Sensing Properties of g-C3N4/Au Nanocomposite for Organic Vapor Detection
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Instruments
2.2. Synthesis of g-C3N4 Nanosheets/Au Nanocomposite
2.3. Sensing Test
3. Results and Discussion
3.1. Characterization
3.2. Gas Sensing Operation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Verma, G.; Gupta, A. Recent development in carbon nanotubes based gas sensors. J. Mater. Nano Sci. 2022, 9, 3–12. [Google Scholar]
- Galstyan, V.; Comini, E.; Kholmanov, I.; Faglia, G.; Sberveglieri, G. Reduced graphene oxide/ZnO nanocomposite for application in chemical gas sensors. RSC Adv. 2016, 6, 34225–34232. [Google Scholar] [CrossRef]
- Varghese, S.S.; Lonkar, S.; Singh, K.; Swaminathan, S.; Abdala, A. Recent advances in graphene based gas sensors. Sens. Actuators B Chem. 2015, 218, 160–183. [Google Scholar] [CrossRef]
- Tomić, M.; Šetka, M.; Chmela, O.; Gràcia, I.; Figueras, E.; Cané, C.; Vallejos, S. Cerium oxide-tungsten oxide core-shell nanowire-based microsensors sensitive to acetone. Biosensors 2018, 8, 116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibrahim, A.; Memon, U.; Duttagupta, S.; Mahesh, I.; Raman, R.S.; Sarkar, A.; Pendharkar, G.; Tatiparti, S. Nano-structured palladium impregnate graphitic carbon nitride composite for efficient hydrogen gas sensing. Int. J. Hydrog. Energy 2020, 45, 10623–10636. [Google Scholar] [CrossRef]
- Ismael, M. A review on graphitic carbon nitride (g-C3N4) based nanocomposites: Synthesis, categories, and their application in photocatalysis. J. Alloys Compd. 2020, 846, 156446. [Google Scholar] [CrossRef]
- Shanbhag, Y.M.; Shanbhag, M.M.; Malode, S.J.; Dhanalakshmi, S.; Mondal, K.; Shetti, N.P. Direct and sensitive electrochemical evaluation of pramipexole using graphitic carbon nitride (gCN) sensor. Biosensors 2022, 12, 552. [Google Scholar] [CrossRef]
- Khushaim, W.; Mani, V.; Peramaiya, K.; Huang, K.-W.; Salama, K.N. Ruthenium and Nickel Molybdate-Decorated 2D Porous Graphitic Carbon Nitrides for Highly Sensitive Cardiac Troponin Biosensor. Biosensors 2022, 12, 783. [Google Scholar] [CrossRef]
- Absalan, S.; Nasresfahani, S.; Sheikhi, M. High-performance carbon monoxide gas sensor based on palladium/tin oxide/porous graphitic carbon nitride nanocomposite. J. Alloys Compd. 2019, 795, 79–90. [Google Scholar] [CrossRef]
- Tian, H.; Fan, H.; Ma, J.; Liu, Z.; Ma, L.; Lei, S.; Fang, J.; Long, C. Pt-decorated zinc oxide nanorod arrays with graphitic carbon nitride nanosheets for highly efficient dual-functional gas sensing. J. Hazard. Mater. 2018, 341, 102–111. [Google Scholar] [CrossRef]
- Ullah, M.; Bai, X.; Chen, J.; Lv, H.; Liu, Z.; Zhang, Y.; Wang, J.; Sun, B.; Li, L.; Shi, K. Metal-organic framework material derived Co3O4 coupled with graphitic carbon nitride as highly sensitive NO2 gas sensor at room temperature. Colloids Surf. A Physicochem. Eng. Asp. 2021, 612, 125972. [Google Scholar] [CrossRef]
- Qin, C.; Wang, Y.; Gong, Y.; Zhang, Z.; Cao, J. CuO-ZnO hetero-junctions decorated graphitic carbon nitride hybrid nanocomposite: Hydrothermal synthesis and ethanol gas sensing application. J. Alloys Compds. 2019, 770, 972–980. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Tian, W.; Cao, J. Graphitic carbon nitride nanosheets decorated flower-like NiO composites for high-performance triethylamine detection. ACS Omega 2019, 4, 9645–9653. [Google Scholar] [CrossRef] [PubMed]
- Malik, R.; Tomer, V.K.; Dankwort, T.; Mishra, Y.K.; Kienle, L. Cubic mesoporous Pd–WO 3 loaded graphitic carbon nitride (g-CN) nanohybrids: Highly sensitive and temperature dependent VOC sensors. J. Mater. Chem. A 2018, 6, 10718–10730. [Google Scholar] [CrossRef]
- Meng, F.; Chang, Y.; Qin, W.; Yuan, Z.; Zhao, J.; Zhang, J.; Han, E.; Wang, S.; Yang, M.; Shen, Y. ZnO-reduced graphene oxide composites sensitized with graphitic carbon nitride nanosheets for ethanol sensing. ACS Appl. Nano Mater. 2019, 2, 2734–2742. [Google Scholar] [CrossRef]
- Zhang, L.; Dong, R.; Zhu, Z.; Wang, S. Au nanoparticles decorated ZnS hollow spheres for highly improved gas sensor performances. Sens. Actuators B Chem. 2017, 245, 112–121. [Google Scholar] [CrossRef]
- Dai, E.; Wu, S.; Ye, Y.; Cai, Y.; Liu, J.; Liang, C. Highly dispersed Au nanoparticles decorated WO3 nanoplatelets: Laser-assisted synthesis and superior performance for detecting ethanol vapor. J. Colloid Interface Sci. 2018, 514, 165–171. [Google Scholar] [CrossRef]
- Zhang, J.; Chaker, M.; Ma, D. Pulsed laser ablation based synthesis of colloidal metal nanoparticles for catalytic applications. J. Colloid Interface Sci. 2017, 489, 138–149. [Google Scholar] [CrossRef]
- Pantidos, N.; Horsfall, L.E. Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. J. Nanomed. Nanotechnol. 2014, 5, 1. [Google Scholar] [CrossRef]
- Nasri, A.; Jaleh, B.; Khazalpour, S.; Nasrollahzadeh, M.; Shokouhimehr, M. Facile synthesis of graphitic carbon nitride/chitosan/Au nanocomposite: A catalyst for electrochemical hydrogen evolution. Int. J. Biol. Macromol. 2020, 164, 3012–3024. [Google Scholar] [CrossRef]
- Arnawtee, W.H.; Jaleh, B.; Nasrollahzadeh, M.; Bakhshali-Dehkordi, R.; Nasri, A.; Orooji, Y. Lignin valorization: Facile synthesis, characterization and catalytic activity of multiwalled carbon nanotubes/kraft lignin/Pd nanocomposite for environmental remediation. Sep. Purif. Technol. 2022, 290, 120793. [Google Scholar] [CrossRef]
- Jamkhande, P.G.; Ghule, N.W.; Bamer, A.H.; Kalaskar, M.G. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. J. Drug Deliv. Sci. Technol. 2019, 53, 101174. [Google Scholar] [CrossRef]
- Nasri, A.; Jaleh, B.; Nezafat, Z.; Nasrollahzadeh, M.; Azizian, S.; Jang, H.W.; Shokouhimehr, M. Fabrication of g-C3N4/Au nanocomposite using laser ablation and its application as an effective catalyst in the reduction of organic pollutants in water. Ceram. Int. 2021, 47, 3565–3572. [Google Scholar] [CrossRef]
- Oberländer, J.; Jildeh, Z.B.; Kirchner, P.; Wendeler, L.; Bromm, A.; Iken, H.; Wagner, P.; Keusgen, M.; Schöning, M.J. Study of interdigitated electrode arrays using experiments and finite element models for the evaluation of sterilization processes. Sensors 2015, 15, 26115–26127. [Google Scholar] [CrossRef] [Green Version]
- Araghi, M.E.A.; Vatanpour, V. Tuning the band gap of the graphene oxide-chloro aluminum phthalocyanine nanocomposite by reducing the rate of graphene oxide. Physica E Low Dimens. Syst. Nanostruct. 2020, 115, 113636. [Google Scholar]
- Daneshnazar, M.; Jaleh, B.; Eslamipanah, M.; Varma, R.S. Optical and gas sensing properties of TiO2/RGO for methanol, ethanol and acetone vapors. Inorg. Chem. Commun. 2022, 145, 110014. [Google Scholar] [CrossRef]
- Arafat, M.; Dinan, B.; Akbar, S.A.; Haseeb, A. Gas sensors based on one dimensional nanostructured metal-oxides: A review. Sensors 2012, 12, 7207–7258. [Google Scholar] [CrossRef]
- Kumar, A.; De, A.; Saxena, A.; Mozumdar, S. Environmentally benign synthesis of positively charged, ultra-low sized colloidal gold in universal solvent. Adv. Nat. Sci. Nanosci. 2014, 5, 025017. [Google Scholar] [CrossRef]
- Venkateswarlu, K.; Bose, A.C.; Rameshbabu, N. X-ray peak broadening studies of nanocrystalline hydroxyapatite by Williamson–Hall analysis. Phys. B Condens. Matter 2010, 405, 4256–4261. [Google Scholar] [CrossRef]
- Yang, S.; Gong, Y.; Zhang, J.; Zhan, L.; Ma, L.; Fang, Z.; Vajtai, R.; Wang, X.; Ajayan, P.M. Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Adv. Mater. 2013, 25, 2452–2456. [Google Scholar] [CrossRef]
- Meng, W.; Wu, S.; Wang, X.; Zhang, D. High-sensitivity resistive humidity sensor based on graphitic carbon nitride nanosheets and its application. Sens. Actuators B Chem. 2020, 315, 128058. [Google Scholar] [CrossRef]
- Jiang, G.; Zhou, C.-H.; Xia, X.; Yang, F.; Tong, D.; Yu, W.; Liu, S. Controllable preparation of graphitic carbon nitride nanosheets via confined interlayer nanospace of layered clays. Mater. Lett. 2010, 64, 2718–2721. [Google Scholar] [CrossRef]
- Gao, J.; Wang, J.; Qian, X.; Dong, Y.; Xu, H.; Song, R.; Yan, C.; Zhu, H.; Zhong, Q.; Qian, G. One-pot synthesis of copper-doped graphitic carbon nitride nanosheet by heating Cu-melamine supramolecular network and its enhanced visible-light-driven photocatalysis. J. Solid State Chem. 2015, 228, 60–64. [Google Scholar] [CrossRef]
- Azizi-Toupkanloo, H.; Karimi-Nazarabad, M.; Shakeri, M.; Eftekhari, M. Photocatalytic mineralization of hard-degradable morphine by visible light-driven Ag@g-C3N4 nanostructures. Environ. Sci. Pollut. Res. 2019, 26, 30941–30953. [Google Scholar] [CrossRef] [PubMed]
- Makuła, P.; Pacia, M.; Macyk, W. How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV-Vis spectra. J. Phys. Chem. Lett. 2018, 9, 6814–6817. [Google Scholar] [CrossRef] [Green Version]
- Nazila, Z.; Rasuli, R. Anchored Cu2O nanoparticles on graphene sheets as an inorganic hole transport layer for improvement in solar cell performance. Appl. Phys. A 2018, 124, 814. [Google Scholar] [CrossRef]
- Zhang, H.-p.; Du, A.; Gandhi, N.S.; Jiao, Y.; Zhang, Y.; Lin, X.; Lu, X.; Tang, Y. Metal-doped graphitic carbon nitride (g-C3N4) as selective NO2 sensors: A first-principles study. Appl. Surf. Sci. 2018, 455, 1116–1122. [Google Scholar] [CrossRef]
- Zhu, J.; Diao, T.; Wang, W.; Xu, X.; Sun, X.; Carabineiro, S.A.; Zhao, Z. Boron doped graphitic carbon nitride with acid-base duality for cycloaddition of carbon dioxide to epoxide under solvent-free condition. Appl. Catal. B Environ. 2017, 219, 92–100. [Google Scholar] [CrossRef]
- Tomer, V.K.; Malik, R.; Kailasam, K. Near-room-temperature ethanol detection using Ag-loaded mesoporous carbon nitrides. ACS Omega 2017, 2, 3658–3668. [Google Scholar] [CrossRef] [Green Version]
- Sahani, S.; Park, S.J.; Myung, Y.; Pham, T.-H.; Tung, T.T.; Kim, T. Enhanced Room-Temperature Ethanol Detection by Quasi 2D Nanosheets of an Exfoliated Polymeric Graphitized Carbon Nitride Composite-Based Patterned Sensor. ACS Omega 2022, 7, 41905–41914. [Google Scholar] [CrossRef]
- Deng, J.; Yu, B.; Lou, Z.; Wang, L.; Wang, R.; Zhang, T. Facile synthesis and enhanced ethanol sensing properties of the brush-like ZnO-TiO2 heterojunctions nanofibers. Sens. Actuators B Chem. 2013, 184, 21–26. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, D.; Guo, W.; Chen, S. The α-Fe2O3/g-C3N4 heterostructural nanocomposites with enhanced ethanol gas sensing performance. J. Alloys Compd. 2016, 685, 84–90. [Google Scholar] [CrossRef]
- Malik, R.; Tomer, V.K.; Chaudhary, V.; Dahiya, M.S.; Rana, P.S.; Nehra, S.; Duhan, S. Facile synthesis of hybridized mesoporous Au@TiO2/SnO2 as efficient photocatalyst and selective VOC sensor. ChemistrySelect 2016, 1, 3247–3258. [Google Scholar] [CrossRef]
- Cao, J.; Gong, Y.; Wang, Y.; Zhang, B.; Zhang, H.; Sun, G.; Bala, H.; Zhang, Z. Cocoon-like ZnO decorated graphitic carbon nitride nanocomposite: Hydrothermal synthesis and ethanol gas sensing application. Mater. Lett. 2017, 198, 76–80. [Google Scholar] [CrossRef]
- Cao, J.; Qin, C.; Wang, Y. Synthesis of g-C3N4 nanosheets decorated flower-like tin oxide composites and their improved ethanol gas sensing properties. J. Alloys Compd. 2017, 728, 1101–1109. [Google Scholar] [CrossRef]
- Hu, J.; Zou, C.; Su, Y.; Li, M.; Yang, Z.; Ge, M.; Zhang, Y. One-step synthesis of 2D C3N4-tin oxide gas sensors for enhanced acetone vapor detection. Sens. Actuators B Chem. 2017, 253, 641–651. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, J.; Qin, C.; Zhang, B.; Sun, G.; Zhang, Z. Synthesis and enhanced ethanol gas sensing properties of the g-C3N4 nanosheets-decorated tin oxide flower-like nanorods composite. Nanomaterials 2017, 7, 285. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Wang, Z.; Wang, X.; Sun, F.; Gao, K.; Hao, N.; Zhang, Z.; Ma, Z.; Li, H.; Huang, X. Orientation controlled preparation of nanoporous carbon nitride fibers and related composite for gas sensing under ambient conditions. Nano Res. 2017, 10, 1710–1719. [Google Scholar] [CrossRef]
- Li, X.; Tian, W.; Jia, J.; Cao, J.; Zhang, Z.; Wang, Y. Synthesis of graphitic carbon nitride nanosheets decorated spherical-like nickel oxide composites for carbon monoxide gas-sensing application. Micro Nano Lett. 2019, 14, 1410–1413. [Google Scholar] [CrossRef]
- Li, X.; Li, Y.; Sun, G.; Luo, N.; Zhang, B.; Zhang, Z. Synthesis of a flower-like g-C3N4/ZnO hierarchical structure with improved CH4 sensing properties. Nanomaterials 2019, 9, 724. [Google Scholar] [CrossRef] [Green Version]
- Karthik, P.; Gowthaman, P.; Venkatachalam, M.; Saroja, M. Design and fabrication of g-C3N4 nanosheets decorated TiO2 hybrid sensor films for improved performance towards CO2 gas. Inorg. Chem. Commun. 2020, 119, 108060. [Google Scholar] [CrossRef]
- Wang, H.; Bai, J.; Dai, M.; Liu, K.; Liu, Y.; Zhou, L.; Liu, F.; Liu, F.; Gao, Y.; Yan, X. Visible light activated excellent NO2 sensing based on 2D/2D ZnO/g-C3N4 heterojunction composites. Sens. Actuators B Chem. 2020, 304, 127287. [Google Scholar] [CrossRef]
- Sun, Q.; Hao, J.; Zheng, S.; Wan, P.; Li, J.; Zhang, D.; Li, Y.; Wang, T.; Wang, Y. 2D/2D heterojunction of g-C3N4/SnS2: Room-temperature sensing material for ultrasensitive and rapid-recoverable NO2 detection. Nanotechnology 2020, 31, 425502. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, A.; Jiao, C.; Chu, X.; Liang, S.; Dong, Y.; He, L. Acetone sensing properties of the g-C3N4-CuO nanocomposites prepared by hydrothermal method. Mater. Chem. Phys. 2021, 265, 124375. [Google Scholar] [CrossRef]
Sample | Gas Volume (ppm) | Ethanol (%) | Methanol (%) | Acetone (%) |
---|---|---|---|---|
CNN/Au | 60 | 3.2 | 13.8 | 1.1 |
80 | 6.9 | 16.4 | 1.6 | |
100 | 27.3 | 25.1 | 1.8 | |
120 | 39.7 | 54.2 | 5.7 | |
140 | 45.5 | 72.6 | 7.4 | |
CNN | 140 | 7.9 | 17.2 | 6.2 |
Sample | Gas Volume (ppm) | Ethanol (s) | Methanol (s) | Acetone (s) |
---|---|---|---|---|
CNN/Au | 60 | 31 | 19 | 23 |
80 | 27 | 17 | 20 | |
100 | 25 | 16 | 19 | |
120 | 22 | 17 | 21 | |
140 | 20 | 14 | 20 | |
CNN | 140 | 19 | 18 | 17 |
Sample | Gas Volume (ppm) | Ethanol (s) | Methanol (s) | Acetone (s) |
---|---|---|---|---|
CNN/Au | 60 | 24 | 28 | 22 |
80 | 23 | 27 | 21 | |
100 | 19 | 24 | 22 | |
120 | 17 | 22 | 18 | |
140 | 14 | 20 | 18 | |
CNN | 140 | 20 | 21 | 22 |
Nanocomposite | Target Gas (ppm) | Operating Temperature (°C) | Response | Ref |
---|---|---|---|---|
ZnO/g-C3N4 | Ethanol (500) | 350 | 350.1 (Ra/Rg) | [44] |
SnS2/g-C3N4 | Ethanol (500) | 300 | 360 (Ra/Rg) | [45] |
SnO2/g-C3N4 | Acetone (20) | 380 | 11 (Vg/Va) | [46] |
SnO2/g-C3N4 | Ethanol (500) | 340 | 150 (Ra/Rg) | [47] |
Au/g-C3N4 | NO2 (300) | 450 | 80% (Ra − R0)/Ra × 100) | [48] |
Ag/g-C3N4 | Ethanol (50) | 250 | 49.2 (Ra/Rg) | [39] |
NiO/g-C3N4 | CO (500) | 240 | 2.729 (Rg/Ra) | [49] |
ZnO/g-C3N4 | CH4 (1000) | 320 | 11.9 (Ra/Rg) | [50] |
g-C3N4/TiO2 | CO2 (1500) | 450 | 88% (Rg − Ra/Ra × 100) | [51] |
ZnO/g-C3N4 | NO2 (7) | RT | 44.8 (Rg/Ra) | [52] |
SnS2/g-C3N4 | NO2 (1) | RT | 503% (Rg − Ra/Ra × 100) | [53] |
g-C3N4/CuO | Acetone (1000) | RT | 143.7 (Rg/Ra) | [54] |
CNN/Au | Methanol (140) | 65 | 72.6% (Ra − Rg/Ra × 100) | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nasri, A.; Jaleh, B.; Daneshnazar, M.; Varma, R.S. Sensing Properties of g-C3N4/Au Nanocomposite for Organic Vapor Detection. Biosensors 2023, 13, 315. https://doi.org/10.3390/bios13030315
Nasri A, Jaleh B, Daneshnazar M, Varma RS. Sensing Properties of g-C3N4/Au Nanocomposite for Organic Vapor Detection. Biosensors. 2023; 13(3):315. https://doi.org/10.3390/bios13030315
Chicago/Turabian StyleNasri, Atefeh, Babak Jaleh, Milad Daneshnazar, and Rajender S. Varma. 2023. "Sensing Properties of g-C3N4/Au Nanocomposite for Organic Vapor Detection" Biosensors 13, no. 3: 315. https://doi.org/10.3390/bios13030315
APA StyleNasri, A., Jaleh, B., Daneshnazar, M., & Varma, R. S. (2023). Sensing Properties of g-C3N4/Au Nanocomposite for Organic Vapor Detection. Biosensors, 13(3), 315. https://doi.org/10.3390/bios13030315