Development of Gold-Nanoparticle-Based Lateral Flow Immunoassays for Rapid Detection of TB ESAT-6 and CFP-10
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of 14 nm AuNPs
2.3. Characterization of the AuNPs Using UV-vis Spectrophotometer and TEM
2.4. Conjugation of Antibodies to AuNPs
2.4.1. Stability of AuNP–Antibody Conjugates
2.4.2. Conjugation of Antibodies to the AuNPs
2.5. Selection of Antibody Pairs by Dot Spotting
2.6. Development of the AuNP-Based LFIA and Determination of the Limit of Detection (LOD)
2.7. Wet and Dry Conjugate Testing of the LFIA
3. Results
3.1. Synthesis and Characterization of AuNPs
3.2. Assessment of Conjugation Conditions and Conjugate Stability
3.3. Selection of Antibodies
3.4. LOD for CFP-10 and ESAT-6
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ajudua, F.I.; Mash, R.J. Implementing Active Surveillance for TB—The Views of Managers in a Resource Limited Setting, South Africa. PLoS ONE 2020, e0239430. [Google Scholar] [CrossRef]
- Yong, Y.K.; Tan, H.Y.; Saeidi, A.; Wong, W.F.; Vignesh, R.; Velu, V.; Eri, R.; Larsson, M.; Shankar, E.M. Immune Biomarkers for Diagnosis and Treatment Monitoring of Tuberculosis: Current Developments and Future Prospects. Front. Microbiol. 2019, 10, 2789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broger, T.; Tsionksy, M.; Mathew, A.; Lowary, T.L.; Pinter, A.; Plisova, T.; Bartlett, D.; Barbero, S.; Denkinger, C.M.; Moreau, E.; et al. Sensitive Electrochemiluminescence (ECL) Immunoassays for Detecting Lipoarabinomannan (LAM) and ESAT-6 in Urine and Serum from Tuberculosis Patients. PLoS ONE 2019, 14, e0215443. [Google Scholar] [CrossRef]
- Pai, M.; Denkinger, C.M.; Kik, S.V.; Rangaka, M.X.; Zwerling, A.; Oxlade, O.; Metcalfe, J.Z.; Cattamanchi, A.; Dowdy, D.W.; Dheda, K.; et al. Gamma Interferon Release Assays for Detection of Mycobacterium Tuberculosis Infection. Clin. Microbiol. Rev. 2014, 27, 3–20. [Google Scholar] [CrossRef] [Green Version]
- Martin, D.R.; Sibuyi, N.R.; Dube, P.; Fadaka, A.O.; Cloete, R.; Onani, M.; Madiehe, A.M.; Meyer, M. Aptamer-Based Diagnostic Systems for the Rapid Screening of Tb at the Point-of-Care. Diagnostics 2021, 11, 1352. [Google Scholar] [CrossRef]
- Yadav, R.; Daroch, P.; Gupta, P.; Agarwal, P.; Aggarwal, A.N.; Sethi, S. Diagnostic Accuracy of TB-LAMP Assay in Patients with Pulmonary Tuberculosis–a Case-Control Study in Northern India. Pulmonology 2022, 28, 449–453. [Google Scholar] [CrossRef]
- Ni, J.R.; Yan, P.J.; Liu, S.D.; Hu, Y.; Yang, K.H.; Song, B.; Lei, J.Q. Diagnostic Accuracy of Transthoracic Echocardiography for Pulmonary Hypertension: A Systematic Review and Meta-Analysis. BMJ Open 2019, 9, e033084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Farrell, B. Evolution in Lateral Flow–Based Immunoassay Systems; Wong, R.C., Tse, H.Y., Eds.; Humana Press: New York, NY, USA, 2009; ISBN 9781597452403. [Google Scholar]
- Wang, C.; Liu, M.; Song, L.; Yan, D.; Nongyue, H. Point-of-Care Diagnostics for Infectious Diseases: From Methods to Devices. Nano Today 2021, 37, 19–21. [Google Scholar] [CrossRef]
- Walzl, G.; McNerney, R.; du Plessis, N.; Bates, M.; McHugh, T.D.; Chegou, N.N.; Zumla, A. Tuberculosis: Advances and Challenges in Development of New Diagnostics and Biomarkers. Lancet Infect. Dis. 2018, 18, e199–e210. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Wang, Y.; Weng, T.; Hu, C.; Wang, F.X.C.; Wu, Z.; Yu, D.; Lu, H.; Yao, H. Preparation of Immunochromatographic Strips for Rapid Detection of Early Secreted Protein ESAT-6 and Culture Filtrate Protein CFP-10 from Mycobacterium Tuberculosis. Medicine 2017, 96, 4–9. [Google Scholar] [CrossRef]
- University Research Co Rapid Test Improves TB Diagnosis in People with HIV in South Africa—URC. Available online: https://www.urc-chs.com/news/rapid-test-improves-tb-diagnosis-in-people-with-hiv-in-south-africa/ (accessed on 9 January 2023).
- Pym, A.S.; Brodin, P.; Brosch, R.; Huerre, M.; Cole, S.T. Loss of RD1 Contributed to the Attenuation of the Live Tuberculosis Vaccines Mycobacterium Bovis BCG and Mycobacterium Microti. Mol. Microbiol. 2002, 46, 709–717. [Google Scholar] [CrossRef]
- Liu, C.; Zhao, Z.; Fan, J.; Lyon, C.J.; Wu, H.J.; Nedelkov, D.; Zelazny, A.M.; Olivier, K.N.; Cazares, L.H.; Holland, S.M.; et al. Quantification of Circulating Mycobacterium Tuberculosis Antigen Peptides Allows Rapid Diagnosis of Active Disease and Treatment Monitoring. Proc. Natl. Acad. Sci. USA 2017, 114, 3969–3974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mdluli, P.; Tetyana, P.; Sosibo, N.; van der Walt, H.; Mlambo, M.; Skepu, A.; Tshikhudo, R. Gold Nanoparticle Based Tuberculosis Immunochromatographic Assay: The Quantitative ESE Quanti Analysis of the Intensity of Test and Control Lines. Biosens. Bioelectron. 2014, 54, 1–6. [Google Scholar] [CrossRef]
- Turkevich, J.; Stevenson, P.C.; Hillier, J. A Study of the Nucleation and Growth Processes in the Synthesis of Colloidal Gold. Discuss. Faraday Soc. 1951, 11, 55–75. [Google Scholar] [CrossRef]
- Ariffin, N.; Yusof, N.A.; Abdullah, J.; Abd Rahman, S.F.; Ahmad Raston, N.H.; Kusnin, N.; Suraiya, S. Lateral Flow Immunoassay for Naked Eye Detection of Mycobacterium Tuberculosis. J. Sens. 2020, 2020, 1365983. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; El-Sayed, M.A. Gold Nanoparticles: Optical Properties and Implementations in Cancer Diagnosis and Photothermal Therapy. J. Adv. Res. 2010, 1, 13–28. [Google Scholar] [CrossRef] [Green Version]
- Shafiqa, A.R.; Abdul Aziz, A.; Mehrdel, B. Nanoparticle Optical Properties: Size Dependence of a Single Gold Spherical Nanoparticle. J. Phys. Conf. Ser. 2018, 1083, 012040. [Google Scholar] [CrossRef] [Green Version]
- Herizchi, R.; Abbasi, E.; Milani, M.; Akbarzadeh, A. Current Methods for Synthesis of Gold Nanoparticles. Artif. Cells, Nanomed. Biotechnol. 2016, 44, 596–602. [Google Scholar] [CrossRef]
- Hu, M.; Chen, J.; Li, Z.Y.; Au, L.; Hartland, G.V.; Li, X.; Marquez, M.; Xia, Y. Gold Nanostructures: Engineering Their Plasmonic Properties for Biomedical Applications. Chem. Soc. Rev. 2006, 35, 1084–1094. [Google Scholar] [CrossRef] [PubMed]
- Cavalera, S.; Pezzoni, G.; Grazioli, S.; Brocchi, E.; Baselli, S.; Lelli, D.; Colitti, B.; Serra, T.; Nardo, F.D.; Chiarello, M.; et al. Investigation of the “Antigen Hook Effect” in Lateral Flow Sandwich Immunoassay: The Case of Lumpy Skin Disease Virus Detection. Biosensors 2022, 12, 739. [Google Scholar] [CrossRef]
- Nygren, H.; Stenberg, M. Kinetics of Antibody-Binding to Surface-Immobilized Antigen: Influence of Mass Transport on the Enzyme-Linked Immunosorbent Assay (ELISA). J. Colloid Interface Sci. 1985, 107, 560–566. [Google Scholar] [CrossRef]
- Stenberg, M.; Stiblert, L.; Nygren, H. External Diffusion in Solid-Phase Immunoassays. J. Theor. Biol. 1986, 120, 129–140. [Google Scholar] [CrossRef]
- Priyadarshini, S.; Manas, F.; Prabhu, S. False Negative Urine Pregnancy Test: Hook Effect Revealed. Cureus 2022, 14, 10–13. [Google Scholar] [CrossRef]
- Ross, G.M.S.; Filippini, D.; Nielen, M.W.F.; Salentijn, G.I.J. Unraveling the Hook Effect: A Comprehensive Study of High Antigen Concentration Effects in Sandwich Lateral Flow Immunoassays. Anal. Chem. 2020, 92, 15587–15595. [Google Scholar] [CrossRef] [PubMed]
- Byzova, N.A.; Safenkova, I.V.; Slutskaya, E.S.; Zherdev, A.V.; Dzantiev, B.B. Less Is More: A Comparison of Antibody-Gold Nanoparticle Conjugates of Different Ratios. Bioconjug. Chem. 2017, 28, 2737–2746. [Google Scholar] [CrossRef]
- Cavalera, S.; Russo, A.; Foglia, E.A.; Grazioli, S.; Colitti, B.; Rosati, S.; Nogarol, C.; Di Nardo, F.; Serra, T.; Chiarello, M.; et al. Design of Multiplexing Lateral Flow Immunoassay for Detection and Typing of Foot-and-Mouth Disease Virus Using Pan-Reactive and Serotype-Specific Monoclonal Antibodies: Evidence of a New Hook Effect. Talanta 2022, 240, 123155. [Google Scholar] [CrossRef] [PubMed]
- Lu, R.; Li, W.W.; Katzir, A.; Raichlin, Y.; Yu, H.Q.; Mizaikoff, B. Probing the Secondary Structure of Bovine Serum Albumin during Heat-Induced Denaturation Using Mid-Infrared Fiberoptic Sensors. Analyst 2015, 140, 765–770. [Google Scholar] [CrossRef] [Green Version]
- Swaisgood, H.E. Review and Update of Casein Chemistry. J. Dairy Sci. 1993, 76, 3054–3061. [Google Scholar] [CrossRef]
- Singh, N.; Dahiya, B.; Radhakrishnan, V.S.; Prasad, T.; Mehta, P.K. Detection of Mycobacterium Tuberculosis Purified ESAT-6 (Rv3875) by Magnetic Bead-Coupled Gold Nanoparticle-Based Immuno-PCR Assay. Int. J. Nanomed. 2018, 13, 8523–8535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehaffy, C.; Dobos, K.M.; Nahid, P.; Kruh-Garcia, N.A. Second Generation Multiple Reaction Monitoring Assays for Enhanced Detection of Ultra-Low Abundance Mycobacterium Tuberculosis Peptides in Human Serum. Clin. Proteom. 2017, 14, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Antigen | Antibody Code | Antibody Details (Cat No.) | Supplier Details |
---|---|---|---|
CFP-10 | Ab1 | Mouse Monoclonal Mycobacterium Tuberculosis CFP-10 Antibody (KFB16) | Novus Biologicals, LLC (Briarwood Avenue, CO 80112, USA) |
Ab2 | Mouse Monoclonal Mycobacterium Tuberculosis CFP-10 Antibody (KFB42) | Novus Biologicals, LLC | |
Ab3 | Mouse Anti-Mycobacterium tuberculosis CFP-10 Monoclonal Antibody (DMAB3941) | Creative diagnostics PTY (Ltd) (Shirley, NY, USA) | |
Ab4 | Mouse Anti-Mycobacterium tuberculosis CFP-10 Monoclonal Antibody (DMAB3943) | Creative diagnostics PTY (Ltd) | |
Ab5 | Rabbit Polyclonal Anti-CFP-10 antibody (AB45073) | Abcam PTY (LTD) (Discovery Drive, Cambridge, UK) | |
ESAT-6 | Ab6 | Mouse Anti-Mycobacterium tuberculosis ESAT-6 Monoclonal Antibody (DMAB3944) | Creative diagnostics PTY (Ltd) |
Ab7 | Mouse Anti-Mycobacterium tuberculosis ESAT-6 Monoclonal Antibody (DMAB3945) | Creative diagnostics PTY (Ltd) | |
Ab8 | Rabbit Polyclonal Anti-ESAT-6 antibody (AB45074) | Abcam PTY (LTD) |
Capture Antibody | Control/Test | CFP-10 | ESAT-6 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ab1 | Ab2 | Ab3 | Ab4 | Ab5 | Ab6 | Ab7 | Ab8 | Detector Antibody | |||
Ab1 | Control | +++ | ++ | ++ | +++ | ||||||
Test | +++ | +++ | - | +++ | |||||||
Ab2 | Control | ++ | - | +++ | +++ | ||||||
Test | +++ | - | +++ | ++ | |||||||
Ab3 | Control | + | + | ++ | ++ | ||||||
Test | n/a | n/a | - | +++ | |||||||
Ab4 | Control | + | + | ++ | + | ||||||
Test | - | - | ++ | - | |||||||
Ab5 | Control | +++ | |||||||||
Test | - | ||||||||||
Ab6 | Control | ++ | +++ | ||||||||
Test | - | - | |||||||||
Ab7 | Control | +++ | +++ | ||||||||
Test | - | ++ | |||||||||
Ab8 | Control | +++ | |||||||||
Test | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seele, P.P.; Dyan, B.; Skepu, A.; Maserumule, C.; Sibuyi, N.R.S. Development of Gold-Nanoparticle-Based Lateral Flow Immunoassays for Rapid Detection of TB ESAT-6 and CFP-10. Biosensors 2023, 13, 354. https://doi.org/10.3390/bios13030354
Seele PP, Dyan B, Skepu A, Maserumule C, Sibuyi NRS. Development of Gold-Nanoparticle-Based Lateral Flow Immunoassays for Rapid Detection of TB ESAT-6 and CFP-10. Biosensors. 2023; 13(3):354. https://doi.org/10.3390/bios13030354
Chicago/Turabian StyleSeele, Palesa Pamela, Busiswa Dyan, Amanda Skepu, Charlotte Maserumule, and Nicole Remaliah Samantha Sibuyi. 2023. "Development of Gold-Nanoparticle-Based Lateral Flow Immunoassays for Rapid Detection of TB ESAT-6 and CFP-10" Biosensors 13, no. 3: 354. https://doi.org/10.3390/bios13030354
APA StyleSeele, P. P., Dyan, B., Skepu, A., Maserumule, C., & Sibuyi, N. R. S. (2023). Development of Gold-Nanoparticle-Based Lateral Flow Immunoassays for Rapid Detection of TB ESAT-6 and CFP-10. Biosensors, 13(3), 354. https://doi.org/10.3390/bios13030354