Application of Nanozymes in Environmental Monitoring, Management, and Protection
Abstract
:1. Introduction
2. Tuning Catalytic Activity
2.1. Size and Shape
2.2. Composition and Doping
2.3. Surface Coating
2.4. Other Factors
3. Improvement of the Specificity
4. Environmental Monitoring
4.1. Toxic Ions
4.2. Organic Pollutants
4.3. Foodborne Pathogens
Category | Analyte | Nanozyme | Activity | Detection Mode | Detection Range | LOD | Ref. |
---|---|---|---|---|---|---|---|
Toxic ions | Fe2+/Pb2+ | MnO2 | CAT | Colorimetric | 0.001~0.02 mmol/L 0.05~0.4 mmol/L | 0.5 μmol/L 2 μmol/L | [73] |
F− | AgPt-Fe3O4 | POD | Colorimetric | 50~2000 μM | 13.73 μM | [74] | |
Nitrite | AuNP-CeO2 NP@GO | OXD | Colorimetric | 100~5000 μM | 4.6 M | [75] | |
Cl−, Br−, I− | Ag3Cit | OXD | Colorimetric | / | 26, 12, 7 nM | [76] | |
Cu2+ | E-ChlCu/ZnO | POD | Colorimetric | 0–1/1–15 μM | 0.024 μM | [77] | |
As3+ | Pd-DTT | OXD | Colorimetric | 33~3.333 × 105 ng/L | 35 ng/L | [78] | |
Fe2+ | C-dots/Mn3O4 NCs | OXD | Colorimetric | 0.03~0.83 μM | 0.03 μM | [79] | |
Nitrite | His@AuNCs/RGO | POD | Electrochemical | 2.5~5700 μM | 0.5 μM | [80] | |
Hg2+ | MXene/DNA/Pt NCs | POD | Colorimetric | 50~250 nM | 9.0 nM | [81] | |
Fe3+ | NCD/UiO-66 NCs | SOD POD | Colorimetric | 0~0.1 mM | / | [82] | |
Cr6+ | PEI-AgNCs | OXD | Colorimetric | / | 1.1 μM | [83] | |
Fe2+ | AuRu aerogels | OXD POD | Colorimetric | 5~250 μmol/L | 0.7 μmol/L | [84] | |
Hg2+ | CS-MoSe2NS | POD OXD | Colorimetric | 0.1~4.0 μM | 3.5 nM | [85] | |
Fe3+ | MoSe2@Fe | POD | Colorimetric | 25~300 μM | 1.97 μM | [86] | |
F− | R-MnCo2O4/Au NTs | POD | SERS | 0.1~10 nM | 0.1 nM | [87] | |
Sn2+ | nano-UO2 | POD | Colorimetric | 0.5–100 μM | 0.36 μM | [88] | |
PO43− | MB@ZrHCF | POD | Colorimetric | 10~200 μM | 2.25 μM | [89] | |
Cr3+ | GdOOH | Phospholipase | Colorimetric | 5.0~200 μM | 0.84 μM | [90] | |
Hg2+ | AuPd@UiO-67 | POD | Electrochemical | 1~106 mM | 0.16 nmol/l | [58] | |
Al3+ | Single atom Ce-N-C | Laccase | Colorimetric | 5–25 μg/mL | 22.89 ng/mL | [91] | |
Cr6+ | CD/g-C3N4 | POD | Colorimetric | 0.3–1.5 μM | 0.31 μM | [92] | |
Hg2+ | CuS HNS | POD | Colorimetric | 50~4 × 105 ng/mL | 50 ng/L | [93] | |
As3+ | CoOOH | POD | Electrochemical | 0.1~200 μg/L | 56.1 ng/L | [94] | |
Cr6+ | Cu-PyC MOF | POD | Colorimetric | 0.5–50 μM | 0.051 μM | [95] | |
Cr6+ | Ni/Al LDH (Ni/Al–Fe(CN)6 LDH) | POD | Colorimetric | 0.067~10 mM | 0.039 mM | [96] | |
Pb2+ | Tannic Acid@Au NPs | POD | Colorimetric | 25~500 ng/mL | 11.3 ng/mL | [97] | |
S2− | MoS2/g-C3N4HNs | POD | Colorimetric | 0.1~10 μM | 37 nM | [98] | |
S2− | PDA@Co3O4NPs | CAT | Colorimetric | 4.3~200 μM | 4.3 μM | [99] | |
As3+ | AuNPs | POD | Colorimetric | 0.01~11.67 mg/L | 0.008 mg/L | [100] | |
S2− | GMP-Cu | Laccase | Colorimetric | 0~220 μmol/L | 0.67 μmol/L | [101] | |
Hg2+ | Ag2S@GO | OXD | Colorimetric | 5.0~120.0 × 10−8 M | 9.8 × 10–9 mol/L | [102] | |
Cu2+ | MMoO | POD | Colorimetric | 0.1~24 μM | 0.024 μM | [103] | |
Cr6+ | MOF | OXD | Colorimetric | 0.1~30 μM | 20 nM | [104] | |
Cr6+ | CuS-frGO | POD | Colorimetric | 0–200 nM | 26.60 nM | [105] | |
Cr6+ | SA-Fe/NG | POD | Colorimetric | 30~3 μM | 3 nM | [106] | |
Cr3+ | CuFe2O4/rGO | POD | Colorimetric | 0.1~25 μM | 35 nM | [107] | |
Hg2+ | L-cysteine@GO | POD | Colorimetric | 0~200 μg/L | 5 μg/L | [59] | |
Hg2+ | PtNPs | POD | Colorimetric | 20~3000 nM | 10.5 nM | [108] | |
Hg2+ | Au-HBNz | POD | Colorimetric | 0.008~20 μg/mL | 1.10 ng/mL | [109] | |
Hg2+ | AuPt@DSN | POD | Colorimetric | 0.1~103 nM | 8.58 pM | [110] | |
Hg2+ | MVC-MOF | OXD | Colorimetric | 0.05~6 μM | 10.5 nM | [111] | |
Hg2+ | Citrate-capped Cu NPs | POD | Colorimetric | 0.100~6.000 μM | 0.052 μM | [112] | |
Hg2+ | Fe-MoS2@AuNPs | POD | Electrochemical | 0.5~200 nM | 0.2 nM | [113] | |
Hg2+ | Ag NWs | OXD | Colorimetric | 25∼5000 μg/L | 19.9 ng/L | [114] | |
Hg2+ | Cys-Fe3O4 | POD | Colorimetric | 0.02–90 nM | 5.9 pM | [115] | |
Hg2+ | His-AuNCs | OXD | Colorimetric | 0.05–0.8 μM | 8 nM | [116] | |
Ag+ | MnO2 NSs | OXD | Colorimetric | 0.02~1.0 μM | 6.7 nM | [61] | |
As5+ | FeOOH | POD | Electrochemical | 0.04~200 μg/L | 12 ng/L | [60] | |
Al3+ | Nanoceria | Phosphatase | Electrochemical | 30~3.5 × 103 nM | 10 nM | [117] | |
H2O2 | MA-Hem/Au-Ag | POD | Colorimetric | 0.010–2.50 mM | 2.5 μM | [118] | |
H2O2 | Pt/CeO2/NCNFs | CAT | Electrochemical | 0.0005–15 mM | 0.049 μM | [119] | |
Phenolic | Phenol Compounds | 1-Methylimidazole/Cu Nanozyme | Laccase | Colorimetric | 0.5~4 μg/mL | 0.57 μg/ml | [120] |
2,4-dinitrophenol | polymer-Fe-doped ceria/Au NC | POD | Colorimetric | 1~100 μg/mL | 2.4 μM | [121] | |
Hydroquinone | NiCo2O4@MnO2 | POD OXD | Colorimetric | 0~24 μM | 0.042 μM | [67] | |
Hydroquinone | Co1.5Mn1.5O4 | OXD | Colorimetric | 0.05∼100μM | 0.04μM | [66] | |
2,4,6-TNT | 2H–MoS2/Co3O4 | OXD | Electrochemical | / | 1 pM | [122] | |
Hydroqui-none | Fe3O4@COF | POD | Colorimetric | 0.5~300 μmol L | 0.12 μmol L | [123] | |
2,4-DP | AMP-Cu | Laccase | Colorimetric | 0.1~100 μmol/L | 0.033 μmol/L | [124] | |
2,4-DP | MnCo@C NCs | Laccase | Electrochemical | 3.1~122.7 μM | 0.76 μM | [125] | |
2,4-DP | NiFe2O4 | POD | Colorimetric | 0.218~3.282 μg/mL | 0.311 μg/mL | [126] | |
OPs | Carbendazim | MoS2/MWCNTs | OXD | Electrochemical | 0.04~100 μM | 7.4 nM | [127] |
parathion ethyl | C-Au NPs | POD | Colorimetric | 11.6~92.8 ng/mL | 5.8 ng/mL | [128] | |
Dichlorvos | γ-MnOOH NWs | OXD | Colorimetric | 0~15 ng/mL | 3 ng/ml | [129] | |
Diazinon | LDH@ZIF-8 | POD | Colorimetric | 0.5~300 nM | 0.22 nM | [63] | |
Paraoxon | 2D MnO2 | OXD POD | Electrochemical | 0.1~20 ng/mL | 0.025 ng/mL | [130] | |
Benomyl | AgNPs/MWCNTs/GO | OXD | Electrochemical | 0.2~122.2 μM | / | [131] | |
Dimethoate | Pt NPs | POD | Colorimetric | 0.5~9 μg/mL | 0.15 μg/mL | [132] | |
Naphthalene acetic acid | Ti3C2-MXene/BP | OXD | Electrochemical | 0.02~40 μM | 1.6 nM | [133] | |
Parathion | NiO-SPE | OXD | Electrochemical | 0.1~30 μM | 0.024 μM | [134] | |
MeHg | NA-CDs/AuNPs | POD | Colorimetric | 0.375~75 μg L | 0.06 μg L | [135] | |
Chlorpyrifos | Ag-Nanozyme | POD | Colorimetric | 35~210 ppm | 11.3 ppm | [136] | |
Omethoate | SACe-N-C | POD | Colorimetric | 100~700 μg/mL | 55.83 ng/mL | [137] | |
Methyl-paraoxon | Nanoceria | Laccase | Colorimetric | 0.42~126 μM | 0.42 μmol/L | [138] | |
Methyl-paraoxon | CeO2 | POD OXD | Electrochemical | 0.1~100 μmol/L | 0.06 μmol/L | [139] | |
Methyl-parathion | Fe3O4/C-dots@Ag-MOFs | / | Electrochemical | 5 × 10−11~2 × 10−9 mol/L | 1.16 × 10−11 mol/L | [140] | |
Atrazine | Fe3O4-TiO2/rGO | POD | Colorimetric | 2~20 mμ g/L | 2.98 μg/L | [141] | |
Glyphosate | Au@PN | POD | Colorimetric | 0.5~20 nM | 0.24 nM | [142] | |
Glyphosate | Porous Co3O4 | POD | Colorimetric | 8~80 μg/L | 2.37 μg/L | [143] | |
Glyphosate | Fe3O4@C7/PB | POD | Colorimetric | 0.125~15 μg/mL | 0.1 μg/mL | [144] | |
Carbaryl | NH2-MIL-101(Fe) | POD | Colorimetric | 2~100 ng/mL | 1.45 ng/mL | [145] | |
Chlorophenols | Fe3O4@MnOx | OXD | Colorimetric | 10~1600 μM | 0.85 μM | [146] | |
Fipronil | ZIF-8 | POD | Colorimetric | 0.2~4μM | 0.036 μM | [147] | |
Malathion | Fe-N/C SAzyme | OXD | Colorimetric | 0.5~10 nM | 0.42 nM | [148] | |
Antibiotic residues | Sulfamethazine | PtNi NCs | POD | Photoelectrochemical | 0.05~103 pg/mL | 37.2 fg/mL | [64] |
Sulfonamides | 2D Cu-TCPP (Fe) | POD | Electrochemical | 1.186~28.051 ng/mL | 0.395 ng/mL | [149] | |
Streptomycin | Au@Pt NPs | POD | Lateral Flow Immunoassays | 0.062~0.271 ng/mL | 1 ng/mL | [150] | |
Tetracycline | Cu-doped-g-C3N4 | POD | Colorimetric | 0.1~50 μM | 31.51 nM | [151] | |
Tetracycline | Fe3O4@MIP | POD | Colorimetric | 2~225 μM | 0.4 μM | [152] | |
Tetracycline | MIL-101(Fe/Co) | POD | Colorimetric | 1–8 μM | 0.24 μM | [153] | |
Norfloxacin | FO@ZMFO@FM-MOG | CAT OXD POD | Colorimetric | 0.415–6.21 μM | 52 nM | [65] | |
Kanamycin | CoFe2O4NPs | POD | Electrochemical | 1~10−6 μM | 0.5 pM | [62] | |
Chloramphenicol | Co3O4 | POD | Electrochemiluminescence | 5 × 10−13~4 × 10−10 mol/L | 1.18 × 10−13 mol/L | [154] | |
Kanamycin | WS2 Nanosheets | POD | Colorimetric | 0.1–0.5 μM | 0.06 μM | [155] | |
Metronidazole | MIL-53 (Fe)@ molecularly imprinted polymer (MIP) | POD | Colorimetric | 1~200 μM | 53.4 nM | [156] | |
Foodborne pathogens | Staphylococcus aureus | Cu-C3N4-TiO2 | POD | Photoelectrochemical | 10~108 CFU/mL | 3.40 CFU/mL | [71] |
Staphylococcus aureus | Pd@Pt NPs | POD | Lateral Flow Immunoassays | 10–300 ng/mL | 9.56 ng/mL | [70] | |
Salmonella typhimurium | IPs-Pt | POD | Colorimetric | 104~106 CFU/mL | 103 CFU/mL | [69] | |
Escherichia coli | Au NRs | OXD | Colorimetric | 1.0 × 102~1.0 × 105 CFU/mL | 22 CFU/mL | [68] | |
E. coli O157:H7 | Au-Pt dumbbell NPs | POD | Colorimetric | 10~107 CFU/mL | 2 CFU/mL | [157] | |
E. coli O157:H7 | man-Pediatric lead (PB) | POD | Lateral Flow Immunoassays | 102~108 CFU/mL | 102 CFU/mL | [158] | |
E. coli O157:H7 | P2W18Fe4/PDA | POD | Colorimetric | 103~106 CFU/mL | 4.2 × 102 CFU/mL | [72] |
5. Environmental Management
6. Other Environmental Protection Applications
6.1. Air Purification
6.2. Antibacterial and Antifouling Agent
6.3. Enzyme-like Nanomaterial (Nanozyme)-Based Biofuel Cells
7. Conclusions and Prospects
- At present, the types of nanozymes are still too few, and they are mainly concentrated in the oxidoreductase family and hydrolase family. Compared with the six categories of natural enzymes, there is still an urgent need to unlock more simulated enzymes with different catalytic activities to expand the scope of application.
- Nanozymes are a succedaneum for natural enzymes, but the catalytic activity of most nanozymes is far inferior to natural enzymes. Hence, strategies need to be continuously explored to improve their catalytic activity.
- Nanozymes can show good performance in the laboratory. Nevertheless, they are still disadvantaged because they cannot be used on a large scale for the actual pollutant treatment industry, such as catalytic devices requiring high-precision technology, short service life, and higher cost than traditional environmental treatment methods.
- Although some nanozymes that break through the restriction of pH have appeared, most nanozymes are still limited by pH with narrow range. Technological breakthroughs are still needed in this regard so that the catalytic activity of most nanozymes is no longer limited by pH.
- Nanozymes are intrinsically toxic. It is vital to design low-toxicity nanozymes by adjusting their physical and chemical properties such as size, shape, surface properties, surface charge, and chemical composition to avoid secondary contamination.
- In recent years, nanozymes with multienzyme activity have been continuously developed, which can be used for multifunctional applications. However, at the same time, facing the challenge that the selectivity of nanozymes with multienzyme activity is lower than that of single-enzyme live nanozymes, will challenge researchers to balance the relationship between "multifunction" and “high selectivity” as well as achieve a win–win situation.
- Recently, the specificity of nanozyme is much lower than that of natural enzyme. The design of nanozyme should be committed to better a bionic biological enzyme’s active center and binding site, and the recognition element should be stably and effectively connected to the nanozyme. In addition, it is critical to explore the mechanism and law of interactions between nanozyme and a recognition element. Meanwhile, it is still necessary to improve the performance of nanozyme sensors by combining the research results of specific recognition in other fields and sensing technologies.
- Nanozyme detection mostly relies on colorimetric sensing, but colorimetric sensing has the problems of large interference and low sensitivity. In addition to electrochemistry, photoelectrochemistry, and surface-enhanced Raman scattering (SERS), adding more detection modes can have unexpected effects on environmental monitoring.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Van Beilen, J.B.; Li, Z. Enzyme technology: An overview. Curr. Opin. Biotechnol. 2002, 13, 338–344. [Google Scholar] [CrossRef]
- Jaeger, K.E.; Eggert, T. Enantioselective biocatalysis optimized by directed evolution. Curr. Opin. Biotechnol. 2004, 15, 305–313. [Google Scholar] [CrossRef]
- Huang, W.; Huang, S.M.; Chen, G.S.; Ouyang, G.F. Biocatalytic Metal-Organic Frameworks: Promising Materials for Biosensing. Chembiochem 2022, 23, e202100567. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Galan, C.; Berenguer-Murcia, A.; Fernandez-Lafuente, R.; Rodrigues, R.C. Potential of Different Enzyme Immobilization Strategies to Improve Enzyme Performance. Adv. Synth. Catal. 2011, 353, 2885–2904. [Google Scholar] [CrossRef]
- Breslow, R.; Baldwin, S.W. Conversion of cholestanol to 12-ketocholestanol and to delta14-cholestenol and delta8(14)-cholestenol by remote oxidation. J. Am. Chem. Soc. 1970, 92, 732–734. [Google Scholar] [CrossRef]
- Manea, F.; Houillon, F.B.; Pasquato, L.; Scrimin, P. Nanozymes: Gold-nanoparticle-based transphosphorylation catalysts. Angew. Chem. Int. Ed. 2004, 43, 6165–6169. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.Z.; Zhuang, J.; Nie, L.; Zhang, J.B.; Zhang, Y.; Gu, N.; Wang, T.H.; Feng, J.; Yang, D.L.; Perrett, S.; et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583. [Google Scholar] [CrossRef]
- Wei, H.; Wang, E.K. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060–6093. [Google Scholar] [CrossRef]
- Jiang, B.; Duan, D.M.; Gao, L.Z.; Zhou, M.J.; Fan, K.L.; Tang, Y.; Xi, J.Q.; Bi, Y.H.; Tong, Z.; Gao, G.F.; et al. Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc. 2018, 13, 1506–1520. [Google Scholar] [CrossRef]
- Iswarya, V.; Johnson, J.B.; Parashar, A.; Pulimi, M.; Chandrasekaran, N.; Mukherjee, A. Modulatory effects of Zn2+ ions on the toxicity of citrate-and PVP-capped gold nanoparticles towards freshwater algae, Scenedesmus obliquus. Environ. Sci. Pollut. Res. 2017, 24, 3790–3801. [Google Scholar] [CrossRef]
- Lv, X.; Yang, Y.; Tao, Y.; Jiang, Y.; Chen, B.; Zhu, X.; Cai, Z.; Li, B. A mechanism study on toxicity of graphene oxide to Daphnia magna: Direct link between bioaccumulation and oxidative stress. Environ. Pollut. 2018, 234, 953–959. [Google Scholar] [CrossRef] [PubMed]
- Albanese, A.; Tang, P.S.; Chan, W.C.W. The Effect of Nanoparticle Size, Shape, and Surface Chemistry on Biological Systems. Annu. Rev. Biomed. Eng. 2012, 14, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Li, W.; Lao, F.; Liu, Y.; Wang, L.; Bai, R.; Zhao, Y.; Chen, C. Intracellular dynamics of cationic and anionic polystyrene nanoparticles without direct interaction with mitotic spindle and chromosomes. Biomaterials 2011, 32, 8291–8303. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, M.K.; Pedersen, J.N.; Marie, R. Size and surface charge characterization of nanoparticles with a salt gradient. Nat. Commun. 2020, 11, 2337. [Google Scholar] [CrossRef] [PubMed]
- Gahlawat, G.; Choudhury, A.R. A review on the biosynthesis of metal and metal salt nanoparticles by microbes. RSC Adv. 2019, 9, 12944–12967. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Qu, Y.; Li, D.X.; Liu, X.Y.; Niu, Y.S.; Xu, Y.H. To Love and to Kill: Accurate and Selective Colorimetry for Both Chloride and Mercury Ions Regulated by Electro-Synthesized Oxidase-like SnTe Nanobelts. Anal. Chem. 2021, 93, 10132–10140. [Google Scholar] [CrossRef]
- Liang, X.; Han, L. White Peroxidase-Mimicking Nanozymes: Colorimetric Pesticide Assay without Interferences of O-2 and Color. Adv. Funct. Mater. 2020, 30, 2001933. [Google Scholar] [CrossRef]
- Xu, D.; Wu, L.; Yao, H.; Zhao, L. Catalase-Like Nanozymes: Classification, Catalytic Mechanisms, and Their Applications. Small 2022, 18, 2203400. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhu, H.; Liu, P.; Wang, M.; Pan, J.; Qiu, F.; Ni, L.; Niu, X. Realizing selective detection with nanozymes: Strategies and trends. TrAC Trends Anal. Chem. 2021, 143, 116379. [Google Scholar] [CrossRef]
- Golchin, J.; Golchin, K.; Alidadian, N.; Ghaderi, S.; Eslamkhah, S.; Eslamkhah, M.; Akbarzadeh, A. Nanozyme applications in biology and medicine: An overview. Artif. Cells Nanomed. Biotechnol. 2017, 45, 1069–1076. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Sun, Y.; Chen, Y.; Nan, P. From DNA to Nerve Agents—The Biomimetic Catalysts for the Hydrolysis of Phosphate Esters. Chemistryselect 2020, 5, 9492–9516. [Google Scholar] [CrossRef]
- Ballesteros, C.A.S.; Mercante, L.A.; Alvarenga, A.D.; Facure, M.H.M.; Schneider, R.; Correa, D.S. Recent trends in nanozymes design: From materials and structures to environmental applications. Mater. Chem. Front. 2021, 5, 7419–7451. [Google Scholar] [CrossRef]
- Ye, N.R.; Huang, S.M.; Yang, H.S.; Wu, T.; Tong, L.J.; Zhu, F.; Chen, G.S.; Ouyang, G.F. Hydrogen-Bonded Biohybrid Framework-Derived Highly Specific Nanozymes for Biomarker Sensing. Anal. Chem. 2021, 93, 13981–13989. [Google Scholar] [CrossRef]
- Cai, R.; Liu, J.B.; Wu, X.C. Research Progress of Noble Metal-based Nanozymes. Chem. J. Chin. Univ. Chin. 2021, 42, 1188–1201. [Google Scholar] [CrossRef]
- Cai, S.; Yang, R. Noble Metal-Based Nanozymes. In Nanozymology. Nanostructure Science and Technology; Springer: Singapore, 2020; pp. 331–365. [Google Scholar]
- Cai, Z.; Kuang, Y.; Qi, X.; Wang, P.; Zhang, Y.; Zhang, Z.; Sun, X. Ultrathin branched PtFe and PtRuFe nanodendrites with enhanced electrocatalytic activity. J. Mater. Chem. A 2015, 3, 1182–1187. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, A.; Wang, R.; Zhang, Q.; Cui, D. A Review on Metal- and Metal Oxide-Based Nanozymes: Properties, Mechanisms, and Applications. Nano-Micro Lett. 2021, 13, 154. [Google Scholar] [CrossRef]
- Liang, B.; Li, B.; Li, Z.Q.; Chen, B.L. Progress in Multifunctional Metal-Organic Frameworks/Polymer Hybrid Membranes. Chem. A Eur. J. 2021, 27, 12940–12952. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Zhang, S.T.; Tang, Y.J.; Zhang, X.Y.; Bai, Y.; Pang, H. Advances in metal-organic framework-based nanozymes and their applications. Coord. Chem. Rev. 2021, 449, 214216. [Google Scholar] [CrossRef]
- Meng, W.; Liu, X.; Song, H.; Xie, Y.; Shi, X.; Dargusch, M.; Chen, Z.-G.; Tang, Z.; Lu, S. Advances and challenges in 2D MXenes: From structures to energy storage and conversions. Nano Today 2021, 40, 101273. [Google Scholar] [CrossRef]
- Li, M.M.; Peng, X.Y.; Han, Y.J.; Fan, L.F.; Liu, Z.G.; Guo, Y.J. Ti3C2 MXenes with intrinsic peroxidase-like activity for label-free and colorimetric sensing of proteins. Microchem. J. 2021, 166, 106238. [Google Scholar] [CrossRef]
- Li, S.R.; Zhang, Y.H.; Wang, Q.; Lin, A.Q.; Wei, H. Nanozyme-Enabled Analytical Chemistry. Anal. Chem. 2022, 94, 312–323. [Google Scholar] [CrossRef]
- Valden, M.; Lai, X.; Goodman, D.W. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 1998, 281, 1647–1650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.C.; Xu, W.L.; Liu, G.K.; Panda, D.; Chen, P. Size-Dependent Catalytic Activity and Dynamics of Gold Nanoparticles at the Single-Molecule Level. J. Am. Chem. Soc. 2010, 132, 138–146. [Google Scholar] [CrossRef]
- Kalantari, M.; Ghosh, T.; Liu, Y.; Zhang, J.; Zou, J.; Lei, C.; Yu, C.Z. Highly Thiolated Dendritic Mesoporous Silica Nanoparticles with High-Content Gold as Nanozymes: The Nano-Gold Size Matters. Acs Appl. Mater. Interfaces 2019, 11, 13264–13272. [Google Scholar] [CrossRef]
- Biswas, S.; Tripathi, P.; Kumar, N.; Nara, S. Gold nanorods as peroxidase mimetics and its application for colorimetric biosensing of malathion. Sens. Actuators B-Chem. 2016, 231, 584–592. [Google Scholar] [CrossRef]
- Tian, R.; Sun, J.H.; Qi, Y.F.; Zhang, B.Y.; Guo, S.L.; Zhao, M.M. Influence of VO2 Nanoparticle Morphology on the Colorimetric Assay of H2O2 and Glucose. Nanomaterials 2017, 7, 347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.J.X.; Wang, X.Y.; Wang, Q.; Lou, Z.P.; Li, S.R.; Zhu, Y.Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II). Chem. Soc. Rev. 2019, 48, 1004–1076. [Google Scholar] [CrossRef]
- Zhu, W.; Cheng, Y.; Yan, S.; Chen, X.; Wang, C.; Lu, X. A general cation-exchange strategy for constructing hierarchical TiO2/CuInS2/CuS hybrid nanofibers to boost their peroxidase-like activity toward sensitive detection of dopamine. Microchem. J. 2022, 183, 108090. [Google Scholar] [CrossRef]
- Feng, X.Y.; Fu, H.; Bai, Z.Y.; Li, P.; Song, X.L.; Hu, X.P. Colorimetric detection of glucose by a hybrid nanomaterial based on amplified peroxidase-like activity of ferrosoferric oxide modified with gold-platinum heterodimer. New J. Chem. 2021, 46, 239–249. [Google Scholar] [CrossRef]
- Zhao, L.; Ren, X.; Zhang, J.; Zhang, W.; Chen, X.; Meng, X. Dendritic silica with carbon dots and gold nanoclusters for dual nanozymes. New J. Chem. 2020, 44, 1988–1992. [Google Scholar] [CrossRef]
- Liu, B.W.; Liu, J.W. Surface modification of nanozymes. Nano Res. 2017, 10, 1125–1148. [Google Scholar] [CrossRef]
- Lee, A.H.Y.; Kang, W.S.; Choi, J.S. Highly Enhanced Enzymatic Activity of Mn-Induced Carbon Dots and Their Application as Colorimetric Sensor Probes. Nanomaterials 2021, 11, 3046. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.X.; Zhang, Z.J.; Xiang, Y.; Cao, M.W.; Yu, D.Y. Amino Acid-Mediated Synthesis of the ZIF-8 Nanozyme That Reproduces Both the Zinc-Coordinated Active Center and Hydrophobic Pocket of Natural Carbonic Anhydrase. Langmuir 2022, 38, 1621–1630. [Google Scholar] [CrossRef] [PubMed]
- Jain, V.; Bhagat, S.; Singh, M.; Bansal, V.; Singh, S. Unveiling the effect of 11-MUA coating on biocompatibility and catalytic activity of a gold-core cerium oxide-shell-based nanozyme. RSC Adv. 2019, 9, 33195–33206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, L.Z.; Liu, Y.; Kim, D.; Li, Y.; Hwang, G.; Naha, P.C.; Cormode, D.P.; Koo, H. Nanocatalysts promote Streptococcus mutans biofilm matrix degradation and enhance bacterial killing to suppress dental caries in vivo. Biomaterials 2016, 101, 272–284. [Google Scholar] [CrossRef] [Green Version]
- Li, D.D.; Guo, Q.Q.; Ding, L.M.; Zhang, W.; Cheng, L.; Wang, Y.Q.; Xu, Z.B.; Wang, H.H.; Gao, L.Z. Bimetallic CuCo2S4 Nanozymes with Enhanced Peroxidase Activity at Neutral pH for Combating Burn Infections. Chembiochem 2020, 21, 2620–2627. [Google Scholar] [CrossRef]
- Chen, J.X.; Huang, L.; Wang, Q.Q.; Wu, W.W.; Zhang, H.; Fang, Y.X.; Dong, S.J. Bio-inspired nanozyme: A hydratase mimic in a zeolitic imidazolate framework. Nanoscale 2019, 11, 5960–5966. [Google Scholar] [CrossRef]
- Li, M.H.; Chen, J.X.; Wu, W.W.; Fang, Y.X.; Dong, S.J. Oxidase-like MOF-818 Nanozyme with High Specificity for Catalysis of Catechol Oxidation. J. Am. Chem. Soc. 2020, 142, 15569–15574. [Google Scholar] [CrossRef]
- Xu, B.L.; Wang, H.; Wang, W.W.; Gao, L.Z.; Li, S.S.; Pan, X.T.; Wang, H.Y.; Yang, H.L.; Meng, X.Q.; Wu, Q.W.; et al. A Single-Atom Nanozyme for Wound Disinfection Applications. Angew. Chem.-Int. Ed. 2019, 58, 4911–4916. [Google Scholar] [CrossRef]
- Chen, L.X.; Xu, S.F.; Li, J.H. Recent advances in molecular imprinting technology: Current status, challenges and highlighted applications. Chem. Soc. Rev. 2011, 40, 2922–2942. [Google Scholar] [CrossRef]
- Zhang, Z.J.; Zhang, X.H.; Liu, B.W.; Liu, J.W. Molecular Imprinting on Inorganic Nanozymes for Hundred-fold Enzyme Specificity. J. Am. Chem. Soc. 2017, 139, 5412–5419. [Google Scholar] [CrossRef] [PubMed]
- Li, W.S.; Fan, G.C.; Gao, F.X.; Cui, Y.G.; Wang, W.; Luo, X.L. High-activity Fe3O4 nanozyme as signal amplifier: A simple, low-cost but efficient strategy for ultrasensitive photoelectrochemical immunoassay. Biosens. Bioelectron. 2019, 127, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Chau, L.Y.; He, Q.; Qin, A.; Yip, S.P.; Lee, T.M.H. Platinum nanoparticles on reduced graphene oxide as peroxidase mimetics for the colorimetric detection of specific DNA sequence. J. Mater. Chem. B 2016, 4, 4076–4083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, B.; Liu, J. Accelerating peroxidase mimicking nanozymes using DNA. Nanoscale 2015, 7, 13831–13835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, X.; Tang, L.; Wang, J.J.; Peng, B.; Ouyang, X.L.; Tan, J.S.; Yu, J.F.; Feng, H.P.; Tang, J.L. Enhanced peroxidase-like activity of boron nitride quantum dots anchored porous CeO2 nanorods by aptamer for highly sensitive colorimetric detection of kanamycin. Sens. Actuators B-Chem. 2021, 330, 129318. [Google Scholar] [CrossRef]
- Meng, Y.T.; Li, W.F.; Pan, X.L.; Gadd, G.M.G. Applications of nanozymes in the environment. Environ. Sci. Nano 2020, 7, 1305–1318. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Wang, F.; Chi, H.; Zhao, G.; Zhang, Y.; Li, T.; Wei, Q. Electrochemical aptasensor based on gold modified thiol graphene as sensing platform and gold-palladium modified zirconium metal-organic frameworks nanozyme as signal enhancer for ultrasensitive detection of mercury ions. J. Colloid Interface Sci. 2022, 606, 510–517. [Google Scholar] [CrossRef]
- Tian, H.; Liu, J.; Guo, J.; Cao, L.; He, J. L-Cysteine functionalized graphene oxide nanoarchitectonics: A metal-free Hg2+ nanosensor with peroxidase-like activity boosted by competitive adsorption. Talanta 2022, 242, 123320. [Google Scholar] [CrossRef]
- Zhong, X.-L.; Wen, S.-H.; Wang, Y.; Luo, Y.-X.; Li, Z.-M.; Liang, R.-P.; Zhang, L.; Qiu, J.-D. Colorimetric and electrochemical arsenate assays by exploiting the peroxidase-like activity of FeOOH nanorods. Microchim. Acta 2019, 186, 732. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, T.; Zhang, X.; Akhtar, M.H.; Zhang, Q.; Li, M.; Yu, C. Photothermal and colorimetric dual-readout silver ions determination utilizing the oxidase-mimicking activity of MnO2 nanosheets. Sens. Actuators B Chem. 2021, 346, 130494. [Google Scholar] [CrossRef]
- Chen, G.; Jin, M.; Ma, J.; Yan, M.; Cui, X.; Wang, Y.; Zhang, X.; Li, H.; Zheng, W.; Zhang, Y.; et al. Competitive Bio-Barcode Immunoassay for Highly Sensitive Detection of Parathion Based on Bimetallic Nanozyme Catalysis. J. Agric. Food Chem. 2020, 68, 660–668. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, N.; Khataee, A.; Hassanzadeh, J.; Samaei, L. Highly sensitive chemiluminescence sensing system for organophosphates using mimic LDH supported ZIF-8 nanocomposite. Sens. Actuators B Chem. 2019, 284, 220–227. [Google Scholar] [CrossRef]
- Song, P.; Wang, M.; Xue, Y.; Wang, A.-J.; Mei, L.P.; Feng, J.-J. Bimetallic PtNi nanozyme-driven dual-amplified photoelectrochemical aptasensor for ultrasensitive detection of sulfamethazine based on Z-scheme heterostructured Co9S8@In-CdS nanotubes. Sens. Actuators B Chem. 2022, 371, 132519. [Google Scholar] [CrossRef]
- Sun, M.M.; He, M.X.; Jiang, S.J.; Wang, Y.Y.; Wang, X.X.; Liu, T.; Song, C.; Wang, S.N.; Rao, H.B.; Lu, Z.W. Multi-enzyme activity of three layers FeOx@ZnMnFeOy@Fe-Mn organogel for colorimetric detection of antioxidants and norfloxacin with smartphone. Chem. Eng. J. 2021, 425, 131823. [Google Scholar] [CrossRef]
- Liu, X.; Yang, J.; Cheng, J.; Xu, Y.; Chen, W.; Li, Y. Facile preparation of four-in-one nanozyme catalytic platform and the application in selective detection of catechol and hydroquinone. Sens. Actuators B-Chem. 2021, 337, 129763. [Google Scholar] [CrossRef]
- Ma, Y.; Zhu, M.; He, Q.; Zhao, M.; Cui, H. Photoenhanced Oxidase-Peroxidase-like NiCo2O4@MnO2 Nanozymes for Colorimetric Detection of Hydroquinone. ACS Sustain. Chem. Eng. 2022, 10, 5651–5658. [Google Scholar] [CrossRef]
- Zhou, J.; Tian, F.; Fu, R.; Yang, Y.; Jiao, B.; He, Y. Enzyme-Nanozyme Cascade Reaction-Mediated Etching of Gold Nanorods for the Detection of Escherichia coli. ACS Appl. Nano Mater. 2020, 3, 9016–9025. [Google Scholar] [CrossRef]
- Hu, J.; Tang, F.; Wang, L.; Tang, M.; Jiang, Y.-Z.; Liu, C. Nanozyme sensor based-on platinum-decorated polymer nanosphere for rapid and sensitive detection of Salmonella typhimurium with the naked eye. Sens. Actuators B Chem. 2021, 346, 130560. [Google Scholar] [CrossRef]
- Wu, S.-C.; Tsai, T.-T.; Li, T.-H.; Tung, C.-Y.; Chiu, P.-Y.; Lin, J.-H.; Chen, C.-F. Palladium-platinum bimetallic nanomaterials and their application in Staphylococcus aureus detection on paper-based devices. Biosens. Bioelectron. 2022, 216, 114669. [Google Scholar] [CrossRef]
- Luo, S.; Liu, F.; Gu, S.; Chen, K.; Yang, G.; Gu, Y.; Cao, J.; Qu, L.-L. Nanozyme-mediated signal amplification for ultrasensitive photoelectrochemical sensing of Staphylococcus aureus based on Cu-C3N4-TiO(2)heterostructure. Biosens. Bioelectron. 2022, 216, 114593. [Google Scholar] [CrossRef]
- Zhang, B.; Zou, H.; Qi, Y.; Zhang, X.; Sheng, R.; Zhang, Y.; Sun, R.; Chen, L.; Lv, R. Assembly of polyoxometalates/polydopamine nanozymes as a multifunctional platform for glutathione and Escherichia coli O157:H7 detection. Microchem. J. 2021, 164, 106013. [Google Scholar] [CrossRef]
- Xie, D.; Liu, Q.; Wang, J.; Zhang, X.; Gu, K.; Sun, K. Chromogenic reaction of ABTS catalyzed by MnO2 nanozyae and its application in the visual detection of Fe2+ and Pb2+. Huanjing Huaxue-Environ. Chem. 2019, 38, 2843–2850. [Google Scholar] [CrossRef]
- Qiu, Z.W.; Duan, W.; Cao, S.F.; Zeng, T.; Zhao, T.Y.; Huang, J.K.; Lu, X.Q.; Zeng, J.B. Highly Specific Colorimetric Probe for Fluoride by Triggering the Intrinsic Catalytic Activity of a AgPt-Fe3O4 Hybrid Nanozyme Encapsulated in SiO2 Shells. Environ. Sci. Technol. 2022, 56, 1713–1723. [Google Scholar] [CrossRef] [PubMed]
- Adegoke, O.; Zolotovskaya, S.; Abdolvand, A.; Daeid, N.N. Rapid and highly selective colorimetric detection of nitrite based on the catalytic-enhanced reaction of mimetic Au nanoparticle-CeO2 nanoparticle-graphene oxide hybrid nanozyme. Talanta 2021, 224, 121875. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.J.; Xu, X.C.; Liu, P.; Wang, M.Z.; Niu, X.H.; Pan, J.M. A single-nanozyme colorimetric array based on target-induced differential surface passivation for quantification and discrimination of Cl−, Br− and I− ions. Anal. Chim. Acta 2021, 1160, 338451. [Google Scholar] [CrossRef]
- Hu, S.Y.; Yan, G.H.; Zhang, L.Y.; Yi, S.S.; Zhang, Z.T.; Wang, Y.; Chen, D.L. Highly Selective Colorimetric Detection of Cu2+ Using EDTA- Complexed Chlorophyll-Copper/ZnO Nanorods with Cavities Specific to Cu2+ as a Light-Activated Nanozyme. Acs Appl. Mater. Interfaces 2022, 14, 37716–37726. [Google Scholar] [CrossRef]
- Xu, X.C.; Wang, L.J.; Zou, X.B.; Wu, S.W.; Pan, J.M.; Li, X.; Niu, X.H. Highly sensitive colorimetric detection of arsenite based on reassembly-induced oxidase-mimicking activity inhibition of dithiothreitol-capped Pd nanozyme. Sens. Actuators B Chem. 2019, 298, 126876. [Google Scholar] [CrossRef]
- Honarasa, F.; Peyravi, F.; Amirian, H. C-dots/Mn3O4 nanocomposite as an oxidase nanozyme for colorimetric determination of ferrous ion. J. Iran. Chem. Soc. 2020, 17, 507–512. [Google Scholar] [CrossRef]
- Liu, L.; Du, J.; Liu, W.E.; Guo, Y.L.; Wu, G.F.; Qi, W.N.; Lu, X.Q. Enhanced His@AuNCs oxidase-like activity by reduced graphene oxide and its application for colorimetric and electrochemical detection of nitrite. Anal. Bioanal. Chem. 2019, 411, 2189–2200. [Google Scholar] [CrossRef]
- Shi, Y.; Liu, Z.; Liu, R.; Wu, R.; Zhang, J.J. DNA-encoded MXene-Pt nanozyme for enhanced colorimetric sensing of mercury ions. Chem. Eng. J. 2022, 442, 136072. [Google Scholar] [CrossRef]
- Zhao, J.; Gong, J.W.; Wei, J.N.; Yang, Q.; Li, G.J.; Tong, Y.P.; He, W.W. Metal organic framework loaded fluorescent nitrogen-doped carbon nanozyme with light regulating redox ability for detection of ferric ion and glutathione. J. Colloid Interface Sci. 2022, 618, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Xue, Q.S.; Li, X.; Peng, Y.X.; Liu, P.; Peng, H.B.; Niu, X.H. Polyethylenimine-stabilized silver nanoclusters act as an oxidoreductase mimic for colorimetric determination of chromium(VI). Microchim. Acta 2020, 187, 263. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.X.; Wang, Z.Y.; Liu, S.Q.; Li, H. Bimetallic AuRu aerogel with enzyme-like activity for colorimetric detection of Fe2+ and glucose. Chin. Chem. Lett. 2022, 33, 4683–4686. [Google Scholar] [CrossRef]
- Huang, L.J.; Zhu, Q.R.; Zhu, J.; Luo, L.P.; Pu, S.H.; Zhang, W.T.; Zhu, W.X.; Sun, J.; Wang, J.L. Portable Colorimetric Detection of Mercury(II) Based on a Non-Noble Metal Nanozyme with Tunable Activity. Inorg. Chem. 2019, 58, 1638–1646. [Google Scholar] [CrossRef]
- Lin, L.; Chen, D.X.; Lu, C.F.; Wang, X.X. Fluorescence and colorimetric dual-signal determination of Fe3+ and glutathione with MoSe2@Fe nanozyme. Microchem. J. 2022, 177, 107283. [Google Scholar] [CrossRef]
- Wen, S.S.; Zhang, Z.W.; Zhang, Y.P.; Liu, H.; Ma, X.W.; Li, L.J.; Song, W.; Zhao, B. Ultrasensitive Stimulation Effect of Fluoride Ions on a Novel Nanozyme-SERS System. ACS Sustain. Chem. Eng. 2020, 8, 11906–11913. [Google Scholar] [CrossRef]
- Yang, Z.P.; Liu, Y.Q.; Liu, Y.; Wang, Y.Y.; Rao, H.B.; Liu, Y.; Yin, J.J.; Yue, G.Z.; Wu, C.M.; Li, H.; et al. Preparation of porous uranium oxide hollow nanospheres with peroxidase mimicking activity: Application to the colorimetric determination of tin(II). Microchim. Acta 2019, 186, 501. [Google Scholar] [CrossRef]
- Zhang, G.Y.; Yu, K.; Zhou, B.J.; Wang, J.Y.; Zheng, C.; Qu, L.J.; Chai, H.N.; Zhang, X.J. Magnetic zirconium-based Prussian blue analog nanozyme: Enhanced peroxidase-mimicking activity and colorimetric sensing of phosphate ion. Microchim. Acta 2022, 189, 220. [Google Scholar] [CrossRef]
- Xiong, Y.H.; Su, L.J.; Ye, F.G.; Zhao, S.L. Porous Oxyhydroxide Derived from Metal-Organic Frameworks as Efficient Triphosphatase-like Nanozyme for Chromium(III) Ion Colorimetric Sensing. Acs Appl. Bio Mater. 2021, 4, 6962–6973. [Google Scholar] [CrossRef]
- Song, G.C.; Li, J.C.; Majid, Z.; Xu, W.T.; He, X.Y.; Yao, Z.Y.; Luo, Y.B.; Huang, K.L.; Cheng, N. Phosphatase-like activity of single-atom Ce-N-C nanozyme for rapid detection of Al3+. Food Chem. 2022, 390, 133127. [Google Scholar] [CrossRef]
- Goswami, J.; Saikia, L.; Hazarika, P. Carbon Dots-Decorated g-C3N4 as Peroxidase Nanozyme for Colorimetric Detection of Cr(VI) in Aqueous Medium. Chemistryselect 2022, 7, e202201963. [Google Scholar] [CrossRef]
- Fang, Y.M.; Zhang, Y.; Cao, L.G.; Yang, J.Z.; Hu, M.H.; Pang, Z.L.; He, J.H. Portable Hg2+ Nanosensor with ppt Level Sensitivity Using Nanozyme as the Recognition Unit, Enrichment Carrier, and Signal Amplifier. Acs Appl. Mater. Interfaces 2020, 12, 11761–11768. [Google Scholar] [CrossRef]
- Wen, S.H.; Zhong, X.L.; Wu, Y.D.; Liang, R.P.; Zhang, L.; Qiu, J.D. Colorimetric Assay Conversion to Highly Sensitive Electrochemical Assay for Bimodal Detection of Arsenate Based on Cobalt Oxyhydroxide Nanozyme via Arsenate Absorption. Anal. Chem. 2019, 91, 6487–6497. [Google Scholar] [CrossRef]
- Kulandaivel, S.; Lo, W.C.; Lin, C.H.; Yeh, Y.C. Cu-PyC MOF with oxidoreductase-like catalytic activity boosting colorimetric detection of Cr(VI) on paper. Anal. Chim. Acta 2022, 1227, 340335. [Google Scholar] [CrossRef]
- Amini, R.; Rahimpour, E.; Jouyban, A. An optical sensing platform based on hexacyanoferrate intercalated layered double hydroxide nanozyme for determination of chromium in water. Anal. Chim. Acta 2020, 1117, 9–17. [Google Scholar] [CrossRef]
- Serebrennikova, K.V.; Komova, N.S.; Berlina, A.N.; Zherdev, A.V.; Dzantiev, B.B. Tannic Acid-Capped Gold Nanoparticles as a Novel Nanozyme for Colorimetric Determination of Pb2+ Ions. Chemosensors 2021, 9, 332. [Google Scholar] [CrossRef]
- Liu, X.N.; Huang, L.J.; Wang, Y.P.; Sun, J.; Yue, T.L.; Zhang, W.T.; Wang, J.L. One-pot bottom-up fabrication of a 2D/2D heterojuncted nanozyme towards optimized peroxidase-like activity for sulfide ions sensing. Sens. Actuators B-Chem. 2020, 306, 127565. [Google Scholar] [CrossRef]
- Vu, T.H.; Nguyen, P.T.; Kim, M.I. Polydopamine-Coated Co3O4 Nanoparticles as an Efficient Catalase Mimic for Fluorescent Detection of Sulfide Ion. Biosensors 2022, 12, 1047. [Google Scholar] [CrossRef]
- Xue, Q.S.; Niu, X.H.; Liu, P.; Wang, M.Z.; Peng, Y.X.; Peng, H.B.; Li, X. Analyte-triggered citrate-stabilized Au nanoparticle aggregation with accelerated peroxidase-mimicking activity for catalysis-based colorimetric sensing of arsenite. Sensors and Actuators B-Chem. 2021, 334, 129650. [Google Scholar] [CrossRef]
- Huang, H.; Li, M.N.; Hao, M.W.; Yu, L.L.; Li, Y.X. A novel selective detection method for sulfide in food systems based on the GMP-Cu nanozyme with laccase activity. Talanta 2021, 235, 122775. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Gou, W.X.; Zhang, X.T.; Zhang, M.Y.; Bu, Y.R.; Wang, L.J.; Hu, L.; Yao, W.L.; Yan, Z.Q. Hg2+-activated oxidase-like activity of Ag2S@graphene oxide nanozyme and its naked-eye monitoring Hg2+ application with obvious hyperchromic effect. Appl. Surf. Sci. 2021, 545, 148973. [Google Scholar] [CrossRef]
- Luo, L.P.; Su, Z.H.; Zhuo, J.C.; Huang, L.J.; Nian, Y.; Su, L.H.; Zhang, W.T.; Wang, J.L. Copper-Sensitized “Turn On” Peroxidase-Like Activity of MMoO4 (M = Co, Ni) Flowers for Selective Detection of Aquatic Copper Ions. Acs Sustain. Chem. Eng. 2020, 8, 12568–12576. [Google Scholar] [CrossRef]
- Shi, W.; He, M.Q.; Li, W.T.; Wei, X.; Bui, B.; Chen, M.L.; Chen, W. Cu-Based Metal-Organic Framework Nanoparticles for Sensing Cr(VI) Ions. Acs Appl. Nano Mater. 2021, 4, 802–810. [Google Scholar] [CrossRef]
- Borthakur, P.; Das, M.R.; Szunerits, S.; Boukherroub, R. CuS Decorated Functionalized Reduced Graphene Oxide: A Dual Responsive Nanozyme for Selective Detection and Photoreduction of Cr(VI) in an Aqueous Medium. Acs Sustain. Chem. Eng. 2019, 7, 16131–16143. [Google Scholar] [CrossRef]
- Mao, Y.; Gao, S.J.; Yao, L.L.; Wang, L.; Qu, H.; Wu, Y.; Chen, Y.; Zheng, L. Single-atom nanozyme enabled fast and highly sensitive colorimetric detection of Cr(VI). J. Hazard. Mater. 2021, 408, 124898. [Google Scholar] [CrossRef] [PubMed]
- Yi, W.W.; Zhang, P.; Wang, Y.P.; Li, Z.P.; Guo, Y.J.; Liu, M.; Dong, C.; Li, C.F. Copper ferrite nanoparticles loaded on reduced graphene oxide nanozymes for the ultrasensitive colorimetric assay of chromium ions. Anal. Methods 2022, 14, 3434–3443. [Google Scholar] [CrossRef]
- Li, W.J.; Liu, C.; Liu, D.; Liu, S.D.; You, T.Y. Ratiometric fluorescent sensing of mercury (II) ion based on the Pt nanozyme-triggered fluorescence resonance energy transfer between Si quantum dots and 2,3-diaminophenazine. Sens. Actuators A-Phys. 2021, 331, 112976. [Google Scholar] [CrossRef]
- Ko, E.; Hur, W.; Son, S.E.; Seong, G.H.; Han, D.K. Au nanoparticle-hydrogel nanozyme-based colorimetric detection for on-site monitoring of mercury in river water. Microchim. Acta 2021, 188, 382. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.J.; Zhu, W.J.; Lv, X.Q.; Du, X.P.; He, J.L.; Cai, J. Dendritic Silica Nanospheres with Au-Pt Nanoparticles as Nanozymes for Label-Free Colorimetric Hg2+ Detection. Acs Appl. Nano Mater. 2022, 5, 18885–18893. [Google Scholar] [CrossRef]
- Wang, C.H.; Tang, G.G.; Tan, H.L. Colorimetric determination of mercury(II) via the inhibition by ssDNA of the oxidase-like activity of a mixed valence state cerium-based metal-organic framework. Microchim. Acta 2018, 185, 475. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wu, F.; Mao, M.; Ji, X.; Wei, L.Y.; Li, J.Y.; Ma, L. A dual-mode colorimetric sensor based on copper nanoparticles for the detection of mercury-(ii) ions. Anal. Methods 2019, 11, 4014–4021. [Google Scholar] [CrossRef]
- Dai, J.W.; Wang, L.W.; Xu, F.A.; Ma, G.R. Dual-functional Fe-MoS2@AuNPs for simple and sensitive colorimetric-electrochemical coupled detection of Hg2+. Ionics 2022, 28, 5251–5255. [Google Scholar] [CrossRef]
- Cao, L.G.; Fang, Y.M.; Zhang, Y.; Yang, J.Z.; He, J.H. Colorimetric Detection of Hg2+ Based on the Promotion of Oxidase-Like Catalytic Activity of Ag Nanowires. Int. J. Nanosci. 2020, 19, 2050004. [Google Scholar] [CrossRef]
- Niu, X.H.; He, Y.F.; Li, X.; Zhao, H.L.; Pan, J.M.; Qiu, F.X.; Lan, M.B. A peroxidase-mimicking nanosensor with Hg2+-triggered enzymatic activity of cysteine-decorated ferromagnetic particles for ultrasensitive Hg2+ detection in environmental and biological fluids. Sens. Actuators B-Chem. 2019, 281, 445–452. [Google Scholar] [CrossRef]
- Fu, M.L.; Li, L.; Yang, D.Y.; Tu, Y.F.; Yan, J.L. Colorimetric detections of iodide and mercuric ions based on a regulation of an Enzyme-Like activity from gold nanoclusters. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 279, 121450. [Google Scholar] [CrossRef]
- Tian, X.; Liao, H.; Wang, M.; Feng, L.Y.; Fu, W.S.; Hu, L.Z. Highly sensitive chemiluminescent sensing of intracellular Al3+ based on the phosphatase mimetic activity of cerium oxide nanoparticles. Biosens. Bioelectron. 2020, 152, 112027. [Google Scholar] [CrossRef]
- Liu, H.; Hua, Y.; Cai, Y.Y.; Feng, L.P.; Li, S.; Wang, H. Mineralizing gold-silver bimetals into hemin-melamine matrix: A nanocomposite nanozyme for visual colorimetric analysis of H2O2 and glucose. Anal. Chim. Acta 2019, 1092, 57–65. [Google Scholar] [CrossRef]
- Guan, H.J.; Zhao, Y.F.; Cheng, J.H.; Zhang, Y.D.; Yang, Q.; Zhang, B. Fabrication of Pt/CeO2/NCNFs with embedded structure as high-efficiency nanozyme for electrochemical sensing of hydrogen peroxide. Synth. Met. 2020, 270, 116604. [Google Scholar] [CrossRef]
- Lei, Y.; He, B.; Huang, S.J.; Chen, X.Y.; Sun, J. Facile Fabrication of 1-Methylimidazole/Cu Nanozyme with Enhanced Laccase Activity for Fast Degradation and Sensitive Detection of Phenol Compounds. Molecules 2022, 27, 4712. [Google Scholar] [CrossRef]
- Adegoke, O.; Daeid, N.N. Polymeric-coated Fe-doped ceria/gold hybrid nanocomposite as an aptasensor for the catalytic enhanced colorimetric detection of 2,4-dinitrophenol. Colloids Surf. A-Physicochem. Eng. Asp. 2021, 627, 127194. [Google Scholar] [CrossRef]
- Ma, Y.J.; Deng, M.S.; Wang, X.F.; Gao, X.H.; Song, H.X.; Zhu, Y.H.; Feng, L.Y.; Zhang, Y. 2H-MoS2/Co3O4 nanohybrid with type I nitroreductase-mimicking activity for the electrochemical assays of nitroaromatic compounds. Anal. Chim. Acta 2022, 1221, 340078. [Google Scholar] [CrossRef]
- Sun, X.; Xie, Y.; Chu, H.C.; Long, M.; Zhang, M.Y.; Wang, Y.; Hu, X.Y. A highly sensitive electrochemical biosensor for the detection of hydroquinone based on a magnetic covalent organic framework and enzyme for signal amplification. New J. Chem. 2022, 46, 11902–11909. [Google Scholar] [CrossRef]
- Huang, H.; Lei, L.L.; Bai, J.; Zhang, L.; Song, D.H.; Zhao, J.Q.; Li, J.L.; Li, Y.X. Efficient elimination and detection of phenolic compounds in juice using laccase mimicking nanozymes. Chin. J. Chem. Eng. 2021, 29, 167–175. [Google Scholar] [CrossRef]
- Zhu, X.; Tang, J.; Ouyang, X.L.; Liao, Y.B.; Feng, H.P.; Yu, J.F.; Chen, L.; Lu, Y.T.; Yi, Y.Y.; Tang, L. Multifunctional MnCo@C yolk-shell nanozymes with smartphone platform for rapid colorimetric analysis of total antioxidant capacity and phenolic compounds. Biosens. Bioelectron. 2022, 216, 114652. [Google Scholar] [CrossRef]
- Omar, N.A.; Jabbar, H.S. NiFe2O4 nanoparticles as nanozymes, a new colorimetric probe for 2,4-dichlorophenoxyacetic acid herbicide detection. Inorg. Chem. Commun. 2022, 146, 110104. [Google Scholar] [CrossRef]
- Zhu, X.Y.; Liu, P.; Ge, Y.; Wu, R.M.; Xue, T.; Sheng, Y.Y.; Ai, S.R.; Tang, K.J.; Wen, Y.P. MoS2/MWCNTs porous nanohybrid network with oxidase-like characteristic as electrochemical nanozyme sensor coupled with machine learning for intelligent analysis of carbendazim. J. Electroanal. Chem. 2020, 862, 113940. [Google Scholar] [CrossRef]
- Shah, M.M.; Ren, W.; Irudayaraj, J.; Sajini, A.A.; Ali, M.I.; Ahmad, B. Colorimetric Detection of Organophosphate Pesticides Based on Acetylcholinesterase and Cysteamine Capped Gold Nanoparticles as Nanozyme. Sensors 2021, 21, 8050. [Google Scholar] [CrossRef]
- Huang, L.J.; Sun, D.W.; Pu, H.B.; Wei, Q.Y.; Luo, L.P.; Wang, J.L. A colorimetric paper sensor based on the domino reaction of acetylcholinesterase and degradable gamma-MnOOH nanozyme for sensitive detection of organophosphorus pesticides. Sens. Actuators B-Chem. 2019, 290, 573–580. [Google Scholar] [CrossRef]
- Wu, J.H.; Yang, Q.T.; Li, Q.; Li, H.Y.; Li, F. Two-Dimensional MnO2 Nanozyme-Mediated Homogeneous Electrochemical Detection of Organophosphate Pesticides without the Interference of H2O2 and Color. Anal. Chem. 2021, 93, 4084–4091. [Google Scholar] [CrossRef]
- Xu, L.L.; Xiong, Y.; Wu, R.M.; Geng, X.; Li, M.H.; Yao, H.; Wang, X.; Wen, Y.P.; Ai, S.R. An Emerging Machine Learning Strategy for the Fabrication of Nanozyme Sensor and Voltametric Determination of Benomyl In Agro-Products. J. Electrochem. Soc. 2022, 169, 047506. [Google Scholar] [CrossRef]
- Li, F.; Jiang, J.M.; Peng, H.; Li, C.X.; Li, B.; He, J.B. Platinum nanozyme catalyzed multichannel colorimetric sensor array for identification and detection of pesticides. Sens. Actuators B-Chem. 2022, 369, 132334. [Google Scholar] [CrossRef]
- Zhu, X.Y.; Lin, L.; Wu, R.M.; Zhu, Y.F.; Sheng, Y.Y.; Nie, P.C.; Liu, P.; Xu, L.L.; Wen, Y.P. Portable wireless intelligent sensing of ultra-trace phytoregulator alpha-naphthalene acetic acid using self-assembled phosphorene/Ti3C2-MXene nanohybrid with high ambient stability on laser induced porous graphene as nanozyme flexible electrode. Biosens. Bioelectron. 2021, 179, 113062. [Google Scholar] [CrossRef] [PubMed]
- Khairy, M.; Ayoub, H.A.; Banks, C.E. Non-enzymatic electrochemical platform for parathion pesticide sensing based on nanometer-sized nickel oxide modified screen-printed electrodes. Food Chem. 2018, 255, 104–111. [Google Scholar] [CrossRef]
- Li, Q.L.; Li, H.; Li, K.X.; Gu, Y.; Wang, Y.J.; Yang, D.Z.; Yang, Y.L.; Gao, L. Specific colorimetric detection of methylmercury based on peroxidase-like activity regulation of carbon dots/Au NPs nanozyme. J. Hazard. Mater. 2023, 441, 129919. [Google Scholar] [CrossRef]
- Weerathunge, P.; Behera, B.K.; Zihara, S.; Singh, M.; Prasad, S.N.; Hashmi, S.; Mariathomas, P.R.D.; Bansal, V.; Ramanathan, R. Dynamic interactions between peroxidase-mimic silver NanoZymes and chlorpyrifos-specific aptamers enable highly-specific pesticide sensing in river water. Anal. Chim. Acta 2019, 1083, 157–165. [Google Scholar] [CrossRef]
- Song, G.C.; Zhang, J.J.; Huang, H.X.; Wang, X.; He, X.Y.; Luo, Y.B.; Li, J.C.; Huang, K.L.; Cheng, N. Single-atom Ce-N-C nanozyme bioactive paper with a 3D-printed platform for rapid detection of organophosphorus and carbamate pesticide residues. Food Chem. 2022, 387, 132896. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.C.; Yang, L.L.; Luo, M.; Wang, Y.T.; Li, P. Nanozyme-assisted technique for dual mode detection of organophosphorus pesticide. Ecotoxicol. Environ. Saf. 2019, 179, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.Z.; Wei, J.C.; Zou, J.; Cheng, Z.H.; Huang, Z.M.; Gu, L.Q.; Zhong, Z.F.; Li, S.L.; Wang, Y.T.; Li, P. Electrochemical detection of methyl-paraoxon based on bifunctional cerium oxide nanozyme with catalytic activity and signal amplification effect. J. Pharm. Anal. 2021, 11, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Li, S.H.; Pang, C.H.; Ma, X.H.; Zhang, Y.L.; Xu, Z.; Li, J.P.; Zhang, M.; Wang, M.Y. Microfluidic paper-based chip for parathion-methyl detection based on a double catalytic amplification strategy. Microchim. Acta 2021, 188, 438. [Google Scholar] [CrossRef] [PubMed]
- Boruah, P.K.; Das, M.R. Dual responsive magnetic Fe3O4-TiO2/graphene nanocomposite as an artificial nanozyme for the colorimetric detection and photodegradation of pesticide in an aqueous medium. J. Hazard. Mater. 2020, 385, 121516. [Google Scholar] [CrossRef]
- Wang, Z.H.; Shu, Y.Y.; Li, J.J.; Liang, A.H.; Jiang, Z.L. Silver nanosol RRS aptamer assay of trace glyphosate based on gold-doped. Microchem. J. 2022, 176, 107252. [Google Scholar] [CrossRef]
- Wu, Z.; Hu, Y.; Pan, X.L.; Tang, Y.; Dai, Y.F.; Wu, Y.G. A liquid colorimetric chemosensor for ultrasensitive detection of glyphosate residues in vegetables using a metal oxide with intrinsic peroxidase catalytic activity. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess 2022, 39, 710–723. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Wang, C.Q.; Yang, D.Z.; Deng, H.M.; Li, Q.L.; Chen, L.; Zhao, G.K.; Shi, J.L.; Zhang, K.; Yang, Y.L. A portable smartphone-based detection of glyphosate based on inhibiting peroxidase-like activity of heptanoic acid/Prussian blue decorated Fe3O4 nanoparticles. RSC Adv. 2022, 12, 25060–25067. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Li, X.; Xu, X.C.; Ye, K.; Wang, L.J.; Zhu, H.J.; Wang, M.Z.; Niu, X.H. Integrating peroxidase-mimicking activity with photoluminescence into one framework structure for high-performance ratiometric fluorescent pesticide sensing. Sens. Actuators B-Chem. 2021, 328, 129024. [Google Scholar] [CrossRef]
- Xu, X.C.; Wu, S.W.; Guo, D.Z.; Niu, X.H. Construction of a recyclable oxidase-mimicking Fe3O4@MnOx-based colorimetric sensor array for quantifying and identifying chlorophenols. Anal. Chim. Acta 2020, 1107, 203–212. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, Y.; Huang, X.; Hu, X.; Huang, X.; Yin, L.; Huang, Q.; Wen, Y.; Li, B.; Shi, J.; et al. Switchable aptamer-fueled colorimetric sensing toward agricultural fipronil exposure sensitized with affiliative metal-organic framework. Food Chem. 2022, 407, 135115. [Google Scholar] [CrossRef]
- Ge, J.; Yang, L.K.; Li, Z.H.; Wan, Y.; Mao, D.S.; Deng, R.J.; Zhou, Q.; Yang, Y.; Tan, W.H. A colorimetric smartphone-based platform for pesticides detection using Fe-N/C single-atom nanozyme as oxidase mimetics. J. Hazard. Mater. 2022, 436, 129199. [Google Scholar] [CrossRef]
- Xiao, J.X.; Hu, X.L.; Wang, K.; Zou, Y.M.; Gyimah, E.; Yakubu, S.; Zhang, Z. A novel signal amplification strategy based on the competitive reaction between 2D Cu-TCPP(Fe) and polyethyleneimine (PEI) in the application of an enzyme-free and ultrasensitive electrochemical immunosensor for sulfonamide detection. Biosens. Bioelectron. 2020, 150, 111883. [Google Scholar] [CrossRef]
- Wei, D.; Zhang, X.; Chen, B.; Zeng, K. Using bimetallic Au@Pt nanozymes as a visual tag and as an enzyme mimic in enhanced sensitive lateral-flow immunoassays: Application for the detection of streptomycin. Anal. Chim. Acta 2020, 1126, 106–113. [Google Scholar] [CrossRef]
- Shen, Y.Z.; Wei, Y.L.; Liu, Z.M.; Nie, C.; Ye, Y.W. Engineering of 2D artificial nanozyme-based blocking effect-triggered colorimetric sensor for onsite visual assay of residual tetracycline in milk. Microchim. Acta 2022, 189, 233. [Google Scholar] [CrossRef]
- Liu, B.X.; Zhu, H.J.; Feng, R.L.; Wang, M.Z.; Hu, P.W.; Pan, J.M.; Niu, X.H. Facile molecular imprinting on magnetic nanozyme surface for highly selective colorimetric detection of tetracycline. Sens. Actuators B Chem. 2022, 370, 132451. [Google Scholar] [CrossRef]
- Zhu, B.C.; Dong, S.M.; Liu, Z.C.; Gao, Y.; Zhu, X.X.; Xie, M.; Liu, Q.Y. Enhanced peroxidase-like activity of bimetal (Fe/Co) MIL-101 for determination of tetracycline and hydrogen peroxide. New J. Chem. 2022, 46, 21834–21844. [Google Scholar] [CrossRef]
- Li, S.H.; Ma, X.H.; Pang, C.H.; Wang, M.Y.; Yin, G.H.; Xu, Z.; Li, J.P.; Luo, J.H. Novel chloramphenicol sensor based on aggregation-induced electrochemiluminescence and nanozyme amplification. Biosens. Bioelectron. 2021, 176, 112944. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Hu, Y.; Zhou, P.; Wang, C.X.; Tao, H.; Wu, Y.G. Colorimetric Detection of Kanamycin Residue in Foods Based on the Aptamer-Enhanced Peroxidase-Mimicking Activity of Layered WS2 Nanosheets. J. Agric. Food Chem. 2021, 69, 2884–2893. [Google Scholar] [CrossRef]
- Zhang, Z.P.; Liu, Y.; Huang, P.C.; Wu, F.Y.; Ma, L.H. Polydopamine molecularly imprinted polymer coated on a biomimetic iron-based metal-organic framework for highly selective fluorescence detection of metronidazole. Talanta 2021, 232, 122411. [Google Scholar] [CrossRef]
- Lu, C.; Tang, L.H.; Gao, F.; Li, Y.Z.; Liu, J.W.; Zheng, J.K. DNA-encoded bimetallic Au-Pt dumbbell nanozyme for high-performance detection and eradication of Escherichia coli O157:H7. Biosens. Bioelectron. 2021, 187, 113327. [Google Scholar] [CrossRef]
- Liu, J.C.; Xing, Y.P.; Xue, B.Y.; Zhou, X.H. Nanozyme enhanced paper-based biochip with a smartphone readout system for rapid detection of cyanotoxins in water. Biosens. Bioelectron. 2022, 205, 114099. [Google Scholar] [CrossRef]
- Zhang, J.C.; Bai, Q.; Bi, X.L.; Zhang, C.H.; Shi, M.Y.; Yu, W.W.; Du, F.L.; Wang, L.A.; Wang, Z.B.; Zhu, Z.L.; et al. Piezoelectric enhanced peroxidase-like activity of metal-free sulfur doped graphdiyne nanosheets for efficient water pollutant degradation and bacterial disinfection. Nano Today 2022, 43, 101429. [Google Scholar] [CrossRef]
- Geng, X.; Xie, X.N.; Liang, Y.C.; Li, Z.Q.; Yang, K.; Tao, J.; Zhang, H.; Wang, Z. Facile Fabrication of a Novel Copper Nanozyme for Efficient Dye Degradation. Acs Omega 2021, 6, 6284–6291. [Google Scholar] [CrossRef]
- Chen, Q.M.; Liu, Y.; Lu, Y.W.; Hou, Y.J.; Zhang, X.D.; Shi, W.B.; Huang, Y.M. Atomically dispersed Fe/Bi dual active sites single-atom nanozymes for cascade catalysis and peroxymonosulfate activation to degrade dyes. J. Hazard. Mater. 2022, 422, 126929. [Google Scholar] [CrossRef]
- Su, C.; Wang, B.X.; Li, S.L.; Wie, Y.B.; Wang, Q.L.; Li, D.J. Fabrication of Pd@ZnNi-MOF/GO Nanocomposite and Its Application for H2O2 Detection and Catalytic Degradation of Methylene Blue Dyes. Chemistryselect 2021, 6, 8480–8489. [Google Scholar] [CrossRef]
- Zhu, J.L.; Luo, G.; Xi, X.X.; Wang, Y.J.; Selvaraj, J.N.; Wen, W.; Zhang, X.H.; Wang, S.F. Cu2+-modified hollow carbon nanospheres: An unusual nanozyme with enhanced peroxidase-like activity. Microchim. Acta 2021, 188, 8. [Google Scholar] [CrossRef]
- Shams, S.; Ahmad, W.; Memon, H.; Wei, Y.; Yuan, Q.P.; Liang, H. Facile synthesis of laccase mimic Cu/H3BTC MOF for efficient dye degradation and detection of phenolic pollutants. RSC Adv. 2019, 9, 40845–40854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.G.; Chen, Z.M.; Zhu, Q.P.; Song, J.J.; Li, S.; Liu, X.H. Improved performance of immobilized laccase on Fe3O4@C-Cu2+ nanoparticles and its application for biodegradation of dyes. J. Hazard. Mater. 2020, 399, 123088. [Google Scholar] [CrossRef]
- Zha, J.Q.; Wu, W.G.; Xie, P.; Han, H.H.; Fang, Z.; Chen, Y.T.; Jia, Z.F. Polymeric Nanocapsule Enhances the Peroxidase-like Activity of Fe3O4 Nanozyme for Removing Organic Dyes. Catalysts 2022, 12, 614. [Google Scholar] [CrossRef]
- Su, H.F.; Zhang, Y.Z.; Lu, Z.C.; Wang, Q.Y. A mechanism of microbial sensitivity regulation on interventional remediation by nanozyme manganese oxide in soil heavy metal pollution. J. Clean. Prod. 2022, 373, 133470. [Google Scholar] [CrossRef]
- Yan, Z.Q.; Xing, L.; Zhao, L.; Zhang, X.Y.; Zhang, Y.F.; Tang, Y.L.; Zhou, X.M.; Hu, L.; Zhu, N.L. beta-Cyclodextrin and graphene oxide co-strengthened AgRu bimetal mesoporous nanozyme: An efficient strategy for visual detection and removal of toxic Hg2+ and Cl. J. Environ. Chem. Eng. 2022, 10, 108242. [Google Scholar] [CrossRef]
- Wang, F.M.; Zhang, Y.; Liu, Z.W.; Ren, J.S.; Qu, X.G. A mesoporous encapsulated nanozyme for decontaminating two kinds of wastewater and avoiding secondary pollution. Nanoscale 2020, 12, 14465–14471. [Google Scholar] [CrossRef]
- Lv, R.; Sun, S.Y.; Wang, K.; Golubev, Y.A.; Dong, F.Q.; Kotova, O.B.; Liu, J.; Liu, M.X.; Tan, D.Y. Design and construction of copper-containing organophyllosilicates as laccase-mimicking nanozyme for efficient removal of phenolic pollutants. J. Mater. Sci. 2022, 57, 10084–10099. [Google Scholar] [CrossRef]
- Jiang, J.F.; He, C.Y.; Wang, S.; Jiang, H.; Li, J.D.; Li, L.S. Recyclable ferromagnetic chitosan nanozyme for decomposing phenol. Carbohydr. Polym. 2018, 198, 348–353. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.M.; Wang, F.; Yu, J.; Zhang, X.; Lu, G.P. Iron single-atom anchored N-doped carbon as a ‘laccase-like’ nanozyme for the degradation and detection of phenolic pollutants and adrenaline. J. Hazard. Mater. 2022, 425, 127763. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.H.; Huang, R.L.; Qi, W.; Su, R.X.; Binks, B.P.; He, Z.M. Construction of a bioinspired laccase-mimicking nanozyme for the degradation and detection of phenolic pollutants. Appl. Catal. B Environ. 2019, 254, 452–462. [Google Scholar] [CrossRef]
- Tang, Y.; Jiang, S.L.; Li, W.Y.; Shah, S.J.; Zhao, Z.X.; Pan, L.; Zhao, Z.X. Confined construction of COF@Cu-nanozyme with high activity and stability as laccase biomimetic catalyst for the efficient degradation of phenolic pollutants. Chem. Eng. J. 2022, 448, 137701. [Google Scholar] [CrossRef]
- Xu, X.J.; Wang, J.H.; Huang, R.L.; Qi, W.; Su, R.X.; He, Z.M. Preparation of laccase mimicking nanozymes and their catalytic oxidation of phenolic pollutants. Catal. Sci. Technol. 2021, 11, 3402–3410. [Google Scholar] [CrossRef]
- Liang, S.; Wu, X.L.; Zong, M.H.; Lou, W.Y. Construction of Zn-heptapeptide bionanozymes with intrinsic hydrolase-like activity for degradation of di(2-ethylhexyl) phthalate. J. Colloid Interface Sci. 2022, 622, 860–870. [Google Scholar] [CrossRef] [PubMed]
- Zandieh, M.; Liu, J.W. Removal and Degradation of Microplastics Using the Magnetic and Nanozyme Activities of Bare Iron Oxide Nanoaggregates. Angew. Chem. Int. Ed. 2022, 61, e202212013. [Google Scholar] [CrossRef]
- Khulbe, K.; Karmakar, K.; Ghosh, S.; Chandra, K.; Chakravortty, D.; Mugesh, G. Nanoceria-Based Phospholipase-Mimetic Cell Membrane Disruptive Antibiofilm Agents. ACS Appl. Bio Mater. 2020, 3, 4316–4328. [Google Scholar] [CrossRef]
- Fuentes, K.M.; Onna, D.; Rioual, T.; Huvelle, M.A.L.; Britto, F.; Simian, M.; Sanchez-Dominguez, M.; Soler-Illia, G.; Bilmes, S.A. Copper upcycling by hierarchical porous silica spheres functionalized with branched polyethylenimine: Antimicrobial and catalytic applications. Microporous Mesoporous Mater. 2021, 327, 111391. [Google Scholar] [CrossRef]
- Fan, Y.F.; Gan, X.R.; Zhao, H.M.; Zeng, Z.X.; You, W.J.; Quan, X. Multiple application of SAzyme based on carbon nitride nanorod-supported Pt single-atom for H2O2 detection, antibiotic detection and antibacterial therapy. Chem. Eng. J. 2022, 427, 131572. [Google Scholar] [CrossRef]
- Boruah, P.K.; Darabdhara, G.; Das, M.R. Polydopamine functionalized graphene sheets decorated with magnetic metal oxide nanoparticles as efficient nanozyme for the detection and degradation of harmful triazine pesticides. Chemosphere 2021, 268, 129328. [Google Scholar] [CrossRef]
- Yang, D.C.; Huo, J.Q.; Zhang, Z.; An, Z.X.; Dong, H.J.; Wang, Y.N.; Duan, W.D.; Chen, L.; He, M.X.; Gao, S.T.; et al. Citric acid modified ultrasmall copper peroxide nanozyme for in situ remediation of environmental sulfonylurea herbicide contamination. J. Hazard. Mater. 2023, 443, 130265. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Ai, X.; Ma, C.; Zhang, G. Degradable Vinyl Polymers for Combating Marine Biofouling. Acc. Chem. Res. 2022, 55, 1586–1598. [Google Scholar] [CrossRef]
- Dobretsov, S.; Abed, R.M.M.; Teplitski, M. Mini-review: Inhibition of biofouling by marine microorganisms. Biofouling 2013, 29, 423–441. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Wang, J.; Chen, H.; Chen, D. Progress of marine biofouling and antifouling technologies. Chin. Sci. Bull. 2011, 56, 598–612. [Google Scholar] [CrossRef] [Green Version]
- Luo, Q.; Li, Y.; Huo, X.; Li, L.; Song, Y.; Chen, S.; Lin, H.; Wang, N. Atomic Chromium Coordinated Graphitic Carbon Nitride for Bioinspired Antibiofouling in Seawater. Adv. Sci. 2022, 9, 2105346. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Luo, Q.; Li, J.Y.; Li, L.Q.; Li, Y.H.; Huo, X.B.; Du, X.W.; Li, Z.S.; Wang, N. Photothermal-Amplified Single Atom Nanozyme for Biofouling Control in Seawater. Adv. Funct. Mater. 2022, 32, 2205461. [Google Scholar] [CrossRef]
- You, J.; Chen, F.; Zhao, X.; Chen, Z. Preparation, characterization and catalytic oxidation property of CeO2/Cu2+-attapulgite (ATP) nanocomposites. J. Rare Earths 2010, 28, 347–352. [Google Scholar] [CrossRef]
- Feng, F.; Zhang, X.; Mu, B.; Wang, P.X.; Chen, Z.S.; Zhang, J.H.; Zhang, H.F.; Zhuang, J.L.; Zhao, L.; An, Q.; et al. Attapulgite Doped with Fe and Cu Nanooxides as Peroxidase Nanozymes for Antibacterial Coatings. ACS Appl. Nano Mater. 2022, 5, 16720–16730. [Google Scholar] [CrossRef]
- Wei, F.; Cui, X.; Wang, Z.; Dong, C.; Li, J.; Han, X. Recoverable peroxidase-like Fe3O4@MoS2-Ag nanozyme with enhanced antibacterial ability. Chem. Eng. J. 2021, 408, 127240. [Google Scholar] [CrossRef]
- Hao, S.; Sun, X.; Zhang, H.; Zhai, J.; Dong, S. Recent development of biofuel cell based self-powered biosensors. J. Mater. Chem. B 2020, 8, 3393–3407. [Google Scholar] [CrossRef]
- Lutterbeck, C.A.; Machado, E.L.; Sanchez-Barrios, A.; Silveira, E.O.; Layton, D.; Rieger, A.; Lobo, E.A. Toxicity evaluation of hospital laundry wastewaters treated by microbial fuel cells and constructed wetlands. Sci. Total Environ. 2020, 729, 138816. [Google Scholar] [CrossRef]
- Torres Castillo, N.E.; Melchor-Martinez, E.M.; Ochoa Sierra, J.S.; Mariana Ramirez-Torres, N.; Eduardo Sosa-Hernandez, J.; Iqbal, H.M.N.; Parra-Saldivar, R. Enzyme mimics in-focus: Redefining the catalytic attributes of artificial enzymes for renewable energy production. Int. J. Biol. Macromol. 2021, 179, 80–89. [Google Scholar] [CrossRef]
- Le, P.G.; Kim, M.I. Research Progress and Prospects of Nanozyme-Based Glucose Biofuel Cells. Nanomaterials 2021, 11, 2116. [Google Scholar] [CrossRef]
- Gu, C.; Kong, X.; Yan, S.; Gai, P.; Li, F. Glucose Dehydrogenase-like Nanozyme Based on Black Phosphorus Nanosheets for High-Performance Biofuel Cells. ACS Sustain. Chem. Eng. 2020, 8, 16549–16554. [Google Scholar] [CrossRef]
- Ho, J.; Li, Y.; Dai, Y.; Kim, T.; Wang, J.; Ren, J.; Yun, H.; Liu, X. Ionothermal synthesis of N-doped carbon supported CoMn2O4 nanoparticles as ORR catalyst in direct glucose alkaline fuel cell. Int. J. Hydrogen Energy 2021, 46, 20503–20515. [Google Scholar] [CrossRef]
- Li, Z.; Kang, Z.; Zhu, Z. A photo-switch for enzymatic biofuel cells based on the photo-oxidization of electron acceptor in cathode by C-dots nanozyme. Chem. Eng. J. 2022, 428, 13125. [Google Scholar] [CrossRef]
Category | Pollutant | Activity | Nanozyme | Removal Efficiency | Ref. |
---|---|---|---|---|---|
Dyes | RhB | POD | Sulfur-doped graphdiyne | >98% | [159] |
Methyl orange | POD | CNZ | 93% | [160] | |
Rhodamine B | OXD | FeBi-NC SAzyme | 99% | [161] | |
Methylene Blue | POD | ZnNi-MOF/GO NCs | 95% | [162] | |
Methylene Blue | POD | Cu2+-HCNSs-COOH | 80.7% | [163] | |
Methylene Blue | POD OXD | PdNPs/PCNF | 99.64% | [151] | |
Amido Black | Laccase | Cu/H3BTC MOF | 60% | [164] | |
Malachite green | Laccase | Fe3O4@C-Cu2+ | 99% | [165] | |
Organic dyes | POD | Fe3O4@Gel | 99% | [166] | |
Antibiotics | Tetracycline | POD | Sulfur-doped graphdiyne | >69% | [159] |
Toxic ions | Cr6+/As3+ | CAT | NanoMn3O4 | >98% | [167] |
Hg2+/Cl− | POD | AgRu@β-CD-co-GO | 94.9% 93.8% | [168] | |
H2O2 | CAT POD | DMNS@AuPtCo | >95% | [169] | |
Phenolic | Hydroquinone | Laccase | Aminopropyl-functionalized copper containing phyllosilicate (ACP) | 100% | [170] |
Phenol | POD | MNP@CTS | >95% | [171] | |
Phenol | CAT POD | DMNS@AuPtCo | 90% | [169] | |
2,4-DP | Laccase | Fe1@CN-20 | 65% | [172] | |
2,4-DP | Laccase | AMP-Cu | 65% | [124] | |
2,4-DP | Laccase | CH-Cu | 82% | [173] | |
2,4-DP | Laccase | Cu-Cys@COF-OMe | >75% | [174] | |
2,4-DP | Laccase | CA-Cu NPs | 90% | [175] | |
DEHP phthalic acid esters | Hydrolase | Zn-heptapeptide bionanozymes | 86.80% | [176] | |
Microplastics | POD | Fe3O4NPs | 100% | [177] | |
Pathogens | Escherichia coli | Phospholipase | PAA-Cnp | >80% | [178] |
Escherichia coli | POD | Au-Pt dumbbell NPs | 95% | [157] | |
Escherichia coli | OXD | w-SiO2/CuO | 90% | [179] | |
Gram-negative bacteria | POD | SA-Pt/g-C3N4-K | >99.99% | [180] | |
OPs | Simazine | POD | Fe3O4/DG | 99% | [181] |
Atrazine | POD | Fe3O4-TiO2/rGO | 98% | [141] | |
Cinosulfuron | POD | CP@CA | 96.25% | [182] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Zhu, P.; Liu, S.; Chen, Y.; Liang, D.; Liu, Y.; Chen, W.; Du, L.; Wu, C. Application of Nanozymes in Environmental Monitoring, Management, and Protection. Biosensors 2023, 13, 314. https://doi.org/10.3390/bios13030314
Wang M, Zhu P, Liu S, Chen Y, Liang D, Liu Y, Chen W, Du L, Wu C. Application of Nanozymes in Environmental Monitoring, Management, and Protection. Biosensors. 2023; 13(3):314. https://doi.org/10.3390/bios13030314
Chicago/Turabian StyleWang, Miaomiao, Ping Zhu, Shuge Liu, Yating Chen, Dongxin Liang, Yage Liu, Wei Chen, Liping Du, and Chunsheng Wu. 2023. "Application of Nanozymes in Environmental Monitoring, Management, and Protection" Biosensors 13, no. 3: 314. https://doi.org/10.3390/bios13030314
APA StyleWang, M., Zhu, P., Liu, S., Chen, Y., Liang, D., Liu, Y., Chen, W., Du, L., & Wu, C. (2023). Application of Nanozymes in Environmental Monitoring, Management, and Protection. Biosensors, 13(3), 314. https://doi.org/10.3390/bios13030314