Surface-Activated Pencil Graphite Electrode for Dopamine Sensor Applications: A Critical Review
Abstract
:1. Introduction
2. Activated Pencil Graphite Modified Electrodes for Electrochemical DA Sensing Applications
2.1. Electrochemically Pre-Treated PGE
2.2. Polymer-Modified PGE
2.3. Metal Oxides and Nanocomposites Modified PGE
S. No | Electrode | Pre-Treatment Conditions | Analytes | Tech, pH | Sensitivity/µA µM−1 | Linear Range/µM | Ref |
---|---|---|---|---|---|---|---|
1. | PGE * | −0.6 to 0.9 V (CV) in 0.1 M PBS | DA, SE &UA | CV, PBS 7 | 0.004 | 100–700 | [47] |
2. | PGE * | −0.3 to 2.0 V (CV) in 0.1 M H3PO4 | DA | AdSV, PBS 4 | 17.186 | 0.5–5 | [48] |
3. | PGE * | +1.5 to 2.0 V (CV) in 0.1 M PBS | DA, UA | DPV, pH 5 | 0.225 | 0.15–15 | [49] |
4. | Pencil drawn electrode | Paper based analytical device | DA | DPV, pH 7.4 | 6.91 | 0.1–700 | [3] |
5. | PGE/Flame itched | Exposing flame over PGE surface | DA | DPV, PBS 0.2 M | 1.8 | 2500–10000 | [50] |
6. | PGE | No pretreatment procedure | DA | DPV, pH 7.0 | 0.70 | 15–40 | [51] |
7. | PGE/Graphene | 3 V anodic voltage for 150 s in NaOH | DA | DPV, pH 7 | 20.8 | 0.15–45 | [52] |
8. | PGE * | Eapp = 2 V for 120 s in PBS 7 | DA | DPV, pH 7 | 34.32 | 1–80 | [39] |
Electrodes | Analytes | Tech, pH | Sensitivity/µA µM−1 | Linear Range/µM | Ref | |
---|---|---|---|---|---|---|
1. | PGE/p-FSBF | DA, UA | CV, pH 7 | - | 0.1–0.5 | [53] |
2. | PGE/OO10NFPPY5 | DA | DPV, pH 4 | 0.157 | 1.0–1000 | [54] |
3. | PGE/p-(P3CA) | DA | AdsV, pH 6 | 17.23 | 0.025–7.5 | [55] |
4. | PGE/4-ABSA | DA | DPV, pH 7 | 10.786 | 0.5–10 | [40] |
5. | PGE/p-rB | DA & SE | DPV, pH 7.4 | 0.919 | 1–320 | [63] |
6. | PGE/p-Sorb | DA | CV, DPV pH 7.4 | 0.116 | 10–40 | [57] |
7. | PGE/p(y-PX4R) | DA | DPV, pH 7.4 | - | 10–50 | [58] |
8. | PGE/p-DBU | DA, SE, Typ | DPV, PBS | 20.8 | 1–20 | [59] |
Electrode | Analytes | Tech, pH | Sensitivity/µA µM−1 | Linear Range/µM | Reference | |
---|---|---|---|---|---|---|
1. | GCE/ErGO-AuNPs | AA, DA & UA | DPV, pH 7.4 | 0.0412 | 0.01–3000 | [12] |
2. | PGE/GNS/DA | DA | EIS, (1:1) ratio of K3Fe(CN)6 and NaNO3 | 413.9 ohms | 6–6.5 × 10−6 | [60] |
3. | Cu-Ag bimetallic | DA | CA, PBS 7.4 | 1.56 | 0.1–200 | [61] |
4. | PGE/Cu/CuxONPs | DA | DPV, pH 5.8 | 0.51 | 0.3–53 | [42] |
5. | PGE/PDI-CuO | DA | DPV, pH 7 | 4 | 5–50 | [41] |
6. | PGE/PDI/MXene | DA | DPV, pH 7 | 38 | 100–1000 | [43] |
7. | PGE/Grnano/PtNPs/Grnano | DA | DPV, pH 7 | 210 | 0.06–20 | [62] |
3. Summary and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
Abbreviations
DBU | 2,3,4,6,7,8,9,10-octahydropyrimido [1,2-a] azepine |
4-ABSA | 4-Aminobenzene sulfate |
AdsV | Adsorptive stripping voltammetry |
AA | Ascorbic acid |
AFM | Atomic force microscopy |
CME | Chemically modified electrode |
CA | Chronoamperometry |
CE | Counter electrode |
CV | Cyclic voltammetry |
DPV | Differential pulse voltammetry |
DA | Dopamine |
ErGO | Electrochemically reduced graphene oxide |
FSBF | Fast sulphonyl black F |
FESEM | Field emission electron microscopy |
FT-IR | Fourier transform infra-red |
GCMS | Gas-chromatography-Mass-spectrometry |
GCE | Glassy Carbon electrode |
GO | Graphene oxide |
GNS | Gold nano stars |
HPLC | High pressure liquid chromatography |
NP | Nanoparticles |
OCP | Open circuit potential |
PGE | Pencil graphite electrode |
PDI | Perylene diamide |
PBS | Phosphate buffer solution |
POC | Point of care application |
P3CA | Polypyrole-3-carboxylic acid |
NFPPY | Polypyyrole nanofibril |
SECM | Scanning electrochemical microscopy |
SEM | Scanning electron microscope |
SE | Seritonin |
SCE | Standard calomel electrode |
Sorb | Sorbital |
rB | Riboflavin |
Typ | Tryptophan |
UA | Uric acid |
WE | Working electrode |
RE | Reference electrode |
XRD | X-ray diffraction |
y-p4XR | Yellow-PX4R |
References
- Gong, X.; Huang, K.; Wu, Y.-H.; Zhang, X.-S. Recent Progress on Screen-Printed Flexible Sensors for Human Health Monitoring. Sens. Actuators A Phys. 2022, 345, 113821. [Google Scholar] [CrossRef]
- David, I.G.; Popa, D.-E.; Buleandra, M. Pencil Graphite Electrodes: A Versatile Tool in Electroanalysis. J. Anal. Methods Chem. 2017, 2017, 1905968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.; Qian, D.; Li, Y.; Bao, N.; Gu, H.; Yu, C. Fully-Drawn Pencil-on-Paper Sensors for Electroanalysis of Dopamine. J. Electroanal. Chem. 2016, 769, 72–79. [Google Scholar] [CrossRef]
- Gomes, N.O.; Carrilho, E.; Machado, S.A.S.; Sgobbi, L.F. Bacterial Cellulose-Based Electrochemical Sensing Platform: A Smart Material for Miniaturized Biosensors. Electrochim. Acta 2020, 349, 136341. [Google Scholar] [CrossRef]
- Marsilia, M.; Susmel, S. Free-Standing Plastic Electrodes: Formulation, Electrochemical Characterization and Application to Dopamine Detection. Sens. Actuators B Chem. 2018, 255, 1087–1096. [Google Scholar] [CrossRef]
- Tan, W.; Powles, E.; Zhang, L.; Shen, W. Go with the Capillary Flow. Simple Thread-Based Microfluidics. Sens. Actuators B Chem. 2021, 334, 129670. [Google Scholar] [CrossRef]
- Torrinha, Á.; Amorim, C.G.; Montenegro, M.C.B.S.M.; Araújo, A.N. Biosensing Based on Pencil Graphite Electrodes. Talanta 2018, 190, 235–247. [Google Scholar] [CrossRef] [PubMed]
- Ishtiaq, S.; Sohail, M.; Rasul, S.; Zia, A.W.; Siller, L.; Chotana, G.A.; Sharif, M.; Nafady, A. Selenium Nanoneedles Deposited on a Pencil Graphite Electrode for Hydrazine Sensing. ACS Appl. Nano Mater. 2022, 5, 14336–14346. [Google Scholar] [CrossRef]
- Poudel, A.; Shyam Sunder, G.S.; Rohanifar, A.; Adhikari, S.; Kirchhoff, J.R. Electrochemical Determination of Pb2+ and Cd2+ with a Poly(Pyrrole-1-Carboxylic Acid) Modified Electrode. J. Electroanal. Chem. 2022, 911, 116221. [Google Scholar] [CrossRef]
- David, I.G.; Buleandra, M.; Popa, D.E.; Cheregi, M.C.; David, V.; Iorgulescu, E.E.; Tartareanu, G.O. Recent Developments in Voltammetric Analysis of Pharmaceuticals Using Disposable Pencil Graphite Electrodes. Processes 2022, 10, 472. [Google Scholar] [CrossRef]
- Vishnu, N.; Kumar, A.S. A Preanodized 6B-Pencil Graphite as an Efficient Electrochemical Sensor for Mono-Phenolic Preservatives (Phenol and Meta-Cresol) in Insulin Formulations. Anal. Methods 2015, 7, 1943–1950. [Google Scholar] [CrossRef]
- Imran, H.; Manikandan, P.N.; Dharuman, V. Facile and Green Synthesis of Graphene Oxide by Electrical Exfoliation of Pencil Graphite and Gold Nanoparticle for Non-Enzymatic Simultaneous Sensing of Ascorbic Acid, Dopamine and Uric Acid. RSC Adv. 2015, 5, 63513–63520. [Google Scholar] [CrossRef]
- Koyun, O.; Gorduk, S.; Arvas, M.B.; Sahin, Y. Electrochemically Treated Pencil Graphite Electrodes Prepared in One Step for the Electrochemical Determination of Paracetamol. Russ. J. Electrochem. 2018, 54, 796–808. [Google Scholar] [CrossRef]
- Lakshmanakumar, M.; Nesakumar, N.; Kulandaisamy, A.J.; Rayappan, J.B.B. Principles and Recent Developments in Optical and Electrochemical Sensing of Dopamine: A Comprehensive Review. Measurement 2021, 183, 109873. [Google Scholar] [CrossRef]
- Swetha, P.; Munusamy, S.; Srinivas, S.; Kumar, A.S.; Wang, J.; He, J.; Jiang, J. A D-A-D Molecularly Wired Charge Transfer Platform for Ultrasensitive Detection of Dopamine. Sens. Actuators B Chem. 2021, 338, 129829. [Google Scholar] [CrossRef]
- Farhud, D.D.; Malmir, M.; Khanahmadi, M. Happiness & Health: The Biological Factors- Systematic Review Article. Iran J. Public Health 2014, 43, 1468. [Google Scholar]
- Merims, D.; Giladi, N. Dopamine Dysregulation Syndrome, Addiction and Behavioral Changes in Parkinson’s Disease. Park. Relat. Disord. 2008, 14, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Musshoff, F.; Schmidt, P.; Dettmeyer, R.; Priemer, F.; Jachau, K.; Madea, B. Determination of Dopamine and Dopamine-Derived (R)-/(S)-Salsolinol and Norsalsolinol in Various Human Brain Areas Using Solid-Phase Extraction and Gas Chromatography/Mass Spectrometry. Forensic Sci. Int. 2000, 113, 359–366. [Google Scholar] [CrossRef]
- Vuorensola, K.; Sirén, H.; Karjalainen, U. Determination of Dopamine and Methoxycatecholamines in Patient Urine by Liquid Chromatography with Electrochemical Detection and by Capillary Electrophoresis Coupled with Spectrophotometry and Mass Spectrometry. J. Chromatogr. B 2003, 788, 277–289. [Google Scholar] [CrossRef]
- Razavi, M.; Barras, A.; Ifires, M.; Swaidan, A.; Khoshkam, M.; Szunerits, S.; Kompany-Zareh, M.; Boukherroub, R. Colorimetric Assay for the Detection of Dopamine Using Bismuth Ferrite Oxide (Bi2Fe4O9) Nanoparticles as an Efficient Peroxidase-Mimic Nanozyme. J. Colloid Interface Sci. 2022, 613, 384–395. [Google Scholar] [CrossRef]
- Decarli, N.O.; Zapp, E.; de Souza, B.S.; Santana, E.R.; Winiarski, J.P.; Vieira, I.C. Biosensor Based on Laccase-Halloysite Nanotube and Imidazolium Zwitterionic Surfactant for Dopamine Determination. BioChem. Eng. J. 2022, 186, 108565. [Google Scholar] [CrossRef]
- Santos, A.M.; Wong, A.; Fatibello-Filho, O.; Moraes, F.C. Amperometric Biosensor Based on Laccase Enzyme, Gold Nanoparticles, and Glutaraldehyde for the Determination of Dopamine in Biological and Environmental Samples. C 2022, 8, 40. [Google Scholar] [CrossRef]
- Winiarski, J.P.; Tavares, B.F.; de Fátima Ulbrich, K.; de Campos, C.E.M.; Souza, A.A.U.; Souza, S.M.A.G.U.; Jost, C.L. Development of a Multianalyte Electrochemical Sensor for Depression Biomarkers Based on a Waste of the Steel Industry for a Sustainable and One-Step Electrode Modification. Microchem. J. 2022, 175, 107141. [Google Scholar] [CrossRef]
- Roostaee, M.; Beitollahi, H.; Sheikhshoaie, I. Simultaneous Determination of Dopamine and Uric Acid in Real Samples Using a Voltammetric Nanosensor Based on Co-MOF, Graphene Oxide, and 1-Methyl-3-Butylimidazolium Bromide. Micromachines 2022, 13, 1834. [Google Scholar] [CrossRef] [PubMed]
- Fazl, F.; Gholivand, M.B. High Performance Electrochemical Method for Simultaneous Determination Dopamine, Serotonin, and Tryptophan by ZrO2–CuO Co-Doped CeO2 Modified Carbon Paste Electrode. Talanta 2022, 239, 122982. [Google Scholar] [CrossRef]
- Kamarska, M.; Dimcheva, K.; Biosensing, N.; Pimpilova, M.; Kamarska, K.; Dimcheva, N. Biosensing Dopamine and L-Epinephrine with Laccase (Trametes Pubescens) Immobilized on a Gold Modified Electrode. Biosensors 2022, 12, 719. [Google Scholar]
- Muthu, D.; Govindaraj, R.; Manikandan, M.; Ramasamy, P.; Haldorai, Y.; Rajendra Kumar, R.T. Reduced Graphene Oxide Supported Monoclinic Bismuth Vanadate Nanoparticles as an Electrocatalyst for Selective Determination of Dopamine in Human Urine Samples. Mater Chem. Phys. 2023, 297, 127437. [Google Scholar] [CrossRef]
- Daneshinejad, H.; Chamjangali, M.A.; Goudarzi, N.; Roudbari, A. Application of a Thin Film of Poly(Solochrome Black T) as a Redox Mediator for the Electro-Catalytic Simultaneous Determination of Dopamine and Acetaminophen in the Pharmaceutical and Biological Samples. Mater. Sci. Eng. C 2016, 58, 532–540. [Google Scholar] [CrossRef]
- Li, Y.; Song, H.; Zhang, L.; Zuo, P.; Ye, B.; Yao, J.; Chen, W. Supportless Electrochemical Sensor Based on Molecularly Imprinted Polymer Modified Nanoporous Microrod for Determination of Dopamine at Trace Level. Biosens. Bioelectron. 2016, 78, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Gou, W.; Zeng, W.; Chen, W.; Jiang, J.; Lu, J. Determination of Perfluorooctanesulfonic Acid in Water by Polydopamine Molecularly Imprinted /Gold Nanoparticles Sensor. Microchem. J. 2023, 187, 108378. [Google Scholar] [CrossRef]
- Ankitha, M.; Shabana, N.; Mohan Arjun, A.; Muhsin, P.; Abdul Rasheed, P. Ultrasensitive Electrochemical Detection of Dopamine from Human Serum Samples by Nb2CTx-MoS2 Hetero Structures. Microchem. J. 2023, 187, 108424. [Google Scholar] [CrossRef]
- Zhao, W.; Zhou, H.; Lu, K.; Li, Y.; Shi, W.; Ma, X. Electronic/Ionic Engineering Inspired Formation of Carbon-Encapsulated Cu3PSe4/Cu2Se Heterostructured Hollow Nanosphere for Trace Level Neurochemical Monitoring. Appl. Surf. Sci. 2023, 613, 156142. [Google Scholar] [CrossRef]
- Wang, L.; Ou, W.; Liu, H.; Wang, S.; Xia, Z.; Wang, X.; Yu, K. Electronic Structure Optimization of Titanium-Based Layered Oxide to Boost Flexible Sensing Performance. Appl. Surf. Sci. 2023, 618, 156702. [Google Scholar] [CrossRef]
- Harsini, M.; Widyaningrum, B.A.; Fitriany, E.; Ayuparamita, D.R.; Farida, A.N.; Farida, A.; Kurniawan, F.; Wibawasakti, S.C. Electrochemical Synthesis of Polymelamine/Gold Nanoparticle Modified Carbon Paste Electrode as Voltammetric Sensor of Dopamine. Chin. J. Anal. Chem. 2022, 50, 100052. [Google Scholar] [CrossRef]
- Kariuki, J.K. An Electrochemical and Spectroscopic Characterization of Pencil Graphite Electrodes. J. ElectroChem. Soc. 2012, 159, H747. [Google Scholar] [CrossRef]
- Liv, L.; Nakiboǧlu, N. Simple and Rapid Voltammetric Determination of Boron in Water and Steel Samples Using a Pencil Graphite Electrode. Turk. J. Chem. 2016, 40, 412–421. [Google Scholar] [CrossRef]
- David, I.G.; Bizgan, A.M.C.; Popa, D.E.; Buleandra, M.; Moldovan, Z.; Badea, I.A.; Tekiner, T.A.; Basaga, H.; Ciucu, A.A. Rapid Determination of Total Polyphenolic Content in Tea Samples Based on Caffeic Acid Voltammetric Behaviour on a Disposable Graphite Electrode. Food Chem. 2015, 173, 1059–1065. [Google Scholar] [CrossRef]
- David, I.G.; Buleandră, M.; Popa, D.E.; Bîzgan, A.-M.C.; Moldovan, Z.; Badea, I.-A.; Iorgulescu, E.E.; Tekiner, T.A.; Basaga, H. Voltammetric Determination of Polyphenolic Content as Rosmarinic Acid Equivalent in Tea Samples Using Pencil Graphite Electrodes. J. Food Sci. Technol. 2016, 53, 2589–2596. [Google Scholar] [CrossRef] [Green Version]
- Sankaranarayanan, P.; Venkateswaran, S.M. Affordable Voltammetric Sensor Based on Anodized Disposable Pencil Graphite Electrodes for Sensitive Determination of Dopamine and Uric Acid in Presence of High Concentration of Ascorbic Acid. J. Electrochem. Sci. Eng. 2020, 10, 263–279. [Google Scholar] [CrossRef]
- Devaramani, S.; Sreeramareddygari, M.; Reddy, M.R.; Thippeswamy, R. Covalently Anchored P-Aminobenzene Sulfonate Multilayer on a Graphite Pencil Lead Electrode: A Highly Selective Electrochemical Sensor for Dopamine. Electroanalysis 2017, 29, 1410–1417. [Google Scholar] [CrossRef]
- Amara, U.; Riaz, S.; Mahmood, K.; Akhtar, N.; Nasir, M.; Hayat, A.; Khalid, M.; Yaqub, M.; Nawaz, M.H. Copper Oxide Integrated Perylene Diimide Self-Assembled Graphitic Pencil for Robust Non-Enzymatic Dopamine Detection. RSC Adv. 2021, 11, 25084–25095. [Google Scholar] [CrossRef] [PubMed]
- Bahrami, E.; Amini, R.; Vardak, S. Electrochemical Detection of Dopamine via Pencil Graphite Electrodes Modified by Cu/CuxO Nanoparticles. J Alloy. Compd 2021, 855, 157292. [Google Scholar] [CrossRef]
- Amara, U.; Mehran, M.T.; Sarfaraz, B.; Mahmood, K.; Hayat, A.; Nasir, M.; Riaz, S.; Nawaz, M.H. Perylene Diimide/MXene-Modified Graphitic Pencil Electrode-Based Electrochemical Sensor for Dopamine Detection. Microchim. Acta 2021, 188, 230. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.N.; Collignon, M.G.; OConnell, M.A.; Hung, W.O.Y.; McKelvey, K.; MacPherson, J.V.; Unwin, P.R. A New View of Electrochemistry at Highly Oriented Pyrolytic Graphite. J. Am. Chem. Soc. 2012, 134, 20117–20130. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Martos, I.; Ferapontova, E.E. “Negative Electrocatalysis”-Based Specific Analysis of Dopamine at Basal Plane HOPG in the Presence of Structurally Related Catecholamines. ElectroChem. Commun. 2018, 89, 48–51. [Google Scholar] [CrossRef]
- Peltola, E.; Sainio, S.; Holt, K.B.; Palomäki, T.; Koskinen, J.; Laurila, T. Electrochemical Fouling of Dopamine and Recovery of Carbon Electrodes. Anal. Chem. 2018, 90, 1408–1416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galván-Valencia, M.; Albino-Navarro, G.; Flores-Morales, V.; Durón-Torres, S.M. Pencil Electrodes for Determination of Dopamine, Serotonin and Ascorbic Acid. ECS Trans. 2008, 15, 479–487. [Google Scholar] [CrossRef]
- Özcan, A.; Şahin, Y. Selective and Sensitive Voltammetric Determination of Dopamine in Blood by Electrochemically Treated Pencil Graphite Electrodes. Electroanalysis 2009, 21, 2363–2370. [Google Scholar] [CrossRef]
- Alipour, E.; Majidi, M.R.; Saadatirad, A.; Golabi, S.M.; Alizadeh, A.M. Simultaneous Determination of Dopamine and Uric Acid in Biological Samples on the Pretreated Pencil Graphite Electrode. Electrochim. Acta 2013, 91, 36–42. [Google Scholar] [CrossRef]
- Chandra, U.; Swamy, B.E.K.; Kumar, M.; Gebisa, A.W.; Praveen, M. Simple Flame Etching of Pencil Electrode for Dopamine Oxidation in Presence of Ascorbic Acid and Uric Acid. Int. J. Nanotechnol. 2017, 14, 739–751. [Google Scholar] [CrossRef]
- Mahanthesha, K.R.; Kumara Swamy, B.E.; Chandra, U. Simultaneous Determination of Dopamine in Presence of Serotonin at a Graphite Pencil Electrode: A Voltammetric Study. Anal. Bioanal. Electrochem. 2018, 10, 1064–1079. [Google Scholar]
- Fan, X.; Xu, Y.; Sheng, T.; Zhao, D.; Yuan, H.; Liu, F.; Liu, X.; Zhu, X.; Zhang, L.; Lu, J. Amperometric Sensor for Dopamine Based on Surface-Graphenization Pencil Graphite Electrode Prepared by in-Situ Electrochemical Delamination. Microchim. Acta 2019, 186, 324. [Google Scholar] [CrossRef] [PubMed]
- Chandra, U.; Kumara Swamy, B.E.; Gilbert, O.; Reddy, S.; Shankar, S.S.; Shreenivas, M.T.; Sherigara, B.S. Simultaneous Detection of Dopamine and Uric Acid at Poly (Fast Sulfone Black f) Film Coated Graphite Pencil Electrode. Anal. Bioanal. Electrochem. 2011, 3, 316–326. [Google Scholar]
- Koyun, O.; Gursu, H.; Gorduk, S.; Sahin, Y. Highly Sensitive Electrochemical Determination of Dopamine with an Overoxidized Polypyrrole Nanofiber Pencil Graphite Electrode. Int. J. ElectroChem. Sci. 2017, 12, 6428–6444. [Google Scholar] [CrossRef]
- Özcan, A.; İlkbaş, S.; Atılır Özcan, A. Development of a Disposable and Low-Cost Electrochemical Sensor for Dopamine Detection Based on Poly(Pyrrole-3-Carboxylic Acid)-Modified Electrochemically over-Oxidized Pencil Graphite Electrode. Talanta 2017, 165, 489–495. [Google Scholar] [CrossRef]
- Krishnan, R.G.; Saraswathyamma, B.; Raj, T.A.; Gopika, M.G. Poly (Riboflavin) Modified Pencil Graphite for the Simultaneous Electrochemical Determination of Serotonin and Dopamine. AIP Conf. Proc. 2020, 2259, 020007. [Google Scholar]
- Deepa, S.; Kumara Swamy, B.E.; Pai, K.V.; Mahanthesha, K.R. A Sensitive and Selective Electrochemical Investigation of Dopamine at Fabricated Sorbitol Film Modified Pencil Graphite Electrode: A Voltammetric Study. Anal. Bioanal. Electrochem. 2019, 11, 1240–1254. [Google Scholar]
- Shashikumara, J.K.; Kumara Swamy, B.E.; Sharma, S.C. A Simple Sensing Approach for the Determination of Dopamine by Poly (Yellow PX4R) Pencil Graphite Electrode. Chem. Data Collect. 2020, 27, 100366. [Google Scholar] [CrossRef]
- Rejithamol, R.; Krishnan, R.G.; Beena, S. Disposable Pencil Graphite Electrode Decorated with a Thin Film of Electro-Polymerized 2, 3, 4, 6, 7, 8, 9, 10-Octahydropyrimido [1, 2-a] Azepine for Simultaneous Voltammetric Analysis of Dopamine, Serotonin and Tryptophan. Mater Chem. Phys. 2021, 258, 123857. [Google Scholar] [CrossRef]
- Talemi, R.P.; Mousavi, S.M.; Afruzi, H. Using Gold Nanostars Modified Pencil Graphite Electrode as a Novel Substrate for Design a Sensitive and Selective Dopamine Aptasensor. Mater. Sci. Eng. C 2017, 73, 700–708. [Google Scholar] [CrossRef]
- Hyder, M.; Reddy, G.R.K.; Naveen, B.; Kumar, P.S. Copper-Silver Bimetallic Nanoelectrocatalyst on Pencil Graphite Substrate for Highly Selective Amperometric Dopamine Sensor. Chem. Phys. Lett. 2020, 740, 137086. [Google Scholar] [CrossRef]
- Baig, N.; Kawde, A.-N.; Elgamouz, A.; Morsy, M.; Abdelfattah, A.M.; Othaman, R. Graphene Nanosheet-Sandwiched Platinum Nanoparticles Deposited on a Graphite Pencil Electrode as an Ultrasensitive Sensor for Dopamine. RSC Adv. 2022, 12, 2057–2067. [Google Scholar] [CrossRef] [PubMed]
- Sangeetha, N.S.; Narayanan, S.S. Effective Electrochemical Detection of Riboflavin and Butylated Hydroxy Anisole Based on Azure A and Nickel Hexacyanoferrate Framework on Graphite Electrode. Chem. Data Collect. 2020, 30, 100544. [Google Scholar] [CrossRef]
- Vishnu, N.; Kumar, A.S. Development of Prussian Blue and Fe(Bpy)32+ Hybrid Modified Pencil Graphite Electrodes Utilizing Its Intrinsic Iron for Electroanalytical Applications. J. Electroanal. Chem. 2017, 786, 145–153. [Google Scholar] [CrossRef]
- Orzari, L.O.; de Araujo Andreotti, I.A.; Bergamini, M.F.; Marcolino, L.H.; Janegitz, B.C. Disposable Electrode Obtained by Pencil Drawing on Corrugated Fiberboard Substrate. Sens. Actuators B Chem. 2018, 264, 20–26. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srinivas, S.; Senthil Kumar, A. Surface-Activated Pencil Graphite Electrode for Dopamine Sensor Applications: A Critical Review. Biosensors 2023, 13, 353. https://doi.org/10.3390/bios13030353
Srinivas S, Senthil Kumar A. Surface-Activated Pencil Graphite Electrode for Dopamine Sensor Applications: A Critical Review. Biosensors. 2023; 13(3):353. https://doi.org/10.3390/bios13030353
Chicago/Turabian StyleSrinivas, Sakthivel, and Annamalai Senthil Kumar. 2023. "Surface-Activated Pencil Graphite Electrode for Dopamine Sensor Applications: A Critical Review" Biosensors 13, no. 3: 353. https://doi.org/10.3390/bios13030353
APA StyleSrinivas, S., & Senthil Kumar, A. (2023). Surface-Activated Pencil Graphite Electrode for Dopamine Sensor Applications: A Critical Review. Biosensors, 13(3), 353. https://doi.org/10.3390/bios13030353