, 95, 1723–1729. [Google Scholar] [CrossRef]
- Ma, J.; He, W.; Meng, F.; Fu, Y. 2-Methylimidazole-Induced Synthesis of 2D Amorphous FeCoNi Ternary Hydroxides Nanosheets by Mechanochemical Approach for Oxygen Evolution Reaction. Bull. Chem. Soc. Jpn. 2022, 95, 178–184. [Google Scholar] [CrossRef]
- Heidari, A.; Mansouri-Torshizi, H.; Saeidifar, M.; Abdi, K. Experimental and Computational Studies on the Interaction between DNA and BSA with a Couple of Isomeric [Pd(Daf)(Leu)]+, and [Pd(Daf)(Ile)]+ Antitumor Complexes, Their Synthesis and Spectral Characterization. Bull. Chem. Soc. Jpn. 2021, 94, 2678–2694. [Google Scholar] [CrossRef]
- Yashima, E.; Maeda, K. Helical Polymers with Dynamic and Static Macromolecular Helicity Memory: The Power of Helicity Memory for Helical Polymer Synthesis and Applications. Bull. Chem. Soc. Jpn. 2021, 94, 2637–2661. [Google Scholar] [CrossRef]
- Gao, N.; Gao, T.; Yang, X.; Dai, X.; Zhou, W.; Zhang, A.; Lieber, C.M. Specific Detection of Biomolecules in Physiological Solutions Using Graphene Transistor Biosensors. Proc. Natl. Acad. Sci. USA 2016, 113, 14633–14638. [Google Scholar] [CrossRef] [Green Version]
- Curry, E.J.; Ke, K.; Chorsi, M.T.; Wrobel, K.S.; Miller, A.N.; Patel, A.; Kim, I.; Feng, J.; Yue, L.; Wu, Q.; et al. Biodegradable Piezoelectric Force Sensor. Proc. Natl. Acad. Sci. USA 2018, 115, 909–914. [Google Scholar] [CrossRef] [Green Version]
- Salahuddin, B.; Masud, M.K.; Aziz, S.; Liu, C.-H.; Amiralian, N.; Ashok, A.; Hossain, S.M.A.; Park, H.; Wahab, M.A.; Amin, M.A.; et al. κ-Carrageenan Gel Modified Mesoporous Gold Chronocoulometric Sensor for Ultrasensitive Detection of MicroRNA. Bull. Chem. Soc. Jpn. 2022, 95, 198–207. [Google Scholar] [CrossRef]
- Hamashita, Y.; Kise, N.; Sakurai, T. Suppression of Intracellular Gene Expression by Inchworm-Type PNA-PEG Conjugate Depends on Recognition of a Monobasic Mutation. Bull. Chem. Soc. Jpn. 2021, 94, 1804–1806. [Google Scholar] [CrossRef]
- Huo, W.; Miki, K.; Tokunaga, D.; Mu, H.; Oe, M.; Harada, H.; Ohe, K. Dual-Stimuli-Responsive Probes for Detection of Ovarian Cancer Cells and Quantification of Both PH and Enzyme Activity. Bull. Chem. Soc. Jpn. 2021, 94, 2068–2075. [Google Scholar] [CrossRef]
- Kumar, V. Urea/Thiourea Based Optical Sensors for Toxic Analytes: A Convenient Path for Detection of First Nerve Agent (Tabun). Bull. Chem. Soc. Jpn. 2020, 94, 309–326. [Google Scholar] [CrossRef]
- López-Salas, N.; Antonietti, M. Carbonaceous Materials: The Beauty of Simplicity. Bull. Chem. Soc. Jpn. 2021, 94, 2822–2828. [Google Scholar] [CrossRef]
- Hieda, M.; Tsujimura, K.; Kinoshita, M.; Matsumori, N. Formation of a Tight Complex between Amphidinol 3 and Sterols in Lipid Bilayers Revealed by Short-Range Energy Transfer. Bull. Chem. Soc. Jpn. 2022, 95, 1753–1759. [Google Scholar] [CrossRef]
- Yamamoto, C.; Suzuki, M.; Yoshida, S. Pyridazine Synthesis from 1,2,4,5-Tetrazines and Alkynes in 1,1,1,3,3,3-Hexafluoro-2-Propanol through the Inverse Electron Demand Diels–Alder Reaction. Bull. Chem. Soc. Jpn. 2022, 95, 1741–1746. [Google Scholar] [CrossRef]
- Kosaki, Y.; Izawa, H.; Ishihara, S.; Kawakami, K.; Sumita, M.; Tateyama, Y.; Ji, Q.; Krishnan, V.; Hishita, S.; Yamauchi, Y.; et al. Nanoporous Carbon Sensor with Cage-in-Fiber Structure: Highly Selective Aniline Adsorbent toward Cancer Risk Management. ACS Appl. Mater. Interfaces 2013, 5, 2930–2934. [Google Scholar] [CrossRef]
- Shrestha, L.K.; Adhikari, L.; Shrestha, R.G.; Adhikari, M.P.; Adhikari, R.; Hill, J.P.; Pradhananga, R.R.; Ariga, K. Nanoporous Carbon Materials with Enhanced Supercapacitance Performance and Non-Aromatic Chemical Sensing with C1/C2 Alcohol Discrimination. Sci. Technol. Adv. Mater. 2016, 17, 483–492. [Google Scholar] [CrossRef] [Green Version]
- Maji, S.; Shrestha, L.K.; Ariga, K. Nanoarchitectonics for Hierarchical Fullerene Nanomaterials. Nanomaterials 2021, 11, 2146. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, F.; Sumino, S.; Iwai, T.; Ito, T. Design of Linearly Substituted Fullerene Bis-Adducts with High Dielectric Constants Based on Theoretical Calculations. Bull. Chem. Soc. Jpn. 2021, 94, 1833–1839. [Google Scholar] [CrossRef]
- Furuuchi, N.; Shrestha, R.G.; Yamashita, Y.; Hirao, T.; Ariga, K.; Shrestha, L.K. Self-Assembled Fullerene Crystals as Excellent Aromatic Vapor Sensors. Sensors 2019, 19, 267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, Z.; Song, J.; Ma, R.; Ariga, K.; Shrestha, L.K. Self-Assembled Corn-Husk-Shaped Fullerene Crystals as Excellent Acid Vapor Sensors. Chemosensors 2022, 10, 16. [Google Scholar] [CrossRef]
- Chen, G.; Bhadra, B.N.; Sutrisno, L.; Shrestha, L.K.; Ariga, K. Fullerene Rosette: Two-Dimensional Interactive Nanoarchitectonics and Selective Vapor Sensing. Int. J. Mol. Sci. 2022, 23, 5454. [Google Scholar] [CrossRef] [PubMed]
- Baskar, A.V.; Ruban, A.M.; Davidraj, J.M.; Singh, G.; Al-Muhtaseb, A.H.; Lee, J.M.; Yi, J.; Vinu, A. Single-Step Synthesis of 2D Mesoporous C60/Carbon Hybrids for Supercapacitor and Li-Ion Battery Applications. Bull. Chem. Soc. Jpn. 2020, 94, 133–140. [Google Scholar] [CrossRef]
- Minami, K.; Imamura, G.; Tamura, R.; Shiba, K.; Yoshikawa, G. Recent Advances in Nanomechanical Membrane-Type Surface Stress Sensors towards Artificial Olfaction. Biosensors 2022, 12, 762. [Google Scholar] [CrossRef] [PubMed]
- Bairi, P.; Minami, K.; Nakanishi, W.; Hill, J.P.; Ariga, K.; Shrestha, L.K. Hierarchically Structured Fullerene C 70 Cube for Sensing Volatile Aromatic Solvent Vapors. ACS Nano 2016, 10, 6631–6637. [Google Scholar] [CrossRef] [PubMed]
- Maji, S.; Shrestha, R.G.; Lee, J.; Han, S.A.; Hill, J.P.; Kim, J.H.; Ariga, K.; Shrestha, L.K. Macaroni Fullerene Crystals-Derived Mesoporous Carbon Tubes as a High Rate Performance Supercapacitor Electrode Material. Bull. Chem. Soc. Jpn. 2021, 94, 1502–1509. [Google Scholar] [CrossRef]
- Islam, M.S.; Shudo, Y.; Hayami, S. Energy Conversion and Storage in Fuel Cells and Super-Capacitors from Chemical Modifications of Carbon Allotropes: State-of-Art and Prospect. Bull. Chem. Soc. Jpn. 2022, 95, 1–25. [Google Scholar] [CrossRef]
- Shan, Y.; Zhang, G.; Yin, W.; Pang, H.; Xu, Q. Recent Progress in Prussian Blue/Prussian Blue Analogue-Derived Metallic Compounds. Bull. Chem. Soc. Jpn. 2021, 95, 230–260. [Google Scholar] [CrossRef]
- Ivandini, T.A.; Einaga, Y. Electrochemical Sensing Applications Using Diamond Microelectrodes. Bull. Chem. Soc. Jpn. 2021, 94, 2838–2847. [Google Scholar] [CrossRef]
- Afreen, S.; Kokubo, K.; Muthoosamy, K.; Manickam, S. Hydration or Hydroxylation: Direct Synthesis of Fullerenol from Pristine Fullerene [C60] via Acoustic Cavitation in the Presence of Hydrogen Peroxide. RSC Adv. 2017, 7, 31930–31939. [Google Scholar] [CrossRef] [Green Version]
- Matsuo, Y. Creation of Highly Efficient and Durable Organic and Perovskite Solar Cells Using Nanocarbon Materials. Bull. Chem. Soc. Jpn. 2021, 94, 1080–1089. [Google Scholar] [CrossRef]
- Ariga, K.; Vinu, A.; Ji, Q.; Ohmori, O.; Hill, J.P.; Acharya, S.; Koike, J.; Shiratori, S. A Layered Mesoporous Carbon Sensor Based on Nanopore-Filling Cooperative Adsorption in the Liquid Phase. Angew. Chem. Int. Ed. 2008, 47, 7254–7257. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, C.-T.; Hsu, S.; Maji, S.; Chahal, M.K.; Song, J.; Hill, J.P.; Ariga, K.; Shrestha, L.K. Post-Assembly Dimension-Dependent Face-Selective Etching of Fullerene Crystals. Mater. Horizons 2020, 7, 787–795. [Google Scholar] [CrossRef]
- Song, J.; Murata, T.; Tsai, K.; Jia, X.; Sciortino, F.; Ma, R.; Yamauchi, Y.; Hill, J.P.; Shrestha, L.K.; Ariga, K. Fullerphene Nanosheets: A Bottom-Up 2D Material for Single-Carbon-Atom-Level Molecular Discrimination. Adv. Mater. Interfaces 2022, 9, 2102241. [Google Scholar] [CrossRef]
- Shoji, S.; Stepanenko, V.; Würthner, F.; Tamiaki, H. Self-Assembly of a Zinc Bacteriochlorophyll-d Analog with a Lipophilic Tertiary Amide Group in the 17-Substituent. Bull. Chem. Soc. Jpn. 2022, 95, 1083–1085. [Google Scholar] [CrossRef]
- Shimizu, T.; Lungerich, D.; Stuckner, J.; Murayama, M.; Harano, K.; Nakamura, E. Real-Time Video Imaging of Mechanical Motions of a Single Molecular Shuttle with Sub-Millisecond Sub-Angstrom Precision. Bull. Chem. Soc. Jpn. 2020, 93, 1079–1085. [Google Scholar] [CrossRef]
- Shevchenko, V.V.; Gumenna, M.; Lee, H.; Klimenko, N.; Stryutsky, O.; Trachevsky, V.; Korolovych, V.; Tsukruk, V. V Reactive Amphiphilic Aprotic Ionic Liquids Based on Functionalized Oligomeric Silsesquioxanes. Bull. Chem. Soc. Jpn. 2021, 94, 2263–2271. [Google Scholar] [CrossRef]
- Shichijo, K.; Watanabe, M.; Hisaeda, Y.; Shimakoshi, H. Development of Visible Light-Driven Hybrid Catalysts Composed of Earth Abundant Metal Ion Modified TiO2 and B12 Complex. Bull. Chem. Soc. Jpn. 2022, 95, 1016–1024. [Google Scholar] [CrossRef]
- Kameda, Y.; Kowaguchi, M.; Amo, Y.; Usuki, T.; Okuyama, D.; Sato, T.J. Experimental Determination of Deviation from Spherical Electron Densities of Atoms in Benzene Molecules in the Liquid State. Bull. Chem. Soc. Jpn. 2022, 95, 1680–1686. [Google Scholar] [CrossRef]
- Nishikawa, M.; Murata, T.; Ishihara, S.; Shiba, K.; Shrestha, L.K.; Yoshikawa, G.; Minami, K.; Ariga, K. Discrimination of Methanol from Ethanol in Gasoline Using a Membrane-Type Surface Stress Sensor Coated with Copper(I) Complex. Bull. Chem. Soc. Jpn. 2021, 94, 648–654. [Google Scholar] [CrossRef]
- Hu, X.; Hu, R.; Wu, X.; Songsun, F.; Zhu, H.; Chen, J.; Chen, H. Self-Assembled Fabrication of Water-Soluble Porphyrin Mediated Supramolecule-Gold Nanoparticle Networks and Their Application in Selective Sensing. Bull. Chem. Soc. Jpn. 2021, 94, 2662–2669. [Google Scholar] [CrossRef]
- Miyaji, A.; Amao, Y. Mechanism of Formate Dehydrogenase Catalyzed CO2 Reduction with the Cation Radical of a 2,2′-Bipyridinium Salt Based on a Theoretical Approach. Bull. Chem. Soc. Jpn. 2022, 95, 1703–1714. [Google Scholar] [CrossRef]
- Osica, I.; Imamura, G.; Shiba, K.; Ji, Q.; Shrestha, L.K.; Hill, J.P.; Kurzydłowski, K.J.; Yoshikawa, G.; Ariga, K. Highly Networked Capsular Silica-Porphyrin Hybrid Nanostructures as Efficient Materials for Acetone Vapor Sensing. ACS Appl. Mater. Interfaces 2017, 9, 9945–9954. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Na, J.; Konarova, M.; Wakihara, T.; Yamauchi, Y.; Salomon, C.; Gawande, M.B. Functional Mesoporous Silica Nanomaterials for Catalysis and Environmental Applications. Bull. Chem. Soc. Jpn. 2020, 93, 1459–1496. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, D.; Ubukata, T.; Seki, T. Unconventional Approaches to Light-Promoted Dynamic Surface Morphing on Polymer Films. Bull. Chem. Soc. Jpn. 2021, 95, 138–162. [Google Scholar] [CrossRef]
- Franchino, A.; Montesinos-Magraner, M.; Echavarren, A.M. Silver-Free Catalysis with Gold(I) Chloride Complexes. Bull. Chem. Soc. Jpn. 2020, 94, 1099–1117. [Google Scholar] [CrossRef]
- Itai, T.; Kuwamura, N.; Kojima, T.; Yoshinari, N.; Rujiwatra, A.; Konno, T. Photoluminescent Ionic Solids of S-Bridged Gold(I)-Gallium(III) and Gold(I)-Indium(III) Hexanuclear Complexes. Bull. Chem. Soc. Jpn. 2021, 94, 2076–2078. [Google Scholar] [CrossRef]
- Osica, I.; Melo, A.F.A.A.; Lima, F.C.D.A.; Shiba, K.; Imamura, G.; Crespilho, F.N.; Betlej, J.; Kurzydowski, K.J.; Yoshikawa, G.; Ariga, K. Nanomechanical Recognition and Discrimination of Volatile Molecules by Au Nanocages Deposited on Membrane-Type Surface Stress Sensors. ACS Appl. Nano Mater. 2020, 3, 4061–4068. [Google Scholar] [CrossRef] [Green Version]
- Bairi, P.; Minami, K.; Hill, J.P.; Ariga, K.; Shrestha, L.K. Intentional Closing/Opening of “Hole-in-Cube” Fullerene Crystals with Microscopic Recognition Properties. ACS Nano 2017, 11, 7790–7796. [Google Scholar] [CrossRef]
- Tang, Q.; Maji, S.; Jiang, B.; Sun, J.; Zhao, W.; Hill, J.P.; Ariga, K.; Fuchs, H.; Ji, Q.; Shrestha, L.K. Manipulating the Structural Transformation of Fullerene Microtubes to Fullerene Microhorns Having Microscopic Recognition Properties. ACS Nano 2019, 13, 14005–14012. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, Y.; Lyu, X.; Tang, W.; Wu, H.; Minami, T. Polythiophene-Based Chemical Sensors: Toward On-Site Supramolecular Analytical Devices. Bull. Chem. Soc. Jpn. 2021, 94, 2613–2622. [Google Scholar] [CrossRef]
- Ariga, K. Materials Nanoarchitectonics in a Two-Dimensional World within a Nanoscale Distance from the Liquid Phase. Nanoscale 2022, 14, 10610–10629. [Google Scholar] [CrossRef]
- Ariga, K.; Minami, K.; Shrestha, L.K. Nanoarchitectonics for Carbon-Material-Based Sensors. Analyst 2016, 141, 2629–2638. [Google Scholar] [CrossRef] [PubMed]
- Takashima, Y.; Martínez, V.M.; Furukawa, S.; Kondo, M.; Shimomura, S.; Uehara, H.; Nakahama, M.; Sugimoto, K.; Kitagawa, S. Molecular Decoding Using Luminescence from an Entangled Porous Framework. Nat. Commun. 2011, 2, 168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
S. No | Sensing Platform | Detection | Sample | Reference |
---|---|---|---|---|
1 | Nanometer-flat DNA thin film | QCM | Methanol | [54] |
2 | DNA nanotetrahedron | Electrochemical | Liver cancer cells | [55] |
3 | Carbon nanohorn | Electrochemical | Microcystin-leucine arginine | [57] |
4 | Cucurbit[6]uril-based hierarchic assembly | Fluorescence | Nitroaromatic compounds | [61] |
5 | Human angiotensin-converting enzyme 2 protein functionalized silver nanotriangle array sensor | Immobilization | Coronavirus | [71] |
6 | Boronate-Affinity Magnetic Immunity SERS Sensor | SERS | Alpha-Fetoprotein | [73] |
7 | Poly(methyl methacrylate) containing carbon nanocage sensor | QCM | Aniline | [88] |
8 | Bamboo-derived nanoporous carbon | QCM | VOCs | [89] |
9 | Bitter melon-shaped nanoporous C60 fullerene crystals | QCM | VOCs | [92] |
10 | Corn-Husk-Shaped C60 fullerene crystals | QCM | VOCs | [93] |
11 | C60 fullerene Rosette | QCM | VOCs | [94] |
12 | Hierarchical C70 fullerene Cube | QCM | VOCs | [97] |
13 | Fullerphene nanosheets | QCM | VOCs | [106] |
14 | Cu (1,10-phenanthroline) ((±)-2,2′-bis(diphenylphosphino)-1,1′-binaphth-yl) hexafluorophosphate | MSS | VOCs | [112] |
15 | Silica flake−shell capsules functionalized with 5-[4-(N-(3-triethoxysilylpropylbenzamido))]-10,15,20-triphenylporphyrin | MSS | VOCs | [115] |
16 | Au Nanocages | MSS | VOCs | [120] |
17 | C70 fullerene “Hole-in-Cube” | Particle | Carbon/resin particles | [121] |
18 | Fullerene microhorns | Particle | Silica, polystyrene and C70 particles | [122] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velu, K.; Shrestha, R.G.; Shrestha, L.K.; Ariga, K. Recent Advancements in Novel Sensing Systems through Nanoarchitectonics. Biosensors 2023, 13, 286. https://doi.org/10.3390/bios13020286
Velu K, Shrestha RG, Shrestha LK, Ariga K. Recent Advancements in Novel Sensing Systems through Nanoarchitectonics. Biosensors. 2023; 13(2):286. https://doi.org/10.3390/bios13020286
Chicago/Turabian StyleVelu, Karthick, Rekha Goswami Shrestha, Lok Kumar Shrestha, and Katsuhiko Ariga. 2023. "Recent Advancements in Novel Sensing Systems through Nanoarchitectonics" Biosensors 13, no. 2: 286. https://doi.org/10.3390/bios13020286
APA StyleVelu, K., Shrestha, R. G., Shrestha, L. K., & Ariga, K. (2023). Recent Advancements in Novel Sensing Systems through Nanoarchitectonics. Biosensors, 13(2), 286. https://doi.org/10.3390/bios13020286